mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-14 06:48:20 +00:00
481 lines
14 KiB
Go
481 lines
14 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty off
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"math/bits"
|
|
|
|
"github.com/ledgerwatch/turbo-geth/common"
|
|
"github.com/ledgerwatch/turbo-geth/common/pool"
|
|
"github.com/ledgerwatch/turbo-geth/rlp"
|
|
"github.com/valyala/bytebufferpool"
|
|
"golang.org/x/crypto/sha3"
|
|
)
|
|
|
|
// Experimental code for separating data and structural information
|
|
// Each function corresponds to an opcode
|
|
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
|
|
type structInfoReceiver interface {
|
|
leaf(length int)
|
|
leafHash(length int)
|
|
extension(key []byte)
|
|
extensionHash(key []byte)
|
|
branch(set uint16)
|
|
branchHash(set uint16)
|
|
hash(number int)
|
|
}
|
|
|
|
// genStructStep is one step of the algorithm that generates the structural information based on the sequence of keys.
|
|
// `hashOnly` parameter is the function that, called for a certain prefix, determines whether the trie node for that prefix needs to be
|
|
// compressed into just hash (if `true` is returned), or constructed (if `false` is returned). Usually the `hashOnly` function is
|
|
// implemented in such a way to guarantee that certain keys are always accessible in the resulting trie (see ResolveSet.HashOnly function).
|
|
// `recursive` parameter is set to true if the algorithm's step is invoked recursively, i.e. not after a freshly provided leaf.
|
|
// Recursive invocation is used to emit opcodes for non-leaf nodes.
|
|
// `prec`, `curr`, `succ` are three full keys or prefixes that are currently visible to the algorithm. By comparing these, the algorithm
|
|
// makes decisions about the local structure, i.e. the presense of the prefix groups.
|
|
// `e` parameter is a `structInfoReceiver`, an object that receives opcode messages.
|
|
// `groups` parameter is the map of the stack. each element of the `groups` slice is a bitmask, one bit per element currently on the stack.
|
|
// Whenever a `BRANCH` or `BRANCHHASH` opcode is emitted, the set of digits is taken from the corresponding `groups` item, which is
|
|
// then removed from the slice. This signifies the usage of the number of the stack items by the `BRANCH` or `BRANCHHASH` opcode.
|
|
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
|
|
func genStructStep(
|
|
hashOnly func(prefix []byte) bool,
|
|
recursive bool,
|
|
prec, curr, succ []byte,
|
|
e structInfoReceiver,
|
|
groups []uint16,
|
|
) []uint16 {
|
|
if !recursive && len(prec) == 0 {
|
|
prec = nil
|
|
}
|
|
// Calculate the prefix of the smallest prefix group containing curr
|
|
precLen := prefixLen(prec, curr)
|
|
succLen := prefixLen(succ, curr)
|
|
var maxLen int
|
|
if precLen > succLen {
|
|
maxLen = precLen
|
|
} else {
|
|
maxLen = succLen
|
|
}
|
|
//fmt.Printf("prec: %x, curr: %x, succ: %x, maxLen %d, prefix: %x\n", prec, curr, succ, maxLen, prefix)
|
|
// Add the digit immediately following the max common prefix and compute length of remainder length
|
|
extraDigit := curr[maxLen]
|
|
