erigon-pulse/turbo/trie/trie_test.go
2022-08-10 19:04:13 +07:00

695 lines
24 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"encoding/binary"
"fmt"
"math/big"
"math/rand"
"reflect"
"testing"
"github.com/davecgh/go-spew/spew"
"github.com/ledgerwatch/erigon/common"
"github.com/ledgerwatch/erigon/core/types/accounts"
"github.com/ledgerwatch/erigon/crypto"
"github.com/ledgerwatch/erigon/rlp"
"github.com/stretchr/testify/assert"
)
func init() {
spew.Config.Indent = " "
spew.Config.DisableMethods = false
}
// Used for testing
func newEmpty() *Trie {
trie := New(common.Hash{})
return trie
}
func TestEmptyTrie(t *testing.T) {
var trie Trie
res := trie.Hash()
exp := EmptyRoot
if res != exp {
t.Errorf("expected %x got %x", exp, res)
}
}
func TestNull(t *testing.T) {
var trie Trie
key := make([]byte, 32)
value := []byte("test")
trie.Update(key, value)
v, _ := trie.Get(key)
if !bytes.Equal(v, value) {
t.Fatal("wrong value")
}
}
func TestLargeValue(t *testing.T) {
trie := newEmpty()
trie.Update([]byte("key1"), []byte{99, 99, 99, 99})
trie.Update([]byte("key2"), bytes.Repeat([]byte{1}, 32))
trie.Hash()
}
// TestRandomCases tests som cases that were found via random fuzzing
func TestRandomCases(t *testing.T) {
var rt = []randTestStep{
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 0
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 1
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000002")}, // step 2
{op: 2, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 3
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 4
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 5
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 6
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 7
{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000008")}, // step 8
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000009")}, // step 9
{op: 2, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 10
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 11
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 12
{op: 0, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("000000000000000d")}, // step 13
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 14
{op: 1, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 15
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 16
{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000011")}, // step 17
{op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 18
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 19
// FIXME: fix these testcases for Erigon
//{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000014")}, // step 20
//{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000015")}, // step 21
//{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000016")}, // step 22
{op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 23
//{op: 1, key: common.Hex2Bytes("980c393656413a15c8da01978ed9f89feb80b502f58f2d640e3a2f5f7a99a7018f1b573befd92053ac6f78fca4a87268"), value: common.Hex2Bytes("")}, // step 24
//{op: 1, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 25
}
runRandTest(rt)
}
// randTest performs random trie operations.
// Instances of this test are created by Generate.
type randTest []randTestStep
type randTestStep struct {
op int
key []byte // for opUpdate, opDelete, opGet
value []byte // for opUpdate
err error // for debugging
}
const (
opUpdate = iota
opDelete
opGet
opCommit
opHash
opReset
opItercheckhash
opCheckCacheInvariant
opMax // boundary value, not an actual op
)
func (randTest) Generate(r *rand.Rand, size int) reflect.Value {
var allKeys [][]byte
genKey := func() []byte {
if len(allKeys) < 2 || r.Intn(100) < 10 {
// new key
key := make([]byte, r.Intn(50))
r.Read(key)
allKeys = append(allKeys, key)
return key
}
// use existing key
return allKeys[r.Intn(len(allKeys))]
}
var steps randTest
for i := 0; i < size; i++ {
step := randTestStep{op: r.Intn(opMax)}
switch step.op {
case opUpdate:
step.key = genKey()
step.value = make([]byte, 8)
binary.BigEndian.PutUint64(step.value, uint64(i))
case opGet, opDelete:
step.key = genKey()
}
steps = append(steps, step)
}
return reflect.ValueOf(steps)
}
func runRandTest(rt randTest) bool {
tr := New(common.Hash{})
values := make(map[string]string) // tracks content of the trie
for i, step := range rt {
fmt.Printf("{op: %d, key: common.Hex2Bytes(\"%x\"), value: common.Hex2Bytes(\"%x\")}, // step %d\n",
step.op, step.key, step.value, i)
switch step.op {
case opUpdate:
tr.Update(step.key, step.value)
values[string(step.key)] = string(step.value)
case opDelete:
tr.Delete(step.key)
delete(values, string(step.key))
case opGet:
v, _ := tr.Get(step.key)
want := values[string(step.key)]
if string(v) != want {
rt[i].err = fmt.Errorf("mismatch for key 0x%x, got 0x%x want 0x%x", step.key, v, want)
}
case opCommit:
case opHash:
tr.Hash()
case opReset:
hash := tr.Hash()
newtr := New(hash)
tr = newtr
case opItercheckhash:
// FIXME: restore for Erigon
/*
checktr := New(common.Hash{})
it := NewIterator(tr.NodeIterator(nil))
for it.Next() {
checktr.Update(it.Key, it.Value)
}
if tr.Hash() != checktr.Hash() {
rt[i].err = fmt.Errorf("hash mismatch in opItercheckhash")
}
*/
case opCheckCacheInvariant:
}
// Abort the test on error.
