erigon-pulse/txpool/types.go
Alexandr Borodulin ac4119191d
Encoding StarknetTx salt parameter (#243)
Co-authored-by: Aleksandr Borodulin <a.borodulin@axioma.lv>
2022-01-17 13:47:16 +01:00

689 lines
22 KiB
Go

/*
Copyright 2021 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package txpool
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"math/bits"
"sort"
"github.com/holiman/uint256"
"github.com/ledgerwatch/erigon-lib/common/length"
"github.com/ledgerwatch/erigon-lib/common/u256"
"github.com/ledgerwatch/erigon-lib/gointerfaces/types"
"github.com/ledgerwatch/erigon-lib/rlp"
"github.com/ledgerwatch/secp256k1"
"golang.org/x/crypto/sha3"
)
type TxParsseConfig struct {
chainID uint256.Int
}
// TxParseContext is object that is required to parse transactions and turn transaction payload into TxSlot objects
// usage of TxContext helps avoid extra memory allocations
type TxParseContext struct {
keccak1 hash.Hash
keccak2 hash.Hash
chainId, r, s, v uint256.Int // Signature values
chainIDMul uint256.Int
deriveChainID uint256.Int // pre-allocated variable to calculate Sub(&ctx.v, &ctx.chainIDMul)
buf [65]byte // buffer needs to be enough for hashes (32 bytes) and for public key (65 bytes)
sighash [32]byte
sig [65]byte
withSender bool
isProtected bool
validateHash func([]byte) error
validateRlp func([]byte) error
cfg TxParsseConfig
}
func NewTxParseContext(chainID uint256.Int) *TxParseContext {
if chainID.IsZero() {
panic("wrong chainID")
}
ctx := &TxParseContext{
withSender: true,
keccak1: sha3.NewLegacyKeccak256(),
keccak2: sha3.NewLegacyKeccak256(),
}
// behave as of London enabled
ctx.cfg.chainID.Set(&chainID)
ctx.chainIDMul.Mul(&chainID, u256.N2)
return ctx
}
// TxSlot contains information extracted from an Ethereum transaction, which is enough to manage it inside the transaction.
// Also, it contains some auxillary information, like ephemeral fields, and indices within priority queues
type TxSlot struct {
//txId uint64 // Transaction id (distinct from transaction hash), used as a compact reference to a transaction accross data structures
//senderId uint64 // Sender id (distinct from sender address), used as a compact referecne to to a sender accross data structures
nonce uint64 // Nonce of the transaction
tip uint64 // Maximum tip that transaction is giving to miner/block proposer
feeCap uint64 // Maximum fee that transaction burns and gives to the miner/block proposer
gas uint64 // Gas limit of the transaction
value uint256.Int // Value transferred by the transaction
IdHash [32]byte // Transaction hash for the purposes of using it as a transaction Id
senderID uint64 // SenderID - require external mapping to it's address
traced bool // Whether transaction needs to be traced throughout transcation pool code and generate debug printing
creation bool // Set to true if "To" field of the transation is not set
dataLen int // Length of transaction's data (for calculation of intrinsic gas)
dataNonZeroLen int
alAddrCount int // Number of addresses in the access list
alStorCount int // Number of storage keys in the access list
//bestIdx int // Index of the transaction in the best priority queue (of whatever pool it currently belongs to)
//worstIdx int // Index of the transaction in the worst priority queue (of whatever pook it currently belongs to)
//local bool // Whether transaction has been injected locally (and hence needs priority when mining or proposing a block)
rlp []byte
}
const (
LegacyTxType int = 0
