erigon-pulse/eth/handler_test.go
Evgeny Danilenko 41ee460a27
optimize codeBitmap (#626)
* optimize codeBitmap

* add lru

* remove custom lru

* jumpDests as explocit parameter

* lint

* lint

* linters

* default jumpDestsCache

* remove common.rand
2020-06-06 21:49:06 +01:00

1378 lines
48 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package eth
import (
"context"
"fmt"
"io/ioutil"
"math"
"math/big"
"math/rand"
"strconv"
"testing"
"time"
"github.com/holiman/uint256"
"github.com/stretchr/testify/assert"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/common/debug"
"github.com/ledgerwatch/turbo-geth/consensus/ethash"
"github.com/ledgerwatch/turbo-geth/core"
"github.com/ledgerwatch/turbo-geth/core/types"
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
"github.com/ledgerwatch/turbo-geth/core/vm"
"github.com/ledgerwatch/turbo-geth/crypto"
"github.com/ledgerwatch/turbo-geth/eth/downloader"
"github.com/ledgerwatch/turbo-geth/ethdb"
"github.com/ledgerwatch/turbo-geth/event"
"github.com/ledgerwatch/turbo-geth/p2p"
"github.com/ledgerwatch/turbo-geth/params"
"github.com/ledgerwatch/turbo-geth/rlp"
"github.com/ledgerwatch/turbo-geth/trie"
)
// Tests that block headers can be retrieved from a remote chain based on user queries.
func TestGetBlockHeaders63(t *testing.T) { testGetBlockHeaders(t, 63) }
func TestGetBlockHeaders64(t *testing.T) { testGetBlockHeaders(t, 64) }
func testGetBlockHeaders(t *testing.T, protocol int) {
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, downloader.MaxHashFetch+15, nil, nil)
// Create a "random" unknown hash for testing
var unknown common.Hash
for i := range unknown {
unknown[i] = byte(i)
}
// Create a batch of tests for various scenarios
limit := uint64(downloader.MaxHeaderFetch)
tests := []struct {
query *getBlockHeadersData // The query to execute for header retrieval
expect []common.Hash // The hashes of the block whose headers are expected
}{
// A single random block should be retrievable by hash and number too
{
&getBlockHeadersData{Origin: hashOrNumber{Hash: pm.blockchain.GetBlockByNumber(limit / 2).Hash()}, Amount: 1},
[]common.Hash{pm.blockchain.GetBlockByNumber(limit / 2).Hash()},
}, {
&getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Amount: 1},
[]common.Hash{pm.blockchain.GetBlockByNumber(limit / 2).Hash()},
},
// Multiple headers should be retrievable in both directions
{
&getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Amount: 3},
[]common.Hash{
pm.blockchain.GetBlockByNumber(limit / 2).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 + 1).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 + 2).Hash(),
},
}, {
&getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Amount: 3, Reverse: true},
[]common.Hash{
pm.blockchain.GetBlockByNumber(limit / 2).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 - 1).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 - 2).Hash(),
},
},
// Multiple headers with skip lists should be retrievable
{
&getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Skip: 3, Amount: 3},
[]common.Hash{
pm.blockchain.GetBlockByNumber(limit / 2).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 + 4).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 + 8).Hash(),
},
}, {
&getBlockHeadersData{Origin: hashOrNumber{Number: limit / 2}, Skip: 3, Amount: 3, Reverse: true},
[]common.Hash{
pm.blockchain.GetBlockByNumber(limit / 2).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 - 4).Hash(),
pm.blockchain.GetBlockByNumber(limit/2 - 8).Hash(),
},
},
// The chain endpoints should be retrievable
{
&getBlockHeadersData{Origin: hashOrNumber{Number: 0}, Amount: 1},
[]common.Hash{pm.blockchain.GetBlockByNumber(0).Hash()},
}, {
&getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64()}, Amount: 1},
[]common.Hash{pm.blockchain.CurrentBlock().Hash()},
},
// Ensure protocol limits are honored
{
&getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() - 1}, Amount: limit + 10, Reverse: true},
pm.blockchain.GetBlockHashesFromHash(pm.blockchain.CurrentBlock().Hash(), limit),
},
// Check that requesting more than available is handled gracefully
{
&getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() - 4}, Skip: 3, Amount: 3},
[]common.Hash{
pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64() - 4).Hash(),
pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64()).Hash(),
},
}, {
&getBlockHeadersData{Origin: hashOrNumber{Number: 4}, Skip: 3, Amount: 3, Reverse: true},
[]common.Hash{
pm.blockchain.GetBlockByNumber(4).Hash(),
pm.blockchain.GetBlockByNumber(0).Hash(),
},
},
// Check that requesting more than available is handled gracefully, even if mid skip
{
&getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() - 4}, Skip: 2, Amount: 3},
[]common.Hash{
pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64() - 4).Hash(),
pm.blockchain.GetBlockByNumber(pm.blockchain.CurrentBlock().NumberU64() - 1).Hash(),
},
}, {
&getBlockHeadersData{Origin: hashOrNumber{Number: 4}, Skip: 2, Amount: 3, Reverse: true},
[]common.Hash{
pm.blockchain.GetBlockByNumber(4).Hash(),
pm.blockchain.GetBlockByNumber(1).Hash(),
},
},
// Check a corner case where requesting more can iterate past the endpoints
{
&getBlockHeadersData{Origin: hashOrNumber{Number: 2}, Amount: 5, Reverse: true},
[]common.Hash{
pm.blockchain.GetBlockByNumber(2).Hash(),
pm.blockchain.GetBlockByNumber(1).Hash(),
pm.blockchain.GetBlockByNumber(0).Hash(),
},
},
// Check a corner case where skipping overflow loops back into the chain start
{
&getBlockHeadersData{Origin: hashOrNumber{Hash: pm.blockchain.GetBlockByNumber(3).Hash()}, Amount: 2, Reverse: false, Skip: math.MaxUint64 - 1},
[]common.Hash{
pm.blockchain.GetBlockByNumber(3).Hash(),
},
},
// Check a corner case where skipping overflow loops back to the same header
{
&getBlockHeadersData{Origin: hashOrNumber{Hash: pm.blockchain.GetBlockByNumber(1).Hash()}, Amount: 2, Reverse: false, Skip: math.MaxUint64},
[]common.Hash{
pm.blockchain.GetBlockByNumber(1).Hash(),
},
},
// Check that non existing headers aren't returned
{
&getBlockHeadersData{Origin: hashOrNumber{Hash: unknown}, Amount: 1},
[]common.Hash{},
}, {
&getBlockHeadersData{Origin: hashOrNumber{Number: pm.blockchain.CurrentBlock().NumberU64() + 1}, Amount: 1},
[]common.Hash{},
},
}
// Run each of the tests and verify the results against the chain
for i, tt := range tests {
i := i
tt := tt
t.Run(strconv.Itoa(i), func(t *testing.T) {
peer, _ := newTestPeer("peer", protocol, pm, true)
defer peer.close()
// Collect the headers to expect in the response
headers := []*types.Header{}
for _, hash := range tt.expect {
headers = append(headers, pm.blockchain.GetBlockByHash(hash).Header())
}
// Send the hash request and verify the response
if err := p2p.Send(peer.app, 0x03, tt.query); err != nil {
t.Error(err)
}
if err := p2p.ExpectMsg(peer.app, 0x04, headers); err != nil {
t.Errorf("test %d: headers mismatch: %v", i, err)
}
// If the test used number origins, repeat with hashes as the too
if tt.query.Origin.Hash == (common.Hash{}) {
if origin := pm.blockchain.GetBlockByNumber(tt.query.Origin.Number); origin != nil {
tt.query.Origin.Hash, tt.query.Origin.Number = origin.Hash(), 0
if err := p2p.Send(peer.app, 0x03, tt.query); err != nil {
t.Error(err)
}
if err := p2p.ExpectMsg(peer.app, 0x04, headers); err != nil {
t.Errorf("test %d: headers mismatch: %v", i, err)
}
}
}
})
}
}
// Tests that block contents can be retrieved from a remote chain based on their hashes.
