erigon-pulse/consensus/ethash/consensus.go

657 lines
26 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethash
import (
"bytes"
"errors"
"fmt"
"math/big"
"runtime"
"time"
mapset "github.com/deckarep/golang-set"
"github.com/holiman/uint256"
"github.com/ledgerwatch/erigon-lib/chain"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"github.com/ledgerwatch/log/v3"
"golang.org/x/crypto/sha3"
"github.com/ledgerwatch/erigon/common/math"
"github.com/ledgerwatch/erigon/common/u256"
"github.com/ledgerwatch/erigon/consensus"
"github.com/ledgerwatch/erigon/consensus/misc"
"github.com/ledgerwatch/erigon/core/state"
"github.com/ledgerwatch/erigon/core/types"
"github.com/ledgerwatch/erigon/params"
"github.com/ledgerwatch/erigon/rlp"
)
// Ethash proof-of-work protocol constants.
var (
FrontierBlockReward = uint256.NewInt(5e+18) // Block reward in wei for successfully mining a block
ByzantiumBlockReward = uint256.NewInt(3e+18) // Block reward in wei for successfully mining a block upward from Byzantium
ConstantinopleBlockReward = uint256.NewInt(2e+18) // Block reward in wei for successfully mining a block upward from Constantinople
maxUncles = 2 // Maximum number of uncles allowed in a single block
allowedFutureBlockTimeSeconds = int64(15) // Max seconds from current time allowed for blocks, before they're considered future blocks
// calcDifficultyEip5133 is the difficulty adjustment algorithm as specified by EIP 5133.
// It offsets the bomb a total of 11.4M blocks.
// Specification EIP-5133: https://eips.ethereum.org/EIPS/eip-5133
calcDifficultyEip5133 = makeDifficultyCalculator(11400000)
// calcDifficultyEip4345 is the difficulty adjustment algorithm as specified by EIP 4345.
// It offsets the bomb a total of 10.7M blocks.
// Specification EIP-4345: https://eips.ethereum.org/EIPS/eip-4345
calcDifficultyEip4345 = makeDifficultyCalculator(10700000)
// calcDifficultyEip3554 is the difficulty adjustment algorithm as specified by EIP 3554.
// It offsets the bomb a total of 9.7M blocks.
// Specification EIP-3554: https://eips.ethereum.org/EIPS/eip-3554
calcDifficultyEip3554 = makeDifficultyCalculator(9700000)
// calcDifficultyEip2384 is the difficulty adjustment algorithm as specified by EIP 2384.
// It offsets the bomb 4M blocks from Constantinople, so in total 9M blocks.
// Specification EIP-2384: https://eips.ethereum.org/EIPS/eip-2384
calcDifficultyEip2384 = makeDifficultyCalculator(9000000)
// calcDifficultyConstantinople is the difficulty adjustment algorithm for Constantinople.
// It returns the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Byzantium rules, but with
// bomb offset 5M.
// Specification EIP-1234: https://eips.ethereum.org/EIPS/eip-1234
calcDifficultyConstantinople = makeDifficultyCalculator(5000000)
// calcDifficultyByzantium is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Byzantium rules.
// Specification EIP-649: https://eips.ethereum.org/EIPS/eip-649
calcDifficultyByzantium = makeDifficultyCalculator(3000000)
)
// Various error messages to mark blocks invalid. These should be private to
// prevent engine specific errors from being referenced in the remainder of the
// codebase, inherently breaking if the engine is swapped out. Please put common
// error types into the consensus package.
var (
errOlderBlockTime = errors.New("timestamp older than parent")
errTooManyUncles = errors.New("too many uncles")
errDuplicateUncle = errors.New("duplicate uncle")
errUncleIsAncestor = errors.New("uncle is ancestor")
errDanglingUncle = errors.New("uncle's parent is not ancestor")
errInvalidDifficulty = errors.New("non-positive difficulty")
errInvalidMixDigest = errors.New("invalid mix digest")
errInvalidPoW = errors.New("invalid proof-of-work")
)
// Type returns underlying consensus engine
func (ethash *Ethash) Type() chain.ConsensusName {
return chain.EtHashConsensus
}
// Author implements consensus.Engine, returning the header's coinbase as the
// proof-of-work verified author of the block.