AccessListTxType int = 1
DynamicFeeTxType int = 2
StarknetTxType int = 3
)
var ErrParseTxn = fmt.Errorf("%w transaction", rlp.ErrParse)
var ErrRejected = errors.New("rejected")
var ErrAlreadyKnown = errors.New("already known")
var ErrRlpTooBig = errors.New("txn rlp too big")
func (ctx *TxParseContext) ValidateHash(f func(hash []byte) error) { ctx.validateHash = f }
func (ctx *TxParseContext) ValidateRLP(f func(txnRlp []byte) error) { ctx.validateHash = f }
func (ctx *TxParseContext) WithSender(v bool) { ctx.withSender = v }
// ParseTransaction extracts all the information from the transactions's payload (RLP) necessary to build TxSlot
// it also performs syntactic validation of the transactions
func (ctx *TxParseContext) ParseTransaction(payload []byte, pos int, slot *TxSlot, sender []byte) (p int, err error) {
if len(payload) == 0 {
return 0, fmt.Errorf("%w: empty rlp", ErrParseTxn)
}
if ctx.withSender && len(sender) != 20 {
return 0, fmt.Errorf("%w: expect sender buffer of len 20", ErrParseTxn)
}
// Compute transaction hash
ctx.keccak1.Reset()
ctx.keccak2.Reset()
// Legacy transations have list Prefix, whereas EIP-2718 transactions have string Prefix
// therefore we assign the first returned value of Prefix function (list) to legacy variable
dataPos, dataLen, legacy, err := rlp.Prefix(payload, pos)
if err != nil {
return 0, fmt.Errorf("%w: size Prefix: %s", ErrParseTxn, err)
}
// For legacy transaction, the entire payload in expected to be in "rlp" field
// whereas for non-legacy, only the content of the envelope
if legacy {
slot.rlp = payload[pos : dataPos+dataLen]
} else {
slot.rlp = payload[dataPos : dataPos+dataLen]
}
if ctx.validateRlp != nil {
if err := ctx.validateRlp(payload[dataPos : dataPos+dataLen]); err != nil {
return p, err
}
}
if dataLen == 0 {
return 0, fmt.Errorf("%w: transaction must be either 1 list or 1 string", ErrParseTxn)
}
p = dataPos
var txType int
// If it is non-legacy transaction, the transaction type follows, and then the the list
if !legacy {
txType = int(payload[p])
if _, err = ctx.keccak1.Write(payload[p : p+1]); err != nil {
return 0, fmt.Errorf("%w: computing IdHash (hashing type Prefix): %s", ErrParseTxn, err)
}
if _, err = ctx.keccak2.Write(payload[p : p+1]); err != nil {
return 0, fmt.Errorf("%w: computing signHash (hashing type Prefix): %s", ErrParseTxn, err)
}
p++
if p >= len(payload) {
return 0, fmt.Errorf("%w: unexpected end of payload after txType", ErrParseTxn)
}
dataPos, dataLen, err = rlp.List(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: envelope Prefix: %s", ErrParseTxn, err)
}
// Hash the envelope, not the full payload
if _, err = ctx.keccak1.Write(payload[p : dataPos+dataLen]); err != nil {
return 0, fmt.Errorf("%w: computing IdHash (hashing the envelope): %s", ErrParseTxn, err)
}
p = dataPos
}
// Remember where signing hash data begins (it will need to be wrapped in an RLP list)
sigHashPos := p
// If it is non-legacy tx, chainId follows, but we skip it
if !legacy {
dataPos, dataLen, err = rlp.String(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: chainId len: %s", ErrParseTxn, err)
}
p = dataPos + dataLen
}
// Next follows the nonce, which we need to parse
p, slot.nonce, err = rlp.U64(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: nonce: %s", ErrParseTxn, err)
}
// Next follows gas price or tip
// Although consensus rules specify that tip can be up to 256 bit long, we narrow it to 64 bit