for maxLen >= len(groups) {
|
|
groups = append(groups, 0)
|
|
}
|
|
groups[maxLen] |= (uint16(1) << extraDigit)
|
|
//fmt.Printf("groups[%d] is now %b, len(groups) %d, prefix %x\n", maxLen, groups[maxLen], len(groups), prefix)
|
|
remainderStart := maxLen
|
|
if len(succ) > 0 || prec != nil {
|
|
remainderStart++
|
|
}
|
|
remainderLen := len(curr) - remainderStart
|
|
// Emit LEAF or EXTENSION based on the remainder
|
|
if recursive {
|
|
if remainderLen > 0 {
|
|
if hashOnly(curr[:maxLen]) {
|
|
e.extensionHash(curr[remainderStart : remainderStart+remainderLen])
|
|
} else {
|
|
e.extension(curr[remainderStart : remainderStart+remainderLen])
|
|
}
|
|
}
|
|
} else {
|
|
if hashOnly(curr[:maxLen]) {
|
|
e.leafHash(remainderLen)
|
|
} else {
|
|
e.leaf(remainderLen)
|
|
}
|
|
}
|
|
// Check for the optional part
|
|
if precLen <= succLen && len(succ) > 0 {
|
|
return groups
|
|
}
|
|
// Close the immediately encompassing prefix group, if needed
|
|
if len(succ) > 0 || prec != nil {
|
|
if hashOnly(curr[:maxLen]) {
|
|
e.branchHash(groups[maxLen])
|
|
} else {
|
|
e.branch(groups[maxLen])
|
|
}
|
|
}
|
|
groups = groups[:maxLen]
|
|
// Check the end of recursion
|
|
if precLen == 0 {
|
|
return groups
|
|
}
|
|
// Identify preceding key for the recursive invocation
|
|
newCurr := curr[:precLen]
|
|
var newPrec []byte
|
|
for len(groups) > 0 && groups[len(groups)-1] == 0 {
|
|
groups = groups[:len(groups)-1]
|
|
}
|
|
if len(groups) >= 1 {
|
|
newPrec = curr[:len(groups)-1]
|
|
}
|
|
|
|
// Recursion
|
|
return genStructStep(hashOnly, true, newPrec, newCurr, succ, e, groups)
|
|
}
|
|
|
|
const hashStackStride = common.HashLength + 1 // + 1 byte for RLP encoding
|
|
|
|
// HashBuilder implements the interface `structInfoReceiver` and opcodes that the structural information of the trie
|
|
// is comprised of
|
|
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
|
|
type HashBuilder struct {
|
|
hexKey bytes.Buffer // Next key-value pair to consume
|
|
hashStack []byte // Stack of sub-slices, each 33 bytes each, containing RLP encodings of node hashes (or of nodes themselves, if shorter than 32 bytes)
|
|
nodeStack []node // Stack of nodes
|
|
value *bytebufferpool.ByteBuffer
|
|
sha keccakState // Keccak primitive that can absorb data (Write), and get squeezed to the hash out (Read)
|
|
leafFunc func(b []byte) (node, error) // Function to be called on the leafs to construct valueNode or accoutNode
|
|
}
|
|
|
|
// NewHashBuilder creates a new HashBuilder
|
|
func NewHashBuilder(leafFunc func(b []byte) (node, error)) *HashBuilder {
|
|
return &HashBuilder{
|
|
sha: sha3.NewLegacyKeccak256().(keccakState),
|
|
leafFunc: leafFunc,
|
|
}
|
|
}
|
|
|
|
// Reset makes the HashBuilder suitable for reuse
|
|
func (hb *HashBuilder) Reset() {
|
|
hb.hexKey.Reset()
|
|
hb.hashStack = hb.hashStack[:0]
|
|
hb.nodeStack = hb.nodeStack[:0]
|
|
pool.PutBuffer(hb.value)
|
|
hb.value = nil
|
|
}
|
|
|
|
// key is original key (not transformed into hex or compacted)
|
|
func (hb *HashBuilder) setKeyValue(skip int, key []byte, value *bytebufferpool.ByteBuffer) {
|
|
// Transform key into hex representation