if rt[i].err != nil {
return false
}
}
return true
}
// Benchmarks the trie hashing. Since the trie caches the result of any operation,
// we cannot use b.N as the number of hashing rouns, since all rounds apart from
// the first one will be NOOP. As such, we'll use b.N as the number of account to
// insert into the trie before measuring the hashing.
func BenchmarkHash(b *testing.B) {
// Make the random benchmark deterministic
random := rand.New(rand.NewSource(0))
// Create a realistic account trie to hash
addresses := make([][20]byte, b.N)
for i := 0; i < len(addresses); i++ {
for j := 0; j < len(addresses[i]); j++ {
addresses[i][j] = byte(random.Intn(256))
}
}
accounts := make([][]byte, len(addresses))
for i := 0; i < len(accounts); i++ {
var (
nonce = uint64(random.Int63())
balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
root = EmptyRoot
code = crypto.Keccak256(nil)
)
accounts[i], _ = rlp.EncodeToBytes([]interface{}{nonce, balance, root, code})
}
// Insert the accounts into the trie and hash it
trie := newEmpty()
for i := 0; i < len(addresses); i++ {
trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i])
}
b.ResetTimer()
b.ReportAllocs()
trie.Hash()
}
func TestDeepHash(t *testing.T) {
acc := accounts.NewAccount()
prefix := "prefix"
var testdata = [][]struct {
key string
value string
}{
{{"key1", "value1"}},
{{"key1", "value1"}, {"key2", "value2"}},
{{"key1", "value1"}, {"key2", "value2"}, {"key3", "value3"}},
{{"key1", "value1"}, {"key2", "value2"}, {"\xffek3", "value3"}},
}
for i, keyVals := range testdata {
fmt.Println("Test", i)
trie := New(common.Hash{})
for _, keyVal := range keyVals {
trie.Update([]byte(keyVal.key), []byte(keyVal.value))
}
trie.PrintTrie()
hash1 := trie.Hash()
prefixTrie := New(common.Hash{})
prefixTrie.UpdateAccount([]byte(prefix), &acc)
for _, keyVal := range keyVals {
// Add a prefix to every key
prefixTrie.Update([]byte(prefix+keyVal.key), []byte(keyVal.value))
}
got2, hash2 := prefixTrie.DeepHash([]byte(prefix))
if !got2 {
t.Errorf("Expected DeepHash returning true, got false, testcase %d", i)
}
if hash1 != hash2 {
t.Errorf("DeepHash mistmatch: %x, expected %x, testcase %d", hash2, hash1, i)
}
}
}
func genRandomByteArrayOfLen(length uint) []byte {
array := make([]byte, length)
for i := uint(0); i < length; i++ {
array[i] = byte(rand.Intn(256))
}
return array
}
func getAddressForIndex(index int) [20]byte {
var address [20]byte
binary.BigEndian.PutUint32(address[:], uint32(index))
return address
}
func TestCodeNodeValid(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
numberOfAccounts := 20
addresses := make([][20]byte, numberOfAccounts)
for i := 0; i < len(addresses); i++ {
addresses[i] = getAddressForIndex(i)
}
codeValues := make([][]byte, len(addresses))
for i := 0; i < len(addresses); i++ {
codeValues[i] = genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValues[i]))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(addresses[i][:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(addresses[i][:]), codeValues[i])
assert.Nil(t, err, "should successfully insert code")
}
for i := 0; i < len(addresses); i++ {
value, gotValue := trie.GetAccountCode(crypto.Keccak256(addresses[i][:]))
assert.True(t, gotValue, "should receive code value")
assert.True(t, bytes.Equal(value, codeValues[i]), "should receive the right code")
}
}
func TestCodeNodeUpdateNotExisting(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue := genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValue))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue)