p, slot.tip, err = rlp.U64(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: tip: %s", ErrParseTxn, err)
}
// Next follows feeCap, but only for dynamic fee transactions, for legacy transaction, it is
// equal to tip
if txType < DynamicFeeTxType {
slot.feeCap = slot.tip
} else {
// Although consensus rules specify that feeCap can be up to 256 bit long, we narrow it to 64 bit
p, slot.feeCap, err = rlp.U64(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: feeCap: %s", ErrParseTxn, err)
}
}
// Next follows gas
p, slot.gas, err = rlp.U64(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: gas: %s", ErrParseTxn, err)
}
// Next follows the destrination address (if present)
dataPos, dataLen, err = rlp.String(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: to len: %s", ErrParseTxn, err)
}
if dataLen != 0 && dataLen != 20 {
return 0, fmt.Errorf("%w: unexpected length of to field: %d", ErrParseTxn, dataLen)
}
// Only note if To field is empty or not
slot.creation = dataLen == 0
p = dataPos + dataLen
// Next follows value
p, err = rlp.U256(payload, p, &slot.value)
if err != nil {
return 0, fmt.Errorf("%w: value: %s", ErrParseTxn, err)
}
// Next goes data, but we are only interesting in its length
dataPos, dataLen, err = rlp.String(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: data len: %s", ErrParseTxn, err)
}
slot.dataLen = dataLen
// Zero and non-zero bytes are priced differently
slot.dataNonZeroLen = 0
for _, byt := range payload[dataPos : dataPos+dataLen] {
if byt != 0 {
slot.dataNonZeroLen++
}
}
p = dataPos + dataLen
// Next goes starknet tx salt, but we are only interesting in its length
if txType == StarknetTxType {
dataPos, dataLen, err = rlp.String(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: data len: %s", ErrParseTxn, err)
}
p = dataPos + dataLen
}
// Next follows access list for non-legacy transactions, we are only interesting in number of addresses and storage keys
if !legacy {
dataPos, dataLen, err = rlp.List(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: access list len: %s", ErrParseTxn, err)
}
tuplePos := dataPos
var tupleLen int
for tuplePos < dataPos+dataLen {
tuplePos, tupleLen, err = rlp.List(payload, tuplePos)
if err != nil {
return 0, fmt.Errorf("%w: tuple len: %s", ErrParseTxn, err)
}
var addrPos int
addrPos, err = rlp.StringOfLen(payload, tuplePos, 20)
if err != nil {
return 0, fmt.Errorf("%w: tuple addr len: %s", ErrParseTxn, err)
}
slot.alAddrCount++
var storagePos, storageLen int
storagePos, storageLen, err = rlp.List(payload, addrPos+20)
if err != nil {
return 0, fmt.Errorf("%w: storage key list len: %s", ErrParseTxn, err)
}
skeyPos := storagePos
for skeyPos < storagePos+storageLen {
skeyPos, err = rlp.StringOfLen(payload, skeyPos, 32)
if err != nil {
return 0, fmt.Errorf("%w: tuple storage key len: %s", ErrParseTxn, err)
}
slot.alStorCount++
skeyPos += 32
}
if skeyPos != storagePos+storageLen {
return 0, fmt.Errorf("%w: extraneous space in the tuple after storage key list", ErrParseTxn)
}
tuplePos += tupleLen
}
if tuplePos != dataPos+dataLen {
return 0, fmt.Errorf("%w: extraneous space in the access list after all tuples", ErrParseTxn)
}
p = dataPos + dataLen
}
// This is where the data for sighash ends
// Next follows V of the signature
var vByte byte
sigHashEnd := p
sigHashLen := uint(sigHashEnd - sigHashPos)
var chainIdBits, chainIdLen int
if legacy {
p, err = rlp.U256(payload, p, &ctx.v)
if err != nil {
return 0, fmt.Errorf("%w: V: %s", ErrParseTxn, err)