func TestGetBlockBodies63(t *testing.T) { testGetBlockBodies(t, 63) }
func TestGetBlockBodies64(t *testing.T) { testGetBlockBodies(t, 64) }
func testGetBlockBodies(t *testing.T, protocol int) {
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, downloader.MaxBlockFetch+15, nil, nil)
// Create a batch of tests for various scenarios
limit := downloader.MaxBlockFetch
tests := []struct {
random int // Number of blocks to fetch randomly from the chain
explicit []common.Hash // Explicitly requested blocks
available []bool // Availability of explicitly requested blocks
expected int // Total number of existing blocks to expect
}{
{1, nil, nil, 1}, // A single random block should be retrievable
{10, nil, nil, 10}, // Multiple random blocks should be retrievable
{limit, nil, nil, limit}, // The maximum possible blocks should be retrievable
{limit + 1, nil, nil, limit}, // No more than the possible block count should be returned
{0, []common.Hash{pm.blockchain.Genesis().Hash()}, []bool{true}, 1}, // The genesis block should be retrievable
{0, []common.Hash{pm.blockchain.CurrentBlock().Hash()}, []bool{true}, 1}, // The chains head block should be retrievable
{0, []common.Hash{{}}, []bool{false}, 0}, // A non existent block should not be returned
// Existing and non-existing blocks interleaved should not cause problems
{0, []common.Hash{
{},
pm.blockchain.GetBlockByNumber(1).Hash(),
{},
pm.blockchain.GetBlockByNumber(10).Hash(),
{},
pm.blockchain.GetBlockByNumber(100).Hash(),
{},
}, []bool{false, true, false, true, false, true, false}, 3},
}
// Run each of the tests and verify the results against the chain
for i, tt := range tests {
peer, _ := newTestPeer("peer", protocol, pm, true)
defer peer.close()
// Collect the hashes to request, and the response to expect
hashes, seen := []common.Hash{}, make(map[int64]bool)
bodies := []*blockBody{}
for j := 0; j < tt.random; j++ {
for {
num := rand.Int63n(int64(pm.blockchain.CurrentBlock().NumberU64()))
if !seen[num] {
seen[num] = true
block := pm.blockchain.GetBlockByNumber(uint64(num))
hashes = append(hashes, block.Hash())
if len(bodies) < tt.expected {
bodies = append(bodies, &blockBody{Transactions: block.Transactions(), Uncles: block.Uncles()})
}
break
}
}
}
for j, hash := range tt.explicit {
hashes = append(hashes, hash)
if tt.available[j] && len(bodies) < tt.expected {
block := pm.blockchain.GetBlockByHash(hash)
bodies = append(bodies, &blockBody{Transactions: block.Transactions(), Uncles: block.Uncles()})
}
}
// Send the hash request and verify the response
p2p.Send(peer.app, 0x05, hashes)
if err := p2p.ExpectMsg(peer.app, 0x06, bodies); err != nil {
t.Errorf("test %d: bodies mismatch: %v", i, err)
}
}
}
// Tests that the node state database can be retrieved based on hashes.
func TestGetNodeData63(t *testing.T) { testGetNodeData(t, 63) }
func TestGetNodeData64(t *testing.T) { testGetNodeData(t, 64) }
func testGetNodeData(t *testing.T, protocol int) {
debug.OverrideGetNodeData(true)
defer debug.OverrideGetNodeData(false)
// Assemble the test environment
pm, addr := setUpStorageContractA(t)
peer, _ := newTestPeer("peer", protocol, pm, true)
defer peer.close()
state, err := pm.blockchain.GetTrieDbState()
assert.NoError(t, err)
account, err := state.ReadAccountData(addr)
assert.NoError(t, err)
node0Rlp, node1Rlp, branchRlp := storageNodesOfContractA(t, 2)
assert.Equal(t, account.Root, crypto.Keccak256Hash(branchRlp))
// Fetch some nodes
hashes := []common.Hash{
crypto.Keccak256Hash(node1Rlp),
pm.blockchain.CurrentBlock().Root(),
crypto.Keccak256Hash(branchRlp),
account.CodeHash,
crypto.Keccak256Hash(node0Rlp),
}
err = p2p.Send(peer.app, GetNodeDataMsg, hashes)
assert.NoError(t, err)
msg, err := peer.app.ReadMsg()
if err != nil {
t.Fatalf("failed to read node data response: %v", err)
}
if msg.Code != NodeDataMsg {
t.Fatalf("response packet code mismatch: have %x, want %x", msg.Code, NodeDataMsg)
}
var data [][]byte
if err := msg.Decode(&data); err != nil {
t.Fatalf("failed to decode response node data: %v", err)
}
// Verify that we get the right nodes back
if len(data) != len(hashes) {
t.Fatalf("response size mismatch: have %x, want %x", len(data), len(hashes))
}
for i := 0; i < len(hashes); i++ {
assert.NotEmpty(t, data[i])
assert.Equal(t, hashes[i], crypto.Keccak256Hash(data[i]))
}
}
// Tests that the transaction receipts can be retrieved based on hashes.
func TestGetReceipt63(t *testing.T) { testGetReceipt(t, 63) }
func TestGetReceipt64(t *testing.T) { testGetReceipt(t, 64) }
func testGetReceipt(t *testing.T, protocol int) {
// Define two accounts to simulate transactions with
acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a")
acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey)
acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey)
signer := types.HomesteadSigner{}
// Create a chain generator with some simple transactions (blatantly stolen from @fjl/chain_markets_test)
generator := func(i int, block *core.BlockGen) {
switch i {
case 0:
// In block 1, the test bank sends account #1 some ether.