|
|
hb.hexKey.Reset()
|
|
i := 0
|
|
for _, b := range key {
|
|
if i >= skip {
|
|
hb.hexKey.WriteByte(b / 16)
|
|
}
|
|
i++
|
|
if i >= skip {
|
|
hb.hexKey.WriteByte(b % 16)
|
|
}
|
|
i++
|
|
}
|
|
hb.hexKey.WriteByte(16)
|
|
pool.PutBuffer(hb.value)
|
|
hb.value = value
|
|
}
|
|
|
|
func (hb *HashBuilder) leaf(length int) {
|
|
//fmt.Printf("LEAF %d\n", length)
|
|
hex := hb.hexKey.Bytes()
|
|
key := hex[len(hex)-length:]
|
|
val, err := hb.leafFunc(hb.value.B)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
s := &shortNode{Key: common.CopyBytes(key), Val: val}
|
|
hb.nodeStack = append(hb.nodeStack, s)
|
|
hb.leafHash(length)
|
|
}
|
|
|
|
func (hb *HashBuilder) leafHash(length int) {
|
|
//fmt.Printf("LEAFHASH %d\n", length)
|
|
var hash [hashStackStride]byte // RLP representation of hash (or of un-hashed value if short)
|
|
// Compute the total length of binary representation
|
|
var keyPrefix [1]byte
|
|
var valPrefix [4]byte
|
|
var lenPrefix [4]byte
|
|
var kp, vp, kl, vl int
|
|
// Write key
|
|
var compactLen int
|
|
var ni int
|
|
var compact0 byte
|
|
hex := hb.hexKey.Bytes()
|
|
key := hex[len(hex)-length:]
|
|
if hasTerm(key) {
|
|
compactLen = (len(key)-1)/2 + 1
|
|
if len(key)&1 == 0 {
|
|
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
|
|
ni = 1
|
|
} else {
|
|
compact0 = 0x20
|
|
}
|
|
} else {
|
|
compactLen = len(key)/2 + 1
|
|
if len(key)&1 == 1 {
|
|
compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble
|
|
ni = 1
|
|
}
|
|
}
|
|
if compactLen > 1 {
|
|
keyPrefix[0] = rlp.EmptyStringCode + byte(compactLen)
|
|
kp = 1
|
|
kl = compactLen
|
|
} else {
|
|
kl = 1
|
|
}
|
|
val := hb.value.B
|
|
if len(val) > 1 || val[0] >= rlp.EmptyStringCode {
|
|
vp = generateByteArrayLen(valPrefix[:], 0, len(val))
|
|
vl = len(val)
|
|
} else {
|
|
vl = 1
|
|
}
|
|
totalLen := kp + kl + vp + vl
|
|
pt := generateStructLen(lenPrefix[:], totalLen)
|
|
if pt+totalLen < common.HashLength {
|
|
// Embedded node
|
|
pos := 0
|
|
copy(hash[pos:], lenPrefix[:pt])
|
|
pos += pt
|
|
copy(hash[pos:], keyPrefix[:kp])
|
|
pos += kp
|
|
hash[pos] = compact0
|
|
pos++
|
|
for i := 1; i < compactLen; i++ {
|
|
hash[pos] = key[ni]*16 + key[ni+1]
|
|
pos++
|
|
ni += 2
|
|
}
|
|
copy(hash[pos:], valPrefix[:vp])
|
|
pos += vp
|
|
copy(hash[pos:], val)
|
|
} else {
|
|
hb.sha.Reset()
|
|
if _, err := hb.sha.Write(lenPrefix[:pt]); err != nil {
|
|
panic(err)
|
|
}
|
|
if _, err := hb.sha.Write(keyPrefix[:kp]); err != nil {
|
|
panic(err)
|
|
}
|
|
var b [1]byte
|
|
b[0] = compact0
|
|
if _, err := hb.sha.Write(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
for i := 1; i < compactLen; i++ {
|
|
b[0] = key[ni]*16 + key[ni+1]
|
|
if _, err := hb.sha.Write(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
ni += 2
|
|
}
|
|
if _, err := hb.sha.Write(valPrefix[:vp]); err != nil {
|
|
panic(err)
|
|
}
|
|
if _, err := hb.sha.Write(val); err != nil {
|
|
panic(err)
|
|
}
|
|
hash[0] = rlp.EmptyStringCode + common.HashLength
|
|
if _, err := hb.sha.Read(hash[1:]); err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
hb.hashStack = append(hb.hashStack, hash[:]...)