}
ctx.isProtected = ctx.v.Eq(u256.N27) || ctx.v.Eq(u256.N28)
// Compute chainId from V
if ctx.isProtected {
// Do not add chain id and two extra zeros
vByte = byte(ctx.v.Uint64() - 27)
ctx.chainId.Set(&ctx.cfg.chainID)
} else {
ctx.chainId.Sub(&ctx.v, u256.N35)
ctx.chainId.Rsh(&ctx.chainId, 1)
if ctx.chainId.Cmp(&ctx.cfg.chainID) != 0 {
return 0, fmt.Errorf("%w: %s, %d (expected %d)", ErrParseTxn, "invalid chainID", ctx.chainId.Uint64(), ctx.cfg.chainID.Uint64())
}
chainIdBits = ctx.chainId.BitLen()
if chainIdBits <= 7 {
chainIdLen = 1
} else {
chainIdLen = (chainIdBits + 7) / 8 // It is always < 56 bytes
sigHashLen++ // For chainId len Prefix
}
sigHashLen += uint(chainIdLen) // For chainId
sigHashLen += 2 // For two extra zeros
ctx.deriveChainID.Sub(&ctx.v, &ctx.chainIDMul)
vByte = byte(ctx.deriveChainID.Sub(&ctx.deriveChainID, u256.N8).Uint64() - 27)
}
} else {
var v uint64
p, v, err = rlp.U64(payload, p)
if err != nil {
return 0, fmt.Errorf("%w: V: %s", ErrParseTxn, err)
}
if v > 1 {
return 0, fmt.Errorf("%w: V is loo large: %d", ErrParseTxn, v)
}
vByte = byte(v)
ctx.isProtected = true
ctx.chainId.Set(&ctx.cfg.chainID)
}
if ctx.chainId.Cmp(&ctx.cfg.chainID) != 0 {
return 0, fmt.Errorf("%w: %s, %d (expected %d)", ErrParseTxn, "invalid chainID", ctx.chainId.Uint64(), ctx.cfg.chainID.Uint64())
}
// Next follows R of the signature
p, err = rlp.U256(payload, p, &ctx.r)
if err != nil {
return 0, fmt.Errorf("%w: R: %s", ErrParseTxn, err)
}
// New follows S of the signature
p, err = rlp.U256(payload, p, &ctx.s)
if err != nil {
return 0, fmt.Errorf("%w: S: %s", ErrParseTxn, err)
}
// For legacy transactions, hash the full payload
if legacy {
if _, err = ctx.keccak1.Write(payload[pos:p]); err != nil {
return 0, fmt.Errorf("%w: computing IdHash: %s", ErrParseTxn, err)
}
}
//ctx.keccak1.Sum(slot.IdHash[:0])
_, _ = ctx.keccak1.(io.Reader).Read(slot.IdHash[:32])
if !ctx.withSender {
return p, nil
}
if ctx.validateHash != nil {
if err := ctx.validateHash(slot.IdHash[:32]); err != nil {
return p, err
}
}
// Computing sigHash (hash used to recover sender from the signature)
// Write len Prefix to the sighash
if sigHashLen < 56 {
ctx.buf[0] = byte(sigHashLen) + 192
if _, err := ctx.keccak2.Write(ctx.buf[:1]); err != nil {
return 0, fmt.Errorf("%w: computing signHash (hashing len Prefix): %s", ErrParseTxn, err)
}
} else {
beLen := (bits.Len(sigHashLen) + 7) / 8
binary.BigEndian.PutUint64(ctx.buf[1:], uint64(sigHashLen))
ctx.buf[8-beLen] = byte(beLen) + 247
if _, err := ctx.keccak2.Write(ctx.buf[8-beLen : 9]); err != nil {
return 0, fmt.Errorf("%w: computing signHash (hashing len Prefix): %s", ErrParseTxn, err)
}
}
if _, err = ctx.keccak2.Write(payload[sigHashPos:sigHashEnd]); err != nil {
return 0, fmt.Errorf("%w: computing signHash: %s", ErrParseTxn, err)
}
if legacy {
if chainIdLen > 0 {
if chainIdBits <= 7 {
ctx.buf[0] = byte(ctx.chainId.Uint64())
if _, err := ctx.keccak2.Write(ctx.buf[:1]); err != nil {
return 0, fmt.Errorf("%w: computing signHash (hashing legacy chainId): %s", ErrParseTxn, err)
}
} else {
binary.BigEndian.PutUint64(ctx.buf[1:9], ctx.chainId[3])
binary.BigEndian.PutUint64(ctx.buf[9:17], ctx.chainId[2])
binary.BigEndian.PutUint64(ctx.buf[17:25], ctx.chainId[1])
binary.BigEndian.PutUint64(ctx.buf[25:33], ctx.chainId[0])
ctx.buf[32-chainIdLen] = 128 + byte(chainIdLen)
if _, err = ctx.keccak2.Write(ctx.buf[32-chainIdLen : 33]); err != nil {