// This is thread-safe (only access the header.Coinbase)
func (ethash *Ethash) Author(header *types.Header) (libcommon.Address, error) {
return header.Coinbase, nil
}
// VerifyHeader checks whether a header conforms to the consensus rules of the
// stock Ethereum ethash engine.
func (ethash *Ethash) VerifyHeader(chain consensus.ChainHeaderReader, header *types.Header, seal bool) error {
// Short circuit if the header is known, or its parent not
number := header.Number.Uint64()
if chain.GetHeader(header.Hash(), number) != nil {
return nil
}
parent := chain.GetHeader(header.ParentHash, number-1)
if parent == nil {
log.Error("consensus.ErrUnknownAncestor", "parentNum", number-1, "hash", header.ParentHash.String())
return consensus.ErrUnknownAncestor
}
// Sanity checks passed, do a proper verification
return ethash.verifyHeader(chain, header, parent, false, seal)
}
// VerifyUncles verifies that the given block's uncles conform to the consensus
// rules of the stock Ethereum ethash engine.
func (ethash *Ethash) VerifyUncles(chain consensus.ChainReader, header *types.Header, uncles []*types.Header) error {
// Verify that there are at most 2 uncles included in this block
if len(uncles) > maxUncles {
return errTooManyUncles
}
if len(uncles) == 0 {
return nil
}
uncleBlocks, ancestors := getUncles(chain, header)
// Verify each of the uncles that it's recent, but not an ancestor
for _, uncle := range uncles {
if err := ethash.VerifyUncle(chain, header, uncle, uncleBlocks, ancestors, true); err != nil {
return err
}
}
return nil
}
func getUncles(chain consensus.ChainReader, header *types.Header) (mapset.Set, map[libcommon.Hash]*types.Header) {
// Gather the set of past uncles and ancestors
uncles, ancestors := mapset.NewSet(), make(map[libcommon.Hash]*types.Header)
number, parent := header.Number.Uint64()-1, header.ParentHash
for i := 0; i < 7; i++ {
ancestorHeader := chain.GetHeader(parent, number)
if ancestorHeader == nil {
break
}
ancestors[parent] = ancestorHeader
// If the ancestor doesn't have any uncles, we don't have to iterate them
if ancestorHeader.UncleHash != types.EmptyUncleHash {
// Need to add those uncles to the blacklist too
ancestor := chain.GetBlock(parent, number)
if ancestor == nil {
break
}
for _, uncle := range ancestor.Uncles() {
uncles.Add(uncle.Hash())
}
}
parent, number = ancestorHeader.ParentHash, number-1
}
ancestors[header.Hash()] = header
uncles.Add(header.Hash())
return uncles, ancestors
}
func (ethash *Ethash) VerifyUncle(chain consensus.ChainHeaderReader, header *types.Header, uncle *types.Header, uncles mapset.Set, ancestors map[libcommon.Hash]*types.Header, seal bool) error {
// Make sure every uncle is rewarded only once
hash := uncle.Hash()
if uncles.Contains(hash) {
return errDuplicateUncle
}
uncles.Add(hash)
// Make sure the uncle has a valid ancestry
if ancestors[hash] != nil {
return errUncleIsAncestor
}
if ancestors[uncle.ParentHash] == nil || uncle.ParentHash == header.ParentHash {
return errDanglingUncle
}
return ethash.verifyHeader(chain, uncle, ancestors[uncle.ParentHash], true, seal)
}
func VerifyHeaderBasics(chain consensus.ChainHeaderReader, header, parent *types.Header, uncle bool) error {
// Ensure that the header's extra-data section is of a reasonable size
if uint64(len(header.Extra)) > params.MaximumExtraDataSize {
return fmt.Errorf("extra-data too long: %d > %d", len(header.Extra), params.MaximumExtraDataSize)
}
// Verify the header's timestamp
if !uncle {
unixNow := time.Now().Unix()
if header.Time > uint64(unixNow+allowedFutureBlockTimeSeconds) {
return consensus.ErrFutureBlock
}
}
if header.Time <= parent.Time {
return errOlderBlockTime
}
// Verify that the gas limit is <= 2^63-1
if header.GasLimit > params.MaxGasLimit {
return fmt.Errorf("invalid gasLimit: have %v, max %v", header.GasLimit, params.MaxGasLimit)
}
// Verify that the gasUsed is <= gasLimit
if header.GasUsed > header.GasLimit {
return fmt.Errorf("invalid gasUsed: have %d, gasLimit %d", header.GasUsed, header.GasLimit)
}
// Verify the block's gas usage and (if applicable) verify the base fee.