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc1Addr, uint256.NewInt().SetUint64(10000), params.TxGas, nil, nil), signer, testBankKey)
block.AddTx(tx)
case 1:
// In block 2, the test bank sends some more ether to account #1.
// acc1Addr passes it on to account #2.
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc1Addr, uint256.NewInt().SetUint64(1000), params.TxGas, nil, nil), signer, testBankKey)
tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, uint256.NewInt().SetUint64(1000), params.TxGas, nil, nil), signer, acc1Key)
block.AddTx(tx1)
block.AddTx(tx2)
case 2:
// Block 3 is empty but was mined by account #2.
block.SetCoinbase(acc2Addr)
block.SetExtra([]byte("yeehaw"))
case 3:
// Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data).
b2 := block.PrevBlock(1).Header()
b2.Extra = []byte("foo")
block.AddUncle(b2)
b3 := block.PrevBlock(2).Header()
b3.Extra = []byte("foo")
block.AddUncle(b3)
}
}
// Assemble the test environment
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, 4, generator, nil)
peer, _ := newTestPeer("peer", protocol, pm, true)
defer peer.close()
// Collect the hashes to request, and the response to expect
hashes, receipts := []common.Hash{}, []types.Receipts{}
for i := uint64(0); i <= pm.blockchain.CurrentBlock().NumberU64(); i++ {
block := pm.blockchain.GetBlockByNumber(i)
hashes = append(hashes, block.Hash())
receipts = append(receipts, pm.blockchain.GetReceiptsByHash(block.Hash()))
}
// Send the hash request and verify the response
p2p.Send(peer.app, 0x0f, hashes)
if err := p2p.ExpectMsg(peer.app, 0x10, receipts); err != nil {
t.Errorf("receipts mismatch: %v", err)
}
}
// Tests that post eth protocol handshake, clients perform a mutual checkpoint
// challenge to validate each other's chains. Hash mismatches, or missing ones
// during a fast sync should lead to the peer getting dropped.
func TestCheckpointChallenge(t *testing.T) {
tests := []struct {
syncmode downloader.SyncMode
checkpoint bool
timeout bool
empty bool
match bool
drop bool
}{
// If checkpointing is not enabled locally, don't challenge and don't drop
{downloader.FullSync, false, false, false, false, false},
{downloader.FastSync, false, false, false, false, false},
// If checkpointing is enabled locally and remote response is empty, only drop during fast sync
{downloader.FullSync, true, false, true, false, false},
{downloader.FastSync, true, false, true, false, true}, // Special case, fast sync, unsynced peer
// If checkpointing is enabled locally and remote response mismatches, always drop
{downloader.FullSync, true, false, false, false, true},
{downloader.FastSync, true, false, false, false, true},
// If checkpointing is enabled locally and remote response matches, never drop
{downloader.FullSync, true, false, false, true, false},
{downloader.FastSync, true, false, false, true, false},
// If checkpointing is enabled locally and remote times out, always drop
{downloader.FullSync, true, true, false, true, true},
{downloader.FastSync, true, true, false, true, true},
}
for _, tt := range tests {
t.Run(fmt.Sprintf("sync %v checkpoint %v timeout %v empty %v match %v", tt.syncmode, tt.checkpoint, tt.timeout, tt.empty, tt.match), func(t *testing.T) {
testCheckpointChallenge(t, tt.syncmode, tt.checkpoint, tt.timeout, tt.empty, tt.match, tt.drop)
})
}
}
func testCheckpointChallenge(t *testing.T, syncmode downloader.SyncMode, checkpoint bool, timeout bool, empty bool, match bool, drop bool) {
// Reduce the checkpoint handshake challenge timeout
defer func(old time.Duration) { syncChallengeTimeout = old }(syncChallengeTimeout)
syncChallengeTimeout = 250 * time.Millisecond
// Initialize a chain and generate a fake CHT if checkpointing is enabled
var (
db = ethdb.NewMemDatabase()
config = new(params.ChainConfig)
)
(&core.Genesis{Config: config}).MustCommit(db) // Commit genesis block
// If checkpointing is enabled, create and inject a fake CHT and the corresponding
// chllenge response.
var response *types.Header
var cht *params.TrustedCheckpoint
if checkpoint {
index := uint64(rand.Intn(500))
number := (index+1)*params.CHTFrequency - 1
response = &types.Header{Number: big.NewInt(int64(number)), Extra: []byte("valid")}
cht = &params.TrustedCheckpoint{
SectionIndex: index,
SectionHead: response.Hash(),
}
}
// Create a checkpoint aware protocol manager
blockchain, err := core.NewBlockChain(db, nil, config, ethash.NewFaker(), vm.Config{}, nil, nil, nil)
if err != nil {
t.Fatalf("failed to create new blockchain: %v", err)
}
pm, err := NewProtocolManager(config, cht, syncmode, DefaultConfig.NetworkID, new(event.TypeMux), &testTxPool{pool: make(map[common.Hash]*types.Transaction)}, ethash.NewFaker(), blockchain, db, nil)
if err != nil {
t.Fatalf("failed to start test protocol manager: %v", err)
}
pm.Start(1000)
defer pm.Stop()
// Connect a new peer and check that we receive the checkpoint challenge
peer, _ := newTestPeer("peer", eth63, pm, true)
defer peer.close()
if checkpoint {
challenge := &getBlockHeadersData{
Origin: hashOrNumber{Number: response.Number.Uint64()},
Amount: 1,
Skip: 0,
Reverse: false,
}
if err := p2p.ExpectMsg(peer.app, GetBlockHeadersMsg, challenge); err != nil {
t.Fatalf("challenge mismatch: %v", err)
}
// Create a block to reply to the challenge if no timeout is simulated
if !timeout {
if empty {