|
|
if len(hb.hashStack) > hashStackStride*len(hb.nodeStack) {
|
|
hb.nodeStack = append(hb.nodeStack, nil)
|
|
}
|
|
}
|
|
|
|
func (hb *HashBuilder) extension(key []byte) {
|
|
//fmt.Printf("EXTENSION %x\n", key)
|
|
nd := hb.nodeStack[len(hb.nodeStack)-1]
|
|
switch n := nd.(type) {
|
|
case nil:
|
|
branchHash := common.CopyBytes(hb.hashStack[len(hb.hashStack)-common.HashLength:])
|
|
hb.nodeStack[len(hb.nodeStack)-1] = &shortNode{Key: common.CopyBytes(key), Val: hashNode(branchHash)}
|
|
case *fullNode:
|
|
hb.nodeStack[len(hb.nodeStack)-1] = &shortNode{Key: common.CopyBytes(key), Val: n}
|
|
default:
|
|
panic(fmt.Errorf("wrong Val type for an extension: %T", nd))
|
|
}
|
|
hb.extensionHash(key)
|
|
}
|
|
|
|
func (hb *HashBuilder) extensionHash(key []byte) {
|
|
//fmt.Printf("EXTENSIONHASH %x\n", key)
|
|
branchHash := hb.hashStack[len(hb.hashStack)-hashStackStride:]
|
|
// Compute the total length of binary representation
|
|
var keyPrefix [1]byte
|
|
var lenPrefix [4]byte
|
|
var kp, kl int
|
|
// Write key
|
|
var compactLen int
|
|
var ni int
|
|
var compact0 byte
|
|
// https://github.com/ethereum/wiki/wiki/Patricia-Tree#specification-compact-encoding-of-hex-sequence-with-optional-terminator
|
|
if hasTerm(key) {
|
|
compactLen = (len(key)-1)/2 + 1
|
|
if len(key)&1 == 0 {
|
|
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
|
|
ni = 1
|
|
} else {
|
|
compact0 = 0x20
|
|
}
|
|
} else {
|
|
compactLen = len(key)/2 + 1
|
|
if len(key)&1 == 1 {
|
|
compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble
|
|
ni = 1
|
|
}
|
|
}
|
|
if compactLen > 1 {
|
|
keyPrefix[0] = rlp.EmptyStringCode + byte(compactLen)
|
|
kp = 1
|
|
kl = compactLen
|
|
} else {
|
|
kl = 1
|
|
}
|
|
totalLen := kp + kl + 33
|
|
pt := generateStructLen(lenPrefix[:], totalLen)
|
|
hb.sha.Reset()
|
|
if _, err := hb.sha.Write(lenPrefix[:pt]); err != nil {
|
|
panic(err)
|
|
}
|
|
if _, err := hb.sha.Write(keyPrefix[:kp]); err != nil {
|
|
panic(err)
|
|
}
|
|
var b [1]byte
|
|
b[0] = compact0
|
|
if _, err := hb.sha.Write(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
for i := 1; i < compactLen; i++ {
|
|
b[0] = key[ni]*16 + key[ni+1]
|
|
if _, err := hb.sha.Write(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
ni += 2
|
|
}
|
|
if _, err := hb.sha.Write(branchHash); err != nil {
|
|
panic(err)
|
|
}
|
|
// Replace previous hash with the new one
|
|
if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-common.HashLength:]); err != nil {
|
|
panic(err)
|
|
}
|
|
if _, ok := hb.nodeStack[len(hb.nodeStack)-1].(*fullNode); ok {
|
|
panic("extensionHash cannot be emitted when a node is on top of the stack")
|
|
}
|
|
}
|
|
|
|
func (hb *HashBuilder) branch(set uint16) {
|
|
//fmt.Printf("BRANCH %b\n", set)
|
|
f := &fullNode{}
|
|
digits := bits.OnesCount16(set)
|
|
nodes := hb.nodeStack[len(hb.nodeStack)-digits:]
|
|
hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:]
|
|
var i int
|
|
for digit := uint(0); digit < 16; digit++ {
|
|
if ((uint16(1) << digit) & set) != 0 {
|
|
if nodes[i] == nil {
|
|
f.Children[digit] = hashNode(common.CopyBytes(hashes[hashStackStride*i+1 : hashStackStride*(i+1)]))
|
|
} else {
|
|
f.Children[digit] = nodes[i]
|
|
}
|
|
i++
|
|
}
|
|
}
|
|
hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1]
|
|
hb.nodeStack[len(hb.nodeStack)-1] = f
|
|
hb.branchHash(set)
|
|
copy(f.flags.hash[:