if !chain.Config().IsLondon(header.Number.Uint64()) {
// Verify BaseFee not present before EIP-1559 fork.
if header.BaseFee != nil {
return fmt.Errorf("invalid baseFee before fork: have %d, expected 'nil'", header.BaseFee)
}
// Verify that the gas limit remains within allowed bounds
diff := int64(parent.GasLimit) - int64(header.GasLimit)
if diff < 0 {
diff *= -1
}
limit := parent.GasLimit / params.GasLimitBoundDivisor
if uint64(diff) >= limit || header.GasLimit < params.MinGasLimit {
return fmt.Errorf("invalid gas limit: have %d, want %d += %d", header.GasLimit, parent.GasLimit, limit)
}
} else if err := misc.VerifyEip1559Header(chain.Config(), parent, header); err != nil {
// Verify the header's EIP-1559 attributes.
return err
}
// Verify that the block number is parent's +1
if diff := new(big.Int).Sub(header.Number, parent.Number); diff.Cmp(big.NewInt(1)) != 0 {
return consensus.ErrInvalidNumber
}
if header.WithdrawalsHash != nil {
return consensus.ErrUnexpectedWithdrawals
}
// If all checks passed, validate any special fields for hard forks
if err := misc.VerifyDAOHeaderExtraData(chain.Config(), header); err != nil {
return err
}
if err := misc.VerifyForkHashes(chain.Config(), header, uncle); err != nil {
return err
}
return nil
}
// verifyHeader checks whether a header conforms to the consensus rules of the
// stock Ethereum ethash engine.
// See YP section 4.3.4. "Block Header Validity"
func (ethash *Ethash) verifyHeader(chain consensus.ChainHeaderReader, header, parent *types.Header, uncle bool, seal bool) error {
if err := VerifyHeaderBasics(chain, header, parent, uncle); err != nil {
return err
}
// Verify the block's difficulty based on its timestamp and parent's difficulty
expected := ethash.CalcDifficulty(chain, header.Time, parent.Time, parent.Difficulty, parent.Number.Uint64(), parent.Hash(), parent.UncleHash, parent.AuRaStep)
if expected.Cmp(header.Difficulty) != 0 {
return fmt.Errorf("invalid difficulty: have %v, want %v", header.Difficulty, expected)
}
// Verify the engine specific seal securing the block
if seal {
if err := ethash.VerifySeal(nil, header); err != nil {
return err
}
}
return nil
}
func (ethash *Ethash) GenerateSeal(chain consensus.ChainHeaderReader, currnt, parent *types.Header, call consensus.Call) []byte {
return nil
}
// CalcDifficulty is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time
// given the parent block's time and difficulty.
func (ethash *Ethash) CalcDifficulty(chain consensus.ChainHeaderReader, time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, _, parentUncleHash libcommon.Hash, _ uint64) *big.Int {
return CalcDifficulty(chain.Config(), time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
}
// CalcDifficulty is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time
// given the parent block's time and difficulty.
func CalcDifficulty(config *chain.Config, time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, parentUncleHash libcommon.Hash) *big.Int {
next := parentNumber + 1
switch {
case config.IsGrayGlacier(next):
return calcDifficultyEip5133(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
case config.IsArrowGlacier(next):
return calcDifficultyEip4345(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
case config.IsLondon(next):
return calcDifficultyEip3554(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
case config.IsMuirGlacier(next):
return calcDifficultyEip2384(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
case config.IsConstantinople(next):
return calcDifficultyConstantinople(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
case config.IsByzantium(next):
return calcDifficultyByzantium(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
case config.IsHomestead(next):
return calcDifficultyHomestead(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
default:
return calcDifficultyFrontier(time, parentTime, parentDifficulty, parentNumber, parentUncleHash)
}
}
// Some weird constants to avoid constant memory allocs for them.
var (
expDiffPeriod = big.NewInt(100000)
big1 = big.NewInt(1)
big2 = big.NewInt(2)
big9 = big.NewInt(9)
big10 = big.NewInt(10)
bigMinus99 = big.NewInt(-99)
)
// makeDifficultyCalculator creates a difficultyCalculator with the given bomb-delay.