if err := p2p.Send(peer.app, BlockHeadersMsg, []*types.Header{}); err != nil {
t.Fatalf("failed to answer challenge: %v", err)
}
} else if match {
if err := p2p.Send(peer.app, BlockHeadersMsg, []*types.Header{response}); err != nil {
t.Fatalf("failed to answer challenge: %v", err)
}
} else {
if err := p2p.Send(peer.app, BlockHeadersMsg, []*types.Header{{Number: response.Number}}); err != nil {
t.Fatalf("failed to answer challenge: %v", err)
}
}
}
}
// Wait until the test timeout passes to ensure proper cleanup
time.Sleep(syncChallengeTimeout + 300*time.Millisecond)
// Verify that the remote peer is maintained or dropped
if drop {
if peers := pm.peers.Len(); peers != 0 {
t.Fatalf("peer count mismatch: have %d, want %d", peers, 0)
}
} else {
if peers := pm.peers.Len(); peers != 1 {
t.Fatalf("peer count mismatch: have %d, want %d", peers, 1)
}
}
}
func TestBroadcastBlock(t *testing.T) {
var tests = []struct {
totalPeers int
broadcastExpected int
}{
{1, 1},
{2, 1},
{3, 1},
{4, 2},
{5, 2},
{9, 3},
{12, 3},
{16, 4},
{26, 5},
{100, 10},
}
for _, test := range tests {
testBroadcastBlock(t, test.totalPeers, test.broadcastExpected)
}
}
func testBroadcastBlock(t *testing.T, totalPeers, broadcastExpected int) {
var (
evmux = new(event.TypeMux)
pow = ethash.NewFaker()
db = ethdb.NewMemDatabase()
config = &params.ChainConfig{}
gspec = &core.Genesis{Config: config}
genesis = gspec.MustCommit(db)
)
blockchain, err := core.NewBlockChain(db, nil, config, pow, vm.Config{}, nil, nil, nil)
if err != nil {
t.Fatalf("failed to create new blockchain: %v", err)
}
cht := &params.TrustedCheckpoint{}
pm, err := NewProtocolManager(config, cht, downloader.FullSync, DefaultConfig.NetworkID, evmux, &testTxPool{pool: make(map[common.Hash]*types.Transaction)}, pow, blockchain, db, nil)
if err != nil {
t.Fatalf("failed to start test protocol manager: %v", err)
}
pm.Start(1000)
defer pm.Stop()
var peers []*testPeer
for i := 0; i < totalPeers; i++ {
peer, _ := newTestPeer(fmt.Sprintf("peer %d", i), eth63, pm, true)
defer peer.close()
peers = append(peers, peer)
}
ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1))
chain, _ := core.GenerateChain(ctx, gspec.Config, genesis, ethash.NewFaker(), db, 1, func(i int, gen *core.BlockGen) {})
pm.BroadcastBlock(chain[0], true /*propagate*/)
errCh := make(chan error, totalPeers)
doneCh := make(chan struct{}, totalPeers)
for _, peer := range peers {
go func(p *testPeer) {
if err := p2p.ExpectMsg(p.app, NewBlockMsg, &newBlockData{Block: chain[0], TD: big.NewInt(131136)}); err != nil {
errCh <- err
} else {
doneCh <- struct{}{}
}
}(peer)
}
var received int
for {
select {
case <-doneCh:
received++
case <-time.After(time.Second):
if received != broadcastExpected {
t.Errorf("broadcast count mismatch: have %d, want %d", received, broadcastExpected)
}
return
case err = <-errCh:
t.Fatalf("broadcast failed: %v", err)
}
}
}
var frhsAmnt = uint256.NewInt().SetUint64(10000)
var addrHash = make([]common.Hash, 5)
func setUpDummyAccountsForFirehose(t *testing.T) (*ProtocolManager, *testFirehosePeer) {
addr1 := common.HexToAddress("0x3b4fc1530da632624fa1e223a91d99dbb07c2d42")
addr2 := common.HexToAddress("0xb574d96f69c1324e3b49e63f4cc899736dd52789")
addr3 := common.HexToAddress("0xb11e2c7c5b96dbf120ec8af539d028311366af00")
addr4 := common.HexToAddress("0x7d9eb619ce1033cc710d9f9806a2330f85875f22")
addrHash[0] = crypto.Keccak256Hash(testBank.Bytes())
addrHash[1] = crypto.Keccak256Hash(addr1.Bytes())
addrHash[2] = crypto.Keccak256Hash(addr2.Bytes())
addrHash[3] = crypto.Keccak256Hash(addr3.Bytes())
addrHash[4] = crypto.Keccak256Hash(addr4.Bytes())
assert.Equal(t, addrHash[0], common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a"))
assert.Equal(t, addrHash[1], common.HexToHash("0x1155f85cf8c36b3bf84a89b2d453da3cc5c647ff815a8a809216c47f5ab507a9"))
assert.Equal(t, addrHash[2], common.HexToHash("0xac8e03d3673a43257a69fcd3ff99a7a17b7d0e0a900c337d55dbd36567938776"))
assert.Equal(t, addrHash[3], common.HexToHash("0x464b54760c96939ce60fb73b20987db21fce5a624d190f4e769c54a2ba8be49e"))
assert.Equal(t, addrHash[4], common.HexToHash("0x44091c88eed629ecac3ad260ab22318b52148b7a4cc2ac7d8bdf746877b54c15"))
signer := types.HomesteadSigner{}
numBlocks := 5
generator := func(i int, block *core.BlockGen) {
switch i {
case 0:
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr1, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
case 1:
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr2, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
case 2:
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr3, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
case 3:
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr4, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
case 4:
// top up account #3
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr3, frhsAmnt, params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
}
}
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, numBlocks, generator, nil)
peer, _ := newFirehoseTestPeer("peer", pm)
return pm, peer
}
func TestFirehoseStateRanges(t *testing.T) {
// TODO: remove or recover
t.Skip()
pm, peer := setUpDummyAccountsForFirehose(t)
defer peer.close()
block4 := pm.blockchain.GetBlockByNumber(4)
var request getStateRangesOrNodes
request.ID = 1
request.Block = block4.Hash()
// All known account keys start with either 0, 1, 4, or a.
