erigon-pulse/common/mclock/simclock.go
Felix Lange 55bc97775a common/mclock: add NewTimer and Timer.Reset (#20634)
These methods can be helpful when migrating existing timer code.
2020-02-27 17:21:20 +03:00

210 lines
5.0 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package mclock
import (
"container/heap"
"sync"
"time"
)
// Simulated implements a virtual Clock for reproducible time-sensitive tests. It
// simulates a scheduler on a virtual timescale where actual processing takes zero time.
//
// The virtual clock doesn't advance on its own, call Run to advance it and execute timers.
// Since there is no way to influence the Go scheduler, testing timeout behaviour involving
// goroutines needs special care. A good way to test such timeouts is as follows: First
// perform the action that is supposed to time out. Ensure that the timer you want to test
// is created. Then run the clock until after the timeout. Finally observe the effect of
// the timeout using a channel or semaphore.
type Simulated struct {
now AbsTime
scheduled simTimerHeap
mu sync.RWMutex
cond *sync.Cond
}
// simTimer implements ChanTimer on the virtual clock.
type simTimer struct {
at AbsTime
index int // position in s.scheduled
s *Simulated
do func()
ch <-chan AbsTime
}
func (s *Simulated) init() {
if s.cond == nil {
s.cond = sync.NewCond(&s.mu)
}
}
// Run moves the clock by the given duration, executing all timers before that duration.
func (s *Simulated) Run(d time.Duration) {
s.mu.Lock()
s.init()
end := s.now + AbsTime(d)
var do []func()
for len(s.scheduled) > 0 && s.scheduled[0].at <= end {
ev := heap.Pop(&s.scheduled).(*simTimer)
do = append(do, ev.do)
}
s.now = end
s.mu.Unlock()
for _, fn := range do {
fn()
}
}
// ActiveTimers returns the number of timers that haven't fired.
func (s *Simulated) ActiveTimers() int {
s.mu.RLock()
defer s.mu.RUnlock()
return len(s.scheduled)
}
// WaitForTimers waits until the clock has at least n scheduled timers.
func (s *Simulated) WaitForTimers(n int) {
s.mu.Lock()
defer s.mu.Unlock()
s.init()
for len(s.scheduled) < n {
s.cond.Wait()
}
}
// Now returns the current virtual time.
func (s *Simulated) Now() AbsTime {
s.mu.RLock()
defer s.mu.RUnlock()
return s.now
}
// Sleep blocks until the clock has advanced by d.
func (s *Simulated) Sleep(d time.Duration) {
<-s.After(d)
}
// NewTimer creates a timer which fires when the clock has advanced by d.
func (s *Simulated) NewTimer(d time.Duration) ChanTimer {
s.mu.Lock()
defer s.mu.Unlock()
ch := make(chan AbsTime, 1)
var timer *simTimer
timer = s.schedule(d, func() { ch <- timer.at })
timer.ch = ch
return timer
}
// After returns a channel which receives the current time after the clock
// has advanced by d.
func (s *Simulated) After(d time.Duration) <-chan AbsTime {
return s.NewTimer(d).C()
}
// AfterFunc runs fn after the clock has advanced by d. Unlike with the system
// clock, fn runs on the goroutine that calls Run.
func (s *Simulated) AfterFunc(d time.Duration, fn func()) Timer {
s.mu.Lock()
defer s.mu.Unlock()
return s.schedule(d, fn)
}
func (s *Simulated) schedule(d time.Duration, fn func()) *simTimer {
s.init()
at := s.now + AbsTime(d)
ev := &simTimer{do: fn, at: at, s: s}
heap.Push(&s.scheduled, ev)
s.cond.Broadcast()
return ev
}
func (ev *simTimer) Stop() bool {
ev.s.mu.Lock()
defer ev.s.mu.Unlock()
if ev.index < 0 {
return false
}
heap.Remove(&ev.s.scheduled, ev.index)
ev.s.cond.Broadcast()
ev.index = -1
return true
}
func (ev *simTimer) Reset(d time.Duration) {
if ev.ch == nil {
panic("mclock: Reset() on timer created by AfterFunc")
}
ev.s.mu.Lock()
defer ev.s.mu.Unlock()
ev.at = ev.s.now.Add(d)
if ev.index < 0 {
heap.Push(&ev.s.scheduled, ev) // already expired
} else {
heap.Fix(&ev.s.scheduled, ev.index) // hasn't fired yet, reschedule
}
ev.s.cond.Broadcast()
}
func (ev *simTimer) C() <-chan AbsTime {
if ev.ch == nil {
panic("mclock: C() on timer created by AfterFunc")
}
return ev.ch
}
type simTimerHeap []*simTimer
func (h *simTimerHeap) Len() int {
return len(*h)
}
func (h *simTimerHeap) Less(i, j int) bool {
return (*h)[i].at < (*h)[j].at
}
func (h *simTimerHeap) Swap(i, j int) {
(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
(*h)[i].index = i
(*h)[j].index = j
}
func (h *simTimerHeap) Push(x interface{}) {
t := x.(*simTimer)
t.index = len(*h)
*h = append(*h, t)
}
func (h *simTimerHeap) Pop() interface{} {
end := len(*h) - 1
t := (*h)[end]
t.index = -1
(*h)[end] = nil
*h = (*h)[:end]
return t
}