// the difficulty is calculated with Byzantium rules, which differs from Homestead in
// how uncles affect the calculation
func makeDifficultyCalculator(bombDelay uint64) func(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, parentUncleHash libcommon.Hash) *big.Int {
// Note, the calculations below looks at the parent number, which is 1 below
// the block number. Thus we remove one from the delay given
bombDelayFromParent := bombDelay - 1
return func(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, parentUncleHash libcommon.Hash) *big.Int {
// https://github.com/ethereum/EIPs/issues/100.
// algorithm:
// diff = (parent_diff +
// (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99))
// ) + 2^(periodCount - 2)
bigTime := new(big.Int).SetUint64(time)
bigParentTime := new(big.Int).SetUint64(parentTime)
// holds intermediate values to make the algo easier to read & audit
x := new(big.Int)
y := new(big.Int)
// (2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9
x.Sub(bigTime, bigParentTime)
x.Div(x, big9)
if parentUncleHash == types.EmptyUncleHash {
x.Sub(big1, x)
} else {
x.Sub(big2, x)
}
// max((2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9, -99)
if x.Cmp(bigMinus99) < 0 {
x.Set(bigMinus99)
}
// parent_diff + (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99))
y.Div(parentDifficulty, params.DifficultyBoundDivisor)
x.Mul(y, x)
x.Add(parentDifficulty, x)
// minimum difficulty can ever be (before exponential factor)
if x.Cmp(params.MinimumDifficulty) < 0 {
x.Set(params.MinimumDifficulty)
}
// calculate a fake block number for the ice-age delay
// Specification: https://eips.ethereum.org/EIPS/eip-1234
fakeBlockNumber := uint64(0)
if parentNumber >= bombDelayFromParent {
fakeBlockNumber = parentNumber - bombDelayFromParent
}
// for the exponential factor
periodCount := new(big.Int).SetUint64(fakeBlockNumber)
periodCount.Div(periodCount, expDiffPeriod)
// the exponential factor, commonly referred to as "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount.Cmp(big1) > 0 {
y.Sub(periodCount, big2)
y.Exp(big2, y, nil)
x.Add(x, y)
}
return x
}
}
// calcDifficultyHomestead is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Homestead rules.
func calcDifficultyHomestead(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, _ libcommon.Hash) *big.Int {
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md
// algorithm:
// diff = (parent_diff +
// (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
// ) + 2^(periodCount - 2)
bigTime := new(big.Int).SetUint64(time)
bigParentTime := new(big.Int).SetUint64(parentTime)
// holds intermediate values to make the algo easier to read & audit
x := new(big.Int)
y := new(big.Int)
// 1 - (block_timestamp - parent_timestamp) // 10
x.Sub(bigTime, bigParentTime)
x.Div(x, big10)
x.Sub(big1, x)
// max(1 - (block_timestamp - parent_timestamp) // 10, -99)
if x.Cmp(bigMinus99) < 0 {
x.Set(bigMinus99)
}
// (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
y.Div(parentDifficulty, params.DifficultyBoundDivisor)
x.Mul(y, x)
x.Add(parentDifficulty, x)
// minimum difficulty can ever be (before exponential factor)
if x.Cmp(params.MinimumDifficulty) < 0 {
x.Set(params.MinimumDifficulty)
}
// for the exponential factor
periodCount := new(big.Int).SetUint64(parentNumber + 1)
periodCount.Div(periodCount, expDiffPeriod)
// the exponential factor, commonly referred to as "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount.Cmp(big1) > 0 {
y.Sub(periodCount, big2)
y.Exp(big2, y, nil)
x.Add(x, y)
}
return x
}
// calcDifficultyFrontier is the difficulty adjustment algorithm. It returns the
// difficulty that a new block should have when created at time given the parent
// block's time and difficulty. The calculation uses the Frontier rules.