// Warning: we assume that the key of miner's account doesn't start with 2 or 4.
request.Prefixes = []trie.Keybytes{
{Data: common.FromHex("40"), Odd: true, Terminating: false},
{Data: common.FromHex("20"), Odd: true, Terminating: false},
}
assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request))
account := accounts.NewAccount()
account.Balance.Set(frhsAmnt)
var reply1 stateRangesMsg
reply1.ID = 1
reply1.Entries = []firehoseAccountRange{
{Status: OK, Leaves: []accountLeaf{{addrHash[4], &account}, {addrHash[3], &account}}},
{Status: OK, Leaves: []accountLeaf{}},
}
if err := p2p.ExpectMsg(peer.app, StateRangesCode, reply1); err != nil {
t.Errorf("unexpected StateRanges response: %v", err)
}
nonexistentBlock := common.HexToHash("4444444444444444444444444444444444444444444444444444444444444444")
request.ID = 2
request.Block = nonexistentBlock
assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request))
block0 := pm.blockchain.GetBlockByNumber(0)
block1 := pm.blockchain.GetBlockByNumber(1)
block2 := pm.blockchain.GetBlockByNumber(2)
block3 := pm.blockchain.GetBlockByNumber(3)
block5 := pm.blockchain.GetBlockByNumber(5)
var reply2 stateRangesMsg
reply2.ID = 2
reply2.Entries = []firehoseAccountRange{
{Status: NoData, Leaves: []accountLeaf{}},
{Status: NoData, Leaves: []accountLeaf{}},
}
reply2.AvailableBlocks = []common.Hash{block5.Hash(), block4.Hash(), block3.Hash(), block2.Hash(), block1.Hash(), block0.Hash()}
if err := p2p.ExpectMsg(peer.app, StateRangesCode, reply2); err != nil {
t.Errorf("unexpected StateRanges response: %v", err)
}
}
func TestFirehoseTooManyLeaves(t *testing.T) {
// TODO: remove or recover
t.Skip()
signer := types.HomesteadSigner{}
amount := uint256.NewInt().SetUint64(10)
generator := func(i int, block *core.BlockGen) {
var rndAddr common.Address
// #nosec G404
rand.Read(rndAddr[:])
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), rndAddr, amount, params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
}
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, MaxLeavesPerPrefix, generator, nil)
peer, _ := newFirehoseTestPeer("peer", pm)
defer peer.close()
// ----------------------------------------------------
// BLOCK #1
var request getStateRangesOrNodes
request.ID = 0
request.Block = pm.blockchain.GetBlockByNumber(1).Hash()
request.Prefixes = []trie.Keybytes{
{Data: []byte{}, Odd: false, Terminating: false}, // empty prefix
}
assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request))
msg, err := peer.app.ReadMsg()
assert.NoError(t, err)
content, err := ioutil.ReadAll(msg.Payload)
assert.NoError(t, err)
var reply0 stateRangesMsg
assert.NoError(t, rlp.DecodeBytes(content, &reply0))
assert.Equal(t, uint64(0), reply0.ID)
assert.Equal(t, 1, len(reply0.Entries))
assert.Equal(t, OK, reply0.Entries[0].Status)
// test bank account + miner's account + the first random account
assert.Equal(t, 3, len(reply0.Entries[0].Leaves))
// ----------------------------------------------------
// BLOCK #MaxLeavesPerPrefix
request.ID = 1
request.Block = pm.blockchain.CurrentBlock().Hash()
assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request))
var reply1 stateRangesMsg
reply1.ID = 1
reply1.Entries = []firehoseAccountRange{
{Status: TooManyLeaves, Leaves: []accountLeaf{}},
}
err = p2p.ExpectMsg(peer.app, StateRangesCode, reply1)
if err != nil {
t.Errorf("unexpected StateRanges response: %v", err)
}
// ----------------------------------------------------
// BLOCK #(MaxLeavesPerPrefix-2)
request.ID = 2
request.Block = pm.blockchain.GetBlockByNumber(MaxLeavesPerPrefix - 2).Hash()
assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request))
msg, err = peer.app.ReadMsg()
assert.NoError(t, err)
content, err = ioutil.ReadAll(msg.Payload)
assert.NoError(t, err)
var reply2 stateRangesMsg
assert.NoError(t, rlp.DecodeBytes(content, &reply2))
assert.Equal(t, uint64(2), reply2.ID)
assert.Equal(t, 1, len(reply2.Entries))
assert.Equal(t, OK, reply2.Entries[0].Status)
// mind the test bank and the miner accounts
assert.Equal(t, MaxLeavesPerPrefix, len(reply2.Entries[0].Leaves))
// ----------------------------------------------------
// BLOCK #(MaxLeavesPerPrefix-1)
request.ID = 3
request.Block = pm.blockchain.GetBlockByNumber(MaxLeavesPerPrefix - 1).Hash()
assert.NoError(t, p2p.Send(peer.app, GetStateRangesCode, request))
var reply3 stateRangesMsg
reply3.ID = 3
reply3.Entries = []firehoseAccountRange{
{Status: TooManyLeaves, Leaves: []accountLeaf{}},
}
err = p2p.ExpectMsg(peer.app, StateRangesCode, reply3)
if err != nil {
t.Errorf("unexpected StateRanges response: %v", err)
}
}
// 2 storage items starting from different nibbles
func setUpStorageContractA(t *testing.T) (*ProtocolManager, common.Address) {
// This contract initially sets its 0th storage to 0x2a
// and its 1st storage to 0x01c9.
// When called, it updates the 0th storage to the input provided.
code := common.FromHex("602a6000556101c960015560068060166000396000f3600035600055")
// https://github.com/CoinCulture/evm-tools
// 0 PUSH1 => 2a
// 2 PUSH1 => 00
// 4 SSTORE // storage[0] = 0x2a
// 5 PUSH2 => 01c9
// 8 PUSH1 => 01
// 10 SSTORE // storage[1] = 0x01c9
// 11 PUSH1 => 06 // deploy begin
// 13 DUP1
// 14 PUSH1 => 16
// 16 PUSH1 => 00
// 18 CODECOPY
// 19 PUSH1 => 00
// 21 RETURN // deploy end
// 22 PUSH1 => 00 // contract code
// 24 CALLDATALOAD
// 25 PUSH1 => 00
// 27 SSTORE // storage[0] = input[0]
input := common.HexToHash("15").Bytes()
signer := types.HomesteadSigner{}
var addr common.Address
generator := func(i int, block *core.BlockGen) {
switch i {
case 0:
nonce := block.TxNonce(testBank)
// storage[0] = 0x2a, storage[1] = 0x01c9
tx, err := types.SignTx(types.NewContractCreation(nonce, new(uint256.Int), 2e5, nil, code), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
addr = crypto.CreateAddress(testBank, nonce)
case 1:
// storage[0] = 0x15
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr, new(uint256.Int), 2e5, nil, input), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
}
}
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, 2, generator, nil)
return pm, addr
}
func storageNodesOfContractA(t *testing.T, blockNbr uint64) (node0Rlp, node1Rlp, branchRlp []byte) {
hashOf0 := crypto.Keccak256(common.HexToHash("00").Bytes())
hashOf1 := crypto.Keccak256(common.HexToHash("01").Bytes())
// https://github.com/ethereum/wiki/wiki/Patricia-Tree
path0Compact := common.CopyBytes(hashOf0)
// override the 0st nibble with aux one for compact encoding
path0Compact[0] &= 0x0f
path0Compact[0] |= 0x30
path1Compact := common.CopyBytes(hashOf1)
path1Compact[0] &= 0x0f
path1Compact[0] |= 0x30
var val0 uint = 0x2a
if blockNbr >= 2 {
val0 = 0x15
}
leafNode := make([][]byte, 2)
leafNode[0] = path0Compact
val0Rlp, err := rlp.EncodeToBytes(val0)
assert.NoError(t, err)
leafNode[1] = val0Rlp
node0Rlp, err = rlp.EncodeToBytes(leafNode)
assert.NoError(t, err)
leafNode[0] = path1Compact
val1Rlp, err := rlp.EncodeToBytes(uint(0x01c9))
assert.NoError(t, err)
leafNode[1] = val1Rlp
node1Rlp, err = rlp.EncodeToBytes(leafNode)
assert.NoError(t, err)
branchNode := make([][]byte, 17)
assert.True(t, len(node0Rlp) >= 32)
branchNode[0x2] = crypto.Keccak256(node0Rlp)
assert.True(t, len(node1Rlp) >= 32)
branchNode[0xb] = crypto.Keccak256(node1Rlp)
branchRlp, err = rlp.EncodeToBytes(branchNode)
assert.NoError(t, err)
return node0Rlp, node1Rlp, branchRlp
}
// 2 storage items starting with the same nibble
func setUpStorageContractB(t *testing.T) (*ProtocolManager, common.Address) {
// This contract initially sets its 6th storage to 0x2a
// and its 8st storage to 0x01c9.