return 0, fmt.Errorf("%w: computing signHash (hashing legacy chainId): %s", ErrParseTxn, err)
}
}
// Encode two zeros
ctx.buf[0] = 128
ctx.buf[1] = 128
if _, err := ctx.keccak2.Write(ctx.buf[:2]); err != nil {
return 0, fmt.Errorf("%w: computing signHash (hashing zeros after legacy chainId): %s", ErrParseTxn, err)
}
}
}
// Squeeze sighash
_, _ = ctx.keccak2.(io.Reader).Read(ctx.sighash[:32])
//ctx.keccak2.Sum(ctx.sighash[:0])
binary.BigEndian.PutUint64(ctx.sig[0:8], ctx.r[3])
binary.BigEndian.PutUint64(ctx.sig[8:16], ctx.r[2])
binary.BigEndian.PutUint64(ctx.sig[16:24], ctx.r[1])
binary.BigEndian.PutUint64(ctx.sig[24:32], ctx.r[0])
binary.BigEndian.PutUint64(ctx.sig[32:40], ctx.s[3])
binary.BigEndian.PutUint64(ctx.sig[40:48], ctx.s[2])
binary.BigEndian.PutUint64(ctx.sig[48:56], ctx.s[1])
binary.BigEndian.PutUint64(ctx.sig[56:64], ctx.s[0])
ctx.sig[64] = vByte
// recover sender
if _, err = secp256k1.RecoverPubkeyWithContext(secp256k1.DefaultContext, ctx.sighash[:], ctx.sig[:], ctx.buf[:0]); err != nil {
return 0, fmt.Errorf("%w: recovering sender from signature: %s", ErrParseTxn, err)
}
//apply keccak to the public key
ctx.keccak2.Reset()
if _, err = ctx.keccak2.Write(ctx.buf[1:65]); err != nil {
return 0, fmt.Errorf("%w: computing sender from public key: %s", ErrParseTxn, err)
}
// squeeze the hash of the public key
//ctx.keccak2.Sum(ctx.buf[:0])
_, _ = ctx.keccak2.(io.Reader).Read(ctx.buf[:32])
//take last 20 bytes as address
copy(sender, ctx.buf[12:32])
return p, nil
}
type PeerID *types.H256
type Hashes []byte // flatten list of 32-byte hashes
func (h Hashes) At(i int) []byte { return h[i*length.Hash : (i+1)*length.Hash] }
func (h Hashes) Len() int { return len(h) / length.Hash }
func (h Hashes) Less(i, j int) bool {
return bytes.Compare(h[i*length.Hash:(i+1)*length.Hash], h[j*length.Hash:(j+1)*length.Hash]) < 0
}
func (h Hashes) Swap(i, j int) {
ii := i * length.Hash
jj := j * length.Hash
for k := 0; k < length.Hash; k++ {
h[ii], h[jj] = h[jj], h[ii]
ii++
jj++
}
}
// DedupCopy sorts hashes, and creates deduplicated copy
func (h Hashes) DedupCopy() Hashes {
if len(h) == 0 {
return h
}
sort.Sort(h)
unique := 1
for i := length.Hash; i < len(h); i += length.Hash {
if !bytes.Equal(h[i:i+length.Hash], h[i-length.Hash:i]) {
unique++
}
}
c := make(Hashes, unique*length.Hash)
copy(c[:], h[0:length.Hash])
dest := length.Hash
for i := dest; i < len(h); i += length.Hash {
if !bytes.Equal(h[i:i+length.Hash], h[i-length.Hash:i]) {
if dest != i {
copy(c[dest:dest+length.Hash], h[i:i+length.Hash])
}
dest += length.Hash
}
}
return c
}
type Addresses []byte // flatten list of 20-byte addresses
func (h Addresses) At(i int) []byte { return h[i*length.Addr : (i+1)*length.Addr] }
func (h Addresses) Len() int { return len(h) / length.Addr }
type TxSlots struct {
txs []*TxSlot
senders Addresses
isLocal []bool
}
func (s TxSlots) Valid() error {
if len(s.txs) != len(s.isLocal) {
return fmt.Errorf("TxSlots: expect equal len of isLocal=%d and txs=%d", len(s.isLocal), len(s.txs))
}
if len(s.txs) != s.senders.Len() {
return fmt.Errorf("TxSlots: expect equal len of senders=%d and txs=%d", s.senders.Len(), len(s.txs))
}
return nil
}
var zeroAddr = make([]byte, 20)
// Resize internal arrays to len=targetSize, shrinks if need. It rely on `append` algorithm to realloc
func (s *TxSlots) Resize(targetSize uint) {
for uint(len(s.txs)) < targetSize {
s.txs = append(s.txs, nil)
}
for uint(s.senders.Len()) < targetSize {
s.senders = append(s.senders, addressesGrowth...)