func calcDifficultyFrontier(time, parentTime uint64, parentDifficulty *big.Int, parentNumber uint64, _ libcommon.Hash) *big.Int {
diff := new(big.Int)
adjust := new(big.Int).Div(parentDifficulty, params.DifficultyBoundDivisor)
bigTime := new(big.Int)
bigParentTime := new(big.Int)
bigTime.SetUint64(time)
bigParentTime.SetUint64(parentTime)
if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
diff.Add(parentDifficulty, adjust)
} else {
diff.Sub(parentDifficulty, adjust)
}
if diff.Cmp(params.MinimumDifficulty) < 0 {
diff.Set(params.MinimumDifficulty)
}
periodCount := new(big.Int).SetUint64(parentNumber + 1)
periodCount.Div(periodCount, expDiffPeriod)
if periodCount.Cmp(big1) > 0 {
// diff = diff + 2^(periodCount - 2)
expDiff := periodCount.Sub(periodCount, big2)
expDiff.Exp(big2, expDiff, nil)
diff.Add(diff, expDiff)
diff = math.BigMax(diff, params.MinimumDifficulty)
}
return diff
}
// VerifySeal implements consensus.Engine, checking whether the given block satisfies
// the PoW difficulty requirements.
func (ethash *Ethash) VerifySeal(_ consensus.ChainHeaderReader, header *types.Header) error {
return ethash.verifySeal(header, false)
}
// Exported for fuzzing
var FrontierDifficultyCalulator = calcDifficultyFrontier
var HomesteadDifficultyCalulator = calcDifficultyHomestead
var DynamicDifficultyCalculator = makeDifficultyCalculator
// verifySeal checks whether a block satisfies the PoW difficulty requirements,
// either using the usual ethash cache for it, or alternatively using a full DAG
// to make remote mining fast.
func (ethash *Ethash) verifySeal(header *types.Header, fulldag bool) error { //nolint:unparam
// If we're running a shared PoW, delegate verification to it
if ethash.shared != nil {
return ethash.shared.verifySeal(header, fulldag)
}
// Ensure that we have a valid difficulty for the block
if header.Difficulty.Sign() <= 0 {
return errInvalidDifficulty
}
// Recompute the digest and PoW values
number := header.Number.Uint64()
var (
digest []byte
result []byte
)
// If fast-but-heavy PoW verification was requested, use an ethash dataset
if fulldag {
dataset := ethash.dataset(number, true)
if dataset.generated() {
digest, result = hashimotoFull(dataset.dataset, ethash.SealHash(header).Bytes(), header.Nonce.Uint64())
// Datasets are unmapped in a finalizer. Ensure that the dataset stays alive
// until after the call to hashimotoFull so it's not unmapped while being used.
runtime.KeepAlive(dataset)
} else {
// Dataset not yet generated, don't hang, use a cache instead
fulldag = false
}
}
// If slow-but-light PoW verification was requested (or DAG not yet ready), use an ethash cache
if !fulldag {
cache := ethash.cache(number)
size := datasetSize(number)
if ethash.config.PowMode == ModeTest {
size = 32 * 1024
}
digest, result = hashimotoLight(size, cache.cache, ethash.SealHash(header).Bytes(), header.Nonce.Uint64())
// Caches are unmapped in a finalizer. Ensure that the cache stays alive
// until after the call to hashimotoLight so it's not unmapped while being used.
runtime.KeepAlive(cache)
}
// Verify the calculated values against the ones provided in the header
if !bytes.Equal(header.MixDigest[:], digest) {
return errInvalidMixDigest
}
target := new(big.Int).Div(two256, header.Difficulty)
if new(big.Int).SetBytes(result).Cmp(target) > 0 {
return errInvalidPoW
}
return nil
}
// Prepare implements consensus.Engine, initializing the difficulty field of a
// header to conform to the ethash protocol. The changes are done inline.