// When called, it updates the 8th storage to the input provided.
code := common.FromHex("602a6006556101c960085560068060166000396000f3600035600855")
// https://github.com/CoinCulture/evm-tools
// 0 PUSH1 => 2a
// 2 PUSH1 => 06
// 4 SSTORE // storage[6] = 0x2a
// 5 PUSH2 => 01c9
// 8 PUSH1 => 08
// 10 SSTORE // storage[8] = 0x01c9
// 11 PUSH1 => 06 // deploy begin
// 13 DUP1
// 14 PUSH1 => 16
// 16 PUSH1 => 00
// 18 CODECOPY
// 19 PUSH1 => 00
// 21 RETURN // deploy end
// 22 PUSH1 => 00
// 24 CALLDATALOAD
// 25 PUSH1 => 08
// 27 SSTORE // storage[8] = input[0]
input := common.HexToHash("15").Bytes()
signer := types.HomesteadSigner{}
var addr common.Address
generator := func(i int, block *core.BlockGen) {
switch i {
case 0:
nonce := block.TxNonce(testBank)
// storage[6] = 0x2a, storage[8] = 0x01c9
tx, err := types.SignTx(types.NewContractCreation(nonce, new(uint256.Int), 2e5, nil, code), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
addr = crypto.CreateAddress(testBank, nonce)
case 1:
// storage[8] = 0x15
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testBank), addr, new(uint256.Int), 2e5, nil, input), signer, testBankKey)
assert.NoError(t, err)
block.AddTx(tx)
}
}
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, 2, generator, nil)
return pm, addr
}
func TestFirehoseStorageRanges(t *testing.T) {
// TODO: remove or recover
t.Skip()
pm, addr := setUpStorageContractA(t)
peer, _ := newFirehoseTestPeer("peer", pm)
defer peer.close()
// Block 1
var storageReq getStorageRangesOrNodes
storageReq.ID = 1
storageReq.Block = pm.blockchain.GetBlockByNumber(1).Hash()
emptyPrefix := trie.Keybytes{Data: []byte{}, Odd: false, Terminating: false}
storageReq.Requests = []storageReqForOneAccount{
{Account: addr.Bytes(), Prefixes: []trie.Keybytes{emptyPrefix}},
}
assert.NoError(t, p2p.Send(peer.app, GetStorageRangesCode, storageReq))
hashOf0 := crypto.Keccak256Hash(common.HexToHash("00").Bytes())
hashOf1 := crypto.Keccak256Hash(common.HexToHash("01").Bytes())
var storageReply storageRangesMsg
storageReply.ID = 1
storageReply.Entries = [][]storageRange{{
{Status: OK, Leaves: []storageLeaf{
{Key: hashOf0, Val: *(big.NewInt(0x2a))},
{Key: hashOf1, Val: *(big.NewInt(0x01c9))},
}},
}}
err := p2p.ExpectMsg(peer.app, StorageRangesCode, storageReply)
if err != nil {
t.Fatalf("unexpected StorageRanges response: %v", err)
}
// Block 2
storageReq.ID = 2
storageReq.Block = pm.blockchain.GetBlockByNumber(2).Hash()
assert.NoError(t, p2p.Send(peer.app, GetStorageRangesCode, storageReq))
storageReply.ID = 2
storageReply.Entries[0][0].Leaves[0].Val.SetUint64(0x15)
err = p2p.ExpectMsg(peer.app, StorageRangesCode, storageReply)
if err != nil {
t.Errorf("unexpected StorageRanges response: %v", err)
}
// TODO [Andrew] test contract w/o any storage
}
// TestFirehoseStorageNodesA tests a trie with a branch node at the root and 2 leaf nodes.
func TestFirehoseStorageNodesA(t *testing.T) {
// TODO: remove or recover
t.Skip()
pm, addr := setUpStorageContractA(t)
peer, _ := newFirehoseTestPeer("peer", pm)
defer peer.close()
hashOf0 := crypto.Keccak256(common.HexToHash("00").Bytes())
hashOf1 := crypto.Keccak256(common.HexToHash("01").Bytes())
assert.Equal(t, hashOf0[0], byte(0x29))
assert.Equal(t, hashOf1[0], byte(0xb1))
var blockNbr uint64 = 1
var storageReq getStorageRangesOrNodes
storageReq.ID = 1
storageReq.Block = pm.blockchain.GetBlockByNumber(blockNbr).Hash()
emptyPrefix := trie.Keybytes{Data: []byte{}, Odd: false, Terminating: false}
storageReq.Requests = []storageReqForOneAccount{
{Account: addr.Bytes(), Prefixes: []trie.Keybytes{emptyPrefix}},
}
assert.NoError(t, p2p.Send(peer.app, GetStorageNodesCode, storageReq))
_, _, branchRlp := storageNodesOfContractA(t, blockNbr)
var storageReply storageNodesMsg
storageReply.ID = 1
storageReply.Nodes = make([][][]byte, 1)
storageReply.Nodes[0] = make([][]byte, 1)
storageReply.Nodes[0][0] = branchRlp
if err := p2p.ExpectMsg(peer.app, StorageNodesCode, storageReply); err != nil {
t.Errorf("unexpected StorageNodes response: %v", err)
}
}
// TestFirehoseStorageNodesB tests a trie with an extension node at the root,
// 1 intermediate branch node, and 2 leaf nodes.