}
for uint(len(s.isLocal)) < targetSize {
s.isLocal = append(s.isLocal, false)
}
//todo: set nil to overflow txs
oldLen := uint(len(s.txs))
s.txs = s.txs[:targetSize]
for i := oldLen; i < targetSize; i++ {
s.txs[i] = nil
}
s.senders = s.senders[:length.Addr*targetSize]
for i := oldLen; i < targetSize; i++ {
copy(s.senders.At(int(i)), zeroAddr)
}
s.isLocal = s.isLocal[:targetSize]
for i := oldLen; i < targetSize; i++ {
s.isLocal[i] = false
}
}
func (s *TxSlots) Append(slot *TxSlot, sender []byte, isLocal bool) {
n := len(s.txs)
s.Resize(uint(len(s.txs) + 1))
s.txs[n] = slot
s.isLocal[n] = isLocal
copy(s.senders.At(n), sender)
}
type TxsRlp struct {
Txs [][]byte
Senders Addresses
IsLocal []bool
}
// Resize internal arrays to len=targetSize, shrinks if need. It rely on `append` algorithm to realloc
func (s *TxsRlp) Resize(targetSize uint) {
for uint(len(s.Txs)) < targetSize {
s.Txs = append(s.Txs, nil)
}
for uint(s.Senders.Len()) < targetSize {
s.Senders = append(s.Senders, addressesGrowth...)
}
for uint(len(s.IsLocal)) < targetSize {
s.IsLocal = append(s.IsLocal, false)
}
//todo: set nil to overflow txs
s.Txs = s.Txs[:targetSize]
s.Senders = s.Senders[:length.Addr*targetSize]
s.IsLocal = s.IsLocal[:targetSize]
}
var addressesGrowth = make([]byte, length.Addr)
func EncodeSenderLengthForStorage(nonce uint64, balance uint256.Int) uint {
var structLength uint = 1 // 1 byte for fieldset
if !balance.IsZero() {
structLength += uint(balance.ByteLen()) + 1
}
if nonce > 0 {
structLength += uint((bits.Len64(nonce)+7)/8) + 1
}
return structLength
}
func EncodeSender(nonce uint64, balance uint256.Int, buffer []byte) {
var fieldSet = 0 // start with first bit set to 0
var pos = 1
if nonce > 0 {
fieldSet = 1
nonceBytes := (bits.Len64(nonce) + 7) / 8
buffer[pos] = byte(nonceBytes)
var nonce = nonce
for i := nonceBytes; i > 0; i-- {
buffer[pos+i] = byte(nonce)
nonce >>= 8
}
pos += nonceBytes + 1
}
// Encoding balance
if !balance.IsZero() {
fieldSet |= 2
balanceBytes := balance.ByteLen()
buffer[pos] = byte(balanceBytes)
pos++
balance.WriteToSlice(buffer[pos : pos+balanceBytes])
pos += balanceBytes //nolint
}
buffer[0] = byte(fieldSet)
}
func DecodeSender(enc []byte) (nonce uint64, balance uint256.Int, err error) {
if len(enc) == 0 {
return
}
var fieldSet = enc[0]
var pos = 1
if fieldSet&1 > 0 {
decodeLength := int(enc[pos])
if len(enc) < pos+decodeLength+1 {
return nonce, balance, fmt.Errorf(
"malformed CBOR for Account.Nonce: %s, Length %d",
enc[pos+1:], decodeLength)
}
nonce = bytesToUint64(enc[pos+1 : pos+decodeLength+1])
pos += decodeLength + 1
}
if fieldSet&2 > 0 {
decodeLength := int(enc[pos])
if len(enc) < pos+decodeLength+1 {
return nonce, balance, fmt.Errorf(
"malformed CBOR for Account.Nonce: %s, Length %d",
enc[pos+1:], decodeLength)
}
(&balance).SetBytes(enc[pos+1 : pos+decodeLength+1])
}
return
}
func bytesToUint64(buf []byte) (x uint64) {
for i, b := range buf {
x = x<<8 + uint64(b)
if i == 7 {
return
}
}
return
}
//nolint
func (tx *TxSlot) printDebug(prefix string) {
fmt.Printf("%s: senderID=%d,nonce=%d,tip=%d,v=%d\n", prefix, tx.senderID, tx.nonce, tx.tip, tx.value.Uint64())
//fmt.Printf("%s: senderID=%d,nonce=%d,tip=%d,hash=%x\n", prefix, tx.senderID, tx.nonce, tx.tip, tx.IdHash)
}
// AccessList is an EIP-2930 access list.
type AccessList []AccessTuple
// AccessTuple is the element type of an access list.
type AccessTuple struct {
Address [20]byte `json:"address" gencodec:"required"`
StorageKeys [][32]byte `json:"storageKeys" gencodec:"required"`
}
// StorageKeys returns the total number of storage keys in the access list.
func (al AccessList) StorageKeys() int {
sum := 0
for _, tuple := range al {
sum += len(tuple.StorageKeys)
}
return sum
}