func (ethash *Ethash) Prepare(chain consensus.ChainHeaderReader, header *types.Header, state *state.IntraBlockState) error {
parent := chain.GetHeader(header.ParentHash, header.Number.Uint64()-1)
if parent == nil {
return consensus.ErrUnknownAncestor
}
header.Difficulty = ethash.CalcDifficulty(chain, header.Time, parent.Time, parent.Difficulty, parent.Number.Uint64(), parent.Hash(), parent.UncleHash, parent.AuRaStep)
return nil
}
func (ethash *Ethash) Initialize(config *chain.Config, chain consensus.ChainHeaderReader, e consensus.EpochReader, header *types.Header,
state *state.IntraBlockState, txs []types.Transaction, uncles []*types.Header, syscall consensus.SystemCall) {
}
// Finalize implements consensus.Engine, accumulating the block and uncle rewards,
// setting the final state on the header
func (ethash *Ethash) Finalize(config *chain.Config, header *types.Header, state *state.IntraBlockState,
txs types.Transactions, uncles []*types.Header, r types.Receipts, withdrawals []*types.Withdrawal,
e consensus.EpochReader, chain consensus.ChainHeaderReader, syscall consensus.SystemCall,
) (types.Transactions, types.Receipts, error) {
// Accumulate any block and uncle rewards and commit the final state root
accumulateRewards(config, state, header, uncles)
return txs, r, nil
}
// FinalizeAndAssemble implements consensus.Engine, accumulating the block and
// uncle rewards, setting the final state and assembling the block.
func (ethash *Ethash) FinalizeAndAssemble(chainConfig *chain.Config, header *types.Header, state *state.IntraBlockState,
txs types.Transactions, uncles []*types.Header, r types.Receipts, withdrawals []*types.Withdrawal,
e consensus.EpochReader, chain consensus.ChainHeaderReader, syscall consensus.SystemCall, call consensus.Call,
) (*types.Block, types.Transactions, types.Receipts, error) {
// Finalize block
outTxs, outR, err := ethash.Finalize(chainConfig, header, state, txs, uncles, r, withdrawals, e, chain, syscall)
if err != nil {
return nil, nil, nil, err
}
// Header seems complete, assemble into a block and return
return types.NewBlock(header, outTxs, uncles, outR, withdrawals), outTxs, outR, nil
}
// SealHash returns the hash of a block prior to it being sealed.
func (ethash *Ethash) SealHash(header *types.Header) (hash libcommon.Hash) {
hasher := sha3.NewLegacyKeccak256()
enc := []interface{}{
header.ParentHash,
header.UncleHash,
header.Coinbase,
header.Root,
header.TxHash,
header.ReceiptHash,
header.Bloom,
header.Difficulty,
header.Number,
header.GasLimit,
header.GasUsed,
header.Time,
header.Extra,
}
if header.BaseFee != nil {
enc = append(enc, header.BaseFee)
}
rlp.Encode(hasher, enc)
hasher.Sum(hash[:0])
return hash
}
func (ethash *Ethash) IsServiceTransaction(sender libcommon.Address, syscall consensus.SystemCall) bool {
return false
}
// AccumulateRewards returns rewards for a given block. The mining reward consists
// of the static blockReward plus a reward for each included uncle (if any). Individual
// uncle rewards are also returned in an array.
func AccumulateRewards(config *chain.Config, header *types.Header, uncles []*types.Header) (uint256.Int, []uint256.Int) {
// Select the correct block reward based on chain progression
blockReward := FrontierBlockReward
if config.IsByzantium(header.Number.Uint64()) {
blockReward = ByzantiumBlockReward
}
if config.IsConstantinople(header.Number.Uint64()) {
blockReward = ConstantinopleBlockReward
}
// Accumulate the rewards for the miner and any included uncles
uncleRewards := []uint256.Int{}
reward := new(uint256.Int).Set(blockReward)
r := new(uint256.Int)
headerNum, _ := uint256.FromBig(header.Number)
for _, uncle := range uncles {
uncleNum, _ := uint256.FromBig(uncle.Number)
r.Add(uncleNum, u256.Num8)
r.Sub(r, headerNum)
r.Mul(r, blockReward)
r.Div(r, u256.Num8)
uncleRewards = append(uncleRewards, *r)
r.Div(blockReward, u256.Num32)
reward.Add(reward, r)
}
return *reward, uncleRewards
}
// accumulateRewards retrieves rewards for a block and applies them to the coinbase accounts for miner and uncle miners
func accumulateRewards(config *chain.Config, state *state.IntraBlockState, header *types.Header, uncles []*types.Header) {
minerReward, uncleRewards := AccumulateRewards(config, header, uncles)
for i, uncle := range uncles {
if i < len(uncleRewards) {
state.AddBalance(uncle.Coinbase, &uncleRewards[i])
}
}
state.AddBalance(header.Coinbase, &minerReward)
}