func TestFirehoseStorageNodesB(t *testing.T) {
// TODO: remove or recover
t.Skip()
pm, addr := setUpStorageContractB(t)
peer, _ := newFirehoseTestPeer("peer", pm)
defer peer.close()
hashOf6 := crypto.Keccak256(common.HexToHash("06").Bytes())
hashOf8 := crypto.Keccak256(common.HexToHash("08").Bytes())
assert.Equal(t, hashOf6[0], byte(0xf6))
assert.Equal(t, hashOf8[0], byte(0xf3))
var storageReq getStorageRangesOrNodes
storageReq.ID = 1
storageReq.Block = pm.blockchain.GetBlockByNumber(1).Hash()
emptyPrefix := trie.Keybytes{Data: []byte{}, Odd: false, Terminating: false}
nibblePrefix := trie.Keybytes{Data: common.FromHex("f0"), Odd: true, Terminating: false}
storageReq.Requests = []storageReqForOneAccount{
{Account: addr.Bytes(), Prefixes: []trie.Keybytes{emptyPrefix, nibblePrefix}},
}
assert.NoError(t, p2p.Send(peer.app, GetStorageNodesCode, storageReq))
// https://github.com/ethereum/wiki/wiki/Patricia-Tree
path6Compact := common.CopyBytes(hashOf6)
// replace the first 2 nibbles with compact encoding stuff
path6Compact[0] = 0x20
path8Compact := common.CopyBytes(hashOf8)
path8Compact[0] = 0x20
leafNode := make([][]byte, 2)
leafNode[0] = path6Compact
val6Rlp, err := rlp.EncodeToBytes(uint(0x2a))
assert.NoError(t, err)
leafNode[1] = val6Rlp
node6Rlp, err := rlp.EncodeToBytes(leafNode)
assert.NoError(t, err)
leafNode[0] = path8Compact
val8Rlp, err := rlp.EncodeToBytes(uint(0x01c9))
assert.NoError(t, err)
leafNode[1] = val8Rlp
node8Rlp, err := rlp.EncodeToBytes(leafNode)
assert.NoError(t, err)
branchNode := make([][]byte, 17)
assert.True(t, len(node6Rlp) >= 32)
branchNode[6] = crypto.Keccak256(node6Rlp)
assert.True(t, len(node8Rlp) >= 32)
branchNode[3] = crypto.Keccak256(node8Rlp)
branchRlp, err := rlp.EncodeToBytes(branchNode)
assert.NoError(t, err)
extensionNode := make([][]byte, 2)
extensionNode[0] = common.FromHex("1f")
assert.True(t, len(branchRlp) >= 32)
extensionNode[1] = crypto.Keccak256(branchRlp)
extensionRlp, err := rlp.EncodeToBytes(extensionNode)
assert.NoError(t, err)
var storageReply storageNodesMsg
storageReply.ID = 1
storageReply.Nodes = make([][][]byte, 1)
storageReply.Nodes[0] = make([][]byte, 2)
storageReply.Nodes[0][0] = extensionRlp
storageReply.Nodes[0][1] = branchRlp
err = p2p.ExpectMsg(peer.app, StorageNodesCode, storageReply)
if err != nil {
t.Errorf("unexpected StorageNodes response: %v", err)
}
}
func TestFirehoseStateNodes(t *testing.T) {
// TODO: remove or recover
t.Skip()
pm, peer := setUpDummyAccountsForFirehose(t)
defer peer.close()
// ------------------------------------------------------------------
// Firstly test the latest state where account3 has double the amount
// ------------------------------------------------------------------
var request getStateRangesOrNodes
request.ID = 0
request.Block = pm.blockchain.GetBlockByNumber(5).Hash()
// All known account keys start with either 0, 1, 4, or a.
// Warning: we assume that the key of miner's account doesn't start with 2 or 4.
prefixA := trie.Keybytes{Data: common.FromHex("40"), Odd: true}
prefixB := trie.Keybytes{Data: common.FromHex("20"), Odd: true}
request.Prefixes = []trie.Keybytes{prefixA, prefixB}
assert.NoError(t, p2p.Send(peer.app, GetStateNodesCode, request))
account3 := accounts.NewAccount()
account3.Balance.Add(frhsAmnt, frhsAmnt)
account3rlp, err := rlp.EncodeToBytes(&account3)
assert.NoError(t, err)
account4 := accounts.NewAccount()
account4.Balance.Set(frhsAmnt)
account4rlp, err := rlp.EncodeToBytes(&account4)
assert.NoError(t, err)
assert.Equal(t, addrHash[3], common.HexToHash("0x464b54760c96939ce60fb73b20987db21fce5a624d190f4e769c54a2ba8be49e"))
assert.Equal(t, addrHash[4], common.HexToHash("0x44091c88eed629ecac3ad260ab22318b52148b7a4cc2ac7d8bdf746877b54c15"))
// https://github.com/ethereum/wiki/wiki/Patricia-Tree
addr3Node := make([][]byte, 2)
prefix3rlp := make([]byte, common.HashLength)
copy(prefix3rlp, addrHash[3].Bytes())
prefix3rlp[0] = 0x20 // we don't need the first 2 nibbles of the hash in the encoded path
addr3Node[0] = prefix3rlp
addr3Node[1] = account3rlp
node3rlp, err := rlp.EncodeToBytes(addr3Node)
assert.NoError(t, err)
addr4Node := make([][]byte, 2)
prefix4rlp := make([]byte, common.HashLength)
copy(prefix4rlp, addrHash[4].Bytes())
prefix4rlp[0] = 0x20 // we don't need the first 2 nibbles of the hash in the encoded path
addr4Node[0] = prefix4rlp
addr4Node[1] = account4rlp
node4rlp, err := rlp.EncodeToBytes(addr4Node)
assert.NoError(t, err)
branchNode := make([][]byte, 17)
branchNode[6] = crypto.Keccak256(node3rlp)
branchNode[4] = crypto.Keccak256(node4rlp)
rlpA, err := rlp.EncodeToBytes(branchNode)
assert.NoError(t, err)
var reply stateNodesMsg
reply.ID = 0
reply.Nodes = [][]byte{rlpA, nil}
err = p2p.ExpectMsg(peer.app, StateNodesCode, reply)
if err != nil {
t.Errorf("unexpected StateNodes response: %v", err)
}
// -------------------------------------------------------------------
// Secondly test the previous state where account3 has once the amount
// -------------------------------------------------------------------
request.ID = 1
request.Block = pm.blockchain.GetBlockByNumber(4).Hash()
assert.NoError(t, p2p.Send(peer.app, GetStateNodesCode, request))
account3.Balance.Set(frhsAmnt)
account3rlp, err = rlp.EncodeToBytes(&account3)
assert.NoError(t, err)
addr3Node[1] = account3rlp
node3rlp, err = rlp.EncodeToBytes(addr3Node)
assert.NoError(t, err)
branchNode[6] = crypto.Keccak256(node3rlp)
rlpA, err = rlp.EncodeToBytes(branchNode)
assert.NoError(t, err)
reply.ID = 1
reply.Nodes = [][]byte{rlpA, nil}
err = p2p.ExpectMsg(peer.app, StateNodesCode, reply)
if err != nil {
t.Errorf("unexpected StateNodes response: %v", err)
}
}
func TestFirehoseBytecode(t *testing.T) {
// TODO: remove or recover
t.Skip()
// Define two accounts to simulate transactions with
acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a")
acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey)
acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey)
// Two byte codes
runtimeCode1 := common.FromHex("60606040525b600080fd00a165627a7a7230582012c9bd00152fa1c480f6827f81515bb19c3e63bf7ed9ffbb5fda0265983ac7980029")
contractCode1 := append(common.FromHex("606060405260186000553415601357600080fd5b5b60368060216000396000f300"), runtimeCode1...)