assert.Nil(t, err, "should successfully insert code")
nonExistingAddress := getAddressForIndex(9999)
codeValue2 := genRandomByteArrayOfLen(128)
err = trie.UpdateAccountCode(crypto.Keccak256(nonExistingAddress[:]), codeValue2)
assert.Error(t, err, "should return an error for non existing acc")
}
func TestCodeNodeGetNotExistingAccount(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue := genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValue))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue)
assert.Nil(t, err, "should successfully insert code")
nonExistingAddress := getAddressForIndex(9999)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(nonExistingAddress[:]))
assert.True(t, gotValue, "should indicate that account doesn't exist at all (not just hashed)")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeGetHashedAccount(t *testing.T) {
trie := newEmpty()
address := getAddressForIndex(0)
fakeAccount := genRandomByteArrayOfLen(50)
fakeAccountHash := common.BytesToHash(crypto.Keccak256(fakeAccount))
hex := keybytesToHex(crypto.Keccak256(address[:]))
_, trie.root = trie.insert(trie.root, hex, hashNode{hash: fakeAccountHash[:]})
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.False(t, gotValue, "should indicate that account exists but hashed")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeGetExistingAccountNoCodeNotEmpty(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue := genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValue))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.False(t, gotValue, "should indicate that account exists with code but the code isn't in cache")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeGetExistingAccountEmptyCode(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeHash := EmptyCodeHash
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.True(t, gotValue, "should indicate that account exists with empty code")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeWrongHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
codeValue2 := genRandomByteArrayOfLen(128)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue2)
assert.Error(t, err, "should NOT be able to insert code with wrong hash")
}
func TestCodeNodeUpdateAccountAndCodeValidHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
codeValue2 := genRandomByteArrayOfLen(128)
codeHash2 := common.BytesToHash(crypto.Keccak256(codeValue2))
acc.CodeHash = codeHash2
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err = trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue2)
assert.Nil(t, err, "should successfully insert code")
}
func TestCodeNodeUpdateAccountAndCodeInvalidHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
codeValue2 := genRandomByteArrayOfLen(128)
codeHash2 := common.BytesToHash(crypto.Keccak256(codeValue2))
codeValue3 := genRandomByteArrayOfLen(128)
acc.CodeHash = codeHash2
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err = trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue3)
assert.Error(t, err, "should NOT be able to insert code with wrong hash")
}
func TestCodeNodeUpdateAccountChangeCodeHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
codeValue2 := genRandomByteArrayOfLen(128)
codeHash2 := common.BytesToHash(crypto.Keccak256(codeValue2))
acc.CodeHash = codeHash2
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.Nil(t, value, "the value should reset after the code change happen")
