erigon-pulse/core/state_processor.go
Martin Holst Swende ca3d54a32c all: implement EIP-2929 (gas cost increases for state access opcodes) + yolo-v2 (#21509)
* core/vm, core/state: implement EIP-2929 + YOLOv2

* core/state, core/vm: fix some review concerns

* core/state, core/vm: address review concerns

* core/vm: address review concerns

* core/vm: better documentation

* core/vm: unify sload cost as fully dynamic

* core/vm: fix typo

* core/vm/runtime: fix compilation flaw

* core/vm/runtime: fix renaming-err leftovers

* core/vm: renaming

* params/config: use correct yolov2 chainid for config

* core, params: use a proper new genesis for yolov2

* core/state/tests: golinter nitpicks
# Conflicts:
#	cmd/evm/internal/t8ntool/execution.go
#	cmd/geth/chaincmd.go
#	cmd/geth/consolecmd.go
#	cmd/geth/main.go
#	cmd/geth/usage.go
#	cmd/utils/flags.go
#	core/state/statedb.go
#	core/state/statedb_test.go
#	core/vm/evm.go
#	core/vm/interpreter.go
#	core/vm/logger.go
#	core/vm/runtime/runtime.go
#	eth/api_tracer.go
2020-12-03 17:37:38 +01:00

271 lines
10 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"bytes"
"context"
"encoding/json"
"fmt"
"os"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/common/math"
"github.com/ledgerwatch/turbo-geth/consensus"
"github.com/ledgerwatch/turbo-geth/consensus/misc"
"github.com/ledgerwatch/turbo-geth/core/state"
"github.com/ledgerwatch/turbo-geth/core/types"
"github.com/ledgerwatch/turbo-geth/core/vm"
"github.com/ledgerwatch/turbo-geth/crypto"
"github.com/ledgerwatch/turbo-geth/params"
)
// StateProcessor is a basic Processor, which takes care of transitioning
// state from one point to another.
//
// StateProcessor implements Processor.
type StateProcessor struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus.Engine // Consensus engine used for block rewards
txTraceHash []byte // Hash of the transaction to trace (or nil if there nothing to trace)
}
// NewStateProcessor initialises a new StateProcessor.
func NewStateProcessor(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *StateProcessor {
return &StateProcessor{
config: config,
bc: bc,
engine: engine,
}
}
// SetTxTraceHash allows setting the hash of the transaction to trace
func (p *StateProcessor) SetTxTraceHash(txTraceHash common.Hash) {
p.txTraceHash = txTraceHash[:]
}
// StructLogRes stores a structured log emitted by the EVM while replaying a
// transaction in debug mode
type StructLogRes struct {
Pc uint64 `json:"pc"`
Op string `json:"op"`
Gas uint64 `json:"gas"`
GasCost uint64 `json:"gasCost"`
Depth int `json:"depth"`
Error error `json:"error,omitempty"`
Stack *[]string `json:"stack,omitempty"`
Memory *[]string `json:"memory,omitempty"`
Storage *map[string]string `json:"storage,omitempty"`
}
// FormatLogs formats EVM returned structured logs for json output
func FormatLogs(logs []vm.StructLog) []StructLogRes {
formatted := make([]StructLogRes, len(logs))
for index, trace := range logs {
formatted[index] = StructLogRes{
Pc: trace.Pc,
Op: trace.Op.String(),
Gas: trace.Gas,
GasCost: trace.GasCost,
Depth: trace.Depth,
Error: trace.Err,
}
if trace.Stack != nil {
stack := make([]string, len(trace.Stack))
for i, stackValue := range trace.Stack {
stack[i] = fmt.Sprintf("%x", math.PaddedBigBytes(stackValue, 32))
}
formatted[index].Stack = &stack
}
if trace.Memory != nil {
memory := make([]string, 0, (len(trace.Memory)+31)/32)
for i := 0; i+32 <= len(trace.Memory); i += 32 {
memory = append(memory, fmt.Sprintf("%x", trace.Memory[i:i+32]))
}
formatted[index].Memory = &memory
}
if trace.Storage != nil {
storage := make(map[string]string)
for i, storageValue := range trace.Storage {
storage[fmt.Sprintf("%x", i)] = fmt.Sprintf("%x", storageValue)
}
formatted[index].Storage = &storage
}
}
return formatted
}
// PreProcess processes the state changes according to the Ethereum rules by running
// the transaction messages using the IntraBlockState and applying any rewards to both
// the processor (coinbase) and any included uncles.
//
// PreProcess returns the receipts and logs accumulated during the process and
// returns the amount of gas that was used in the process. If any of the
// transactions failed to execute due to insufficient gas it will return an error.
//
// PreProcess does not calculate receipt roots (required pre-Byzantium)
// and does not update the TrieDbState. For those two call PostProcess afterwards.
func (p *StateProcessor) PreProcess(block *types.Block, ibs *state.IntraBlockState, tds *state.TrieDbState, cfg vm.Config) (
receipts types.Receipts, allLogs []*types.Log, usedGas uint64, root common.Hash, err error) {
header := block.Header()
gp := new(GasPool).AddGas(block.GasLimit())
// Mutate the block and state according to any hard-fork specs
if p.config.DAOForkSupport && p.config.DAOForkBlock != nil && p.config.DAOForkBlock.Cmp(block.Number()) == 0 {
misc.ApplyDAOHardFork(ibs)
}
// Iterate over and process the individual transactions
tds.StartNewBuffer()
for i, tx := range block.Transactions() {
txHash := tx.Hash()
ibs.Prepare(txHash, block.Hash(), i)
writeTrace := false
if !cfg.Debug && p.txTraceHash != nil && bytes.Equal(p.txTraceHash, txHash[:]) {
// This code is useful when debugging a certain transaction. If uncommented, together with the code
// at the end of this function, after the execution of transaction with given hash, the file
// structlogs.txt will contain full trace of the transactin in JSON format. This can be compared
// to another trace, obtained from the correct version of the turbo-geth or go-ethereum
cfg.Tracer = vm.NewStructLogger(&vm.LogConfig{})
cfg.Debug = true
writeTrace = true
}
var receipt *types.Receipt
receipt, err = ApplyTransaction(p.config, p.bc, nil, gp, ibs, tds.TrieStateWriter(), header, tx, &usedGas, cfg)
// This code is useful when debugging a certain transaction. If uncommented, together with the code
// at the end of this function, after the execution of transaction with given hash, the file
// structlogs.txt will contain full trace of the transactin in JSON format. This can be compared
// to another trace, obtained from the correct version of the turbo-geth or go-ethereum
if writeTrace {
w, err1 := os.Create(fmt.Sprintf("txtrace_%x.txt", p.txTraceHash))
if err1 != nil {
panic(err1)
}
encoder := json.NewEncoder(w)
logs := FormatLogs(cfg.Tracer.(*vm.StructLogger).StructLogs())
if err2 := encoder.Encode(logs); err2 != nil {
panic(err2)
}
if err2 := w.Close(); err2 != nil {
panic(err2)
}
cfg.Debug = false
cfg.Tracer = nil
}
if err != nil {
return
}
receipts = append(receipts, receipt)
allLogs = append(allLogs, receipt.Logs...)
if !p.config.IsByzantium(header.Number) {
tds.StartNewBuffer()
}
}
// Finalize the block, applying any consensus engine specific extras (e.g. block rewards)
p.engine.Finalize(p.config, header, ibs, block.Transactions(), block.Uncles())
ctx := p.config.WithEIPsFlags(context.Background(), header.Number)
err = ibs.FinalizeTx(ctx, tds.TrieStateWriter())
if err != nil {
return
}
// Calculate the state root
_, err = tds.ResolveStateTrie(false, false)
if err != nil {
return
}
root, err = tds.CalcTrieRoots(false)
return receipts, allLogs, usedGas, root, err
}
// PostProcess calculates receipt roots (required pre-Byzantium) and updates the TrieDbState.
// PostProcess should be called after PreProcess.
func (p *StateProcessor) PostProcess(block *types.Block, tds *state.TrieDbState, receipts types.Receipts) error {
roots, err := tds.UpdateStateTrie()
if err != nil {
return err
}
if !p.config.IsByzantium(block.Header().Number) {
for i, receipt := range receipts {
receipt.PostState = roots[i].Bytes()
}
}
return nil
}
// ApplyTransaction attempts to apply a transaction to the given state database
// and uses the input parameters for its environment. It returns the receipt
// for the transaction, gas used and an error if the transaction failed,
// indicating the block was invalid.
func ApplyTransaction(config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.IntraBlockState, stateWriter state.StateWriter, header *types.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config) (*types.Receipt, error) {
msg, err := tx.AsMessage(types.MakeSigner(config, header.Number))
if err != nil {
return nil, err
}
ctx := config.WithEIPsFlags(context.Background(), header.Number)
// Create a new context to be used in the EVM environment
context := NewEVMContext(msg, header, bc, author)
if cfg.TraceJumpDest {
context.TxHash = tx.Hash()
}
// Create a new environment which holds all relevant information
// about the transaction and calling mechanisms.
cfg.SkipAnalysis = SkipAnalysis(config, header.Number.Uint64())
vmenv := vm.NewEVM(context, statedb, config, cfg)
if config.IsYoloV2(header.Number) {
statedb.AddAddressToAccessList(msg.From())
if dst := msg.To(); dst != nil {
statedb.AddAddressToAccessList(*dst)
// If it's a create-tx, the destination will be added inside evm.create
}
for _, addr := range vmenv.ActivePrecompiles() {
statedb.AddAddressToAccessList(addr)
}
}
// Apply the transaction to the current state (included in the env)
result, err := ApplyMessage(vmenv, msg, gp)
if err != nil {
return nil, err
}
// Update the state with pending changes
if err = statedb.FinalizeTx(ctx, stateWriter); err != nil {
return nil, err
}
*usedGas += result.UsedGas
// Create a new receipt for the transaction, storing the intermediate root and gas used by the tx
// based on the eip phase, we're passing whether the root touch-delete accounts.
var receipt *types.Receipt
if !cfg.NoReceipts {
receipt = types.NewReceipt(result.Failed(), *usedGas)
receipt.TxHash = tx.Hash()
receipt.GasUsed = result.UsedGas
// if the transaction created a contract, store the creation address in the receipt.
if msg.To() == nil {
receipt.ContractAddress = crypto.CreateAddress(vmenv.Context.Origin, tx.Nonce())
}
// Set the receipt logs and create a bloom for filtering
receipt.Logs = statedb.GetLogs(tx.Hash())
receipt.Bloom = types.CreateBloom(types.Receipts{receipt})
}
return receipt, err
}