runtimeCode2 := common.FromHex("60606040525bfe00a165627a7a72305820c442e8fb2f1f8c3e73151a596376ff0f8da7f4de18ed79a6471c1ec584a14b080029")
contractCode2 := append(common.FromHex("606060405260046000553415601057fe5b5b603380601e6000396000f300"), runtimeCode2...)
signer := types.HomesteadSigner{}
numBlocks := 2
// Chain generator with a couple of dummy contracts
generator := func(i int, block *core.BlockGen) {
switch i {
case 0:
tx1, err1 := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc1Addr, uint256.NewInt().SetUint64(2e5), params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err1)
block.AddTx(tx1)
tx2, err2 := types.SignTx(types.NewContractCreation(block.TxNonce(acc1Addr), new(uint256.Int), 1e5, nil, contractCode1), signer, acc1Key)
assert.NoError(t, err2)
block.AddTx(tx2)
case 1:
tx1, err1 := types.SignTx(types.NewTransaction(block.TxNonce(testBank), acc2Addr, uint256.NewInt().SetUint64(2e5), params.TxGas, nil, nil), signer, testBankKey)
assert.NoError(t, err1)
block.AddTx(tx1)
tx2, err2 := types.SignTx(types.NewContractCreation(block.TxNonce(acc2Addr), new(uint256.Int), 1e5, nil, contractCode2), signer, acc2Key)
assert.NoError(t, err2)
block.AddTx(tx2)
}
}
pm, _ := newTestProtocolManagerMust(t, downloader.FullSync, numBlocks, generator, nil)
peer, _ := newFirehoseTestPeer("peer", pm)
defer peer.close()
block1 := pm.blockchain.GetBlockByNumber(1)
receipts1 := pm.blockchain.GetReceiptsByHash(block1.Hash())
contract1Addr := receipts1[1].ContractAddress
block2 := pm.blockchain.GetBlockByNumber(2)
receipts2 := pm.blockchain.GetReceiptsByHash(block2.Hash())
contract2Addr := receipts2[1].ContractAddress
var reqID uint64 = 3758329
var request getBytecodeMsg
request.ID = reqID
request.Ref = []bytecodeRef{
{Account: contract1Addr.Bytes(), CodeHash: crypto.Keccak256Hash(runtimeCode1)},
{Account: crypto.Keccak256(contract2Addr.Bytes()), CodeHash: crypto.Keccak256Hash(runtimeCode2)},
}
codes := bytecodeMsg{ID: reqID, Code: [][]byte{runtimeCode1, runtimeCode2}}
assert.NoError(t, p2p.Send(peer.app, GetBytecodeCode, request))
if err := p2p.ExpectMsg(peer.app, BytecodeCode, codes); err != nil {
t.Errorf("unexpected Bytecode response: %v", err)
}
}
// Tests that a propagated malformed block (uncles or transactions don't match
// with the hashes in the header) gets discarded and not broadcast forward.
func TestBroadcastMalformedBlock(t *testing.T) {
// Create a live node to test propagation with
var (
engine = ethash.NewFaker()
db = ethdb.NewMemDatabase()
config = &params.ChainConfig{}
gspec = &core.Genesis{Config: config}
genesis = gspec.MustCommit(db)
)
blockchain, err := core.NewBlockChain(db, nil, config, engine, vm.Config{}, nil, nil, nil)
if err != nil {
t.Fatalf("failed to create new blockchain: %v", err)
}
pm, err := NewProtocolManager(config, nil, downloader.FullSync, DefaultConfig.NetworkID, new(event.TypeMux), new(testTxPool), engine, blockchain, db, nil)
if err != nil {
t.Fatalf("failed to start test protocol manager: %v", err)
}
pm.Start(2)
defer pm.Stop()
// Create two peers, one to send the malformed block with and one to check
// propagation
source, _ := newTestPeer("source", eth63, pm, true)
defer source.close()
sink, _ := newTestPeer("sink", eth63, pm, true)
defer sink.close()
ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1))
// Create various combinations of malformed blocks
chain, _ := core.GenerateChain(ctx, gspec.Config, genesis, ethash.NewFaker(), db, 1, func(i int, gen *core.BlockGen) {})
malformedUncles := chain[0].Header()
malformedUncles.UncleHash[0]++
malformedTransactions := chain[0].Header()
malformedTransactions.TxHash[0]++
malformedEverything := chain[0].Header()
malformedEverything.UncleHash[0]++
malformedEverything.TxHash[0]++
// Keep listening to broadcasts and notify if any arrives
notify := make(chan struct{}, 1)
go func() {
if _, err := sink.app.ReadMsg(); err == nil {
notify <- struct{}{}
}
}()
// Try to broadcast all malformations and ensure they all get discarded
for _, header := range []*types.Header{malformedUncles, malformedTransactions, malformedEverything} {
block := types.NewBlockWithHeader(header).WithBody(chain[0].Transactions(), chain[0].Uncles())
if err := p2p.Send(source.app, NewBlockMsg, []interface{}{block, big.NewInt(131136)}); err != nil {
t.Fatalf("failed to broadcast block: %v", err)
}
select {
case <-notify:
t.Fatalf("malformed block forwarded")
case <-time.After(100 * time.Millisecond):
}
}
}