assert.False(t, gotValue, "should indicate that the code isn't in the cache")
}
func TestCodeNodeUpdateAccountNoChangeCodeHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
acc.Nonce = uint64(random.Int63())
balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc.Balance.SetFromBig(balance)
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.Equal(t, codeValue1, value, "the value should NOT reset after account's non codehash had changed")
assert.True(t, gotValue, "should indicate that the code is still in the cache")
}
func TestNextSubtreeHex(t *testing.T) {
assert := assert.New(t)
type tc struct {
prev, next string
expect bool
}
cases := []tc{
{prev: "", next: "00", expect: true},
{prev: "", next: "0000", expect: true},
{prev: "", next: "01", expect: false},
{prev: "00", next: "01", expect: true},
{prev: "01020304", next: "01020305", expect: true},
{prev: "01020f0f", next: "0103", expect: true},
{prev: "01020f0f", next: "0103000000000000", expect: true},
{prev: "01020304", next: "05060708", expect: false},
{prev: "0f0f0d", next: "0f0f0e", expect: true},
{prev: "0f", next: "", expect: true},
{prev: "0f01", next: "", expect: false},
}
for _, tc := range cases {
res := isDenseSequence(common.FromHex(tc.prev), common.FromHex(tc.next))
assert.Equal(tc.expect, res, "%s, %s", tc.prev, tc.next)
}
}
//func TestIHCursorCanUseNextParent(t *testing.T) {
// db, assert := ethdb.NewMemDatabase(), require.New(t)
// defer db.Close()
// hash := fmt.Sprintf("%064d", 0)
//
// ih := AccTrie(nil, nil, nil, nil)
//
// ih.k[1], ih.v[1], ih.hasTree[1] = common.FromHex("00"), common.FromHex(hash+hash), 0b0000000000000110
// ih.k[2], ih.v[2], ih.hasTree[2] = common.FromHex("0001"), common.FromHex(hash), 0b1000000000000000
// ih.lvl = 2
// ih.hashID[2] = 1
// ih.hashID[1] = 0
// assert.True(ih._nextSiblingOfParentInMem())
// assert.Equal(ih.k[ih.lvl], common.FromHex("00"))
//
// ih.k[1], ih.v[1], ih.hasTree[1] = common.FromHex("00"), common.FromHex(hash+hash), 0b0000000000000110
// ih.k[3], ih.v[3], ih.hasTree[3] = common.FromHex("000101"), common.FromHex(hash), 0b1000000000000000
// ih.lvl = 3
// ih.hashID[3] = 1
// ih.hashID[1] = 0
// assert.True(ih._nextSiblingOfParentInMem())
// assert.Equal(ih.k[ih.lvl], common.FromHex("00"))
//
//}
//
//func _TestEmptyRoot(t *testing.T) {
// sc := shards.NewStateCache(32, 64*1024)
//
// sc.SetAccountHashesRead(common.FromHex("00"), 0b111, 0b111, 0b111, []common.Hash{{}, {}, {}})
// sc.SetAccountHashesRead(common.FromHex("01"), 0b111, 0b111, 0b111, []common.Hash{{}, {}, {}})
// sc.SetAccountHashesRead(common.FromHex("02"), 0b111, 0b111, 0b111, []common.Hash{{}, {}, {}})
//
// rl := NewRetainList(0)
// rl.AddHex(common.FromHex("01"))
// rl.AddHex(common.FromHex("0101"))
// canUse := func(prefix []byte) bool { return !rl.Retain(prefix) }
// i := 0
// if err := sc.AccountTree([]byte{}, func(ihK []byte, h common.Hash, hasTree, skipState bool) (toChild bool, err error) {
// i++
// switch i {
// case 1:
// assert.Equal(t, common.FromHex("0001"), ihK)
// case 2:
// assert.Equal(t, common.FromHex("0100"), ihK)
// case 3:
// assert.Equal(t, common.FromHex("0102"), ihK)
// case 4:
// assert.Equal(t, common.FromHex("0202"), ihK)
// }
// if ok := canUse(ihK); ok {
// return false, nil
// }
// return hasTree, nil
// }, func(cur []byte) {
// panic(fmt.Errorf("key %x not found in cache", cur))
// }); err != nil {
// t.Fatal(err)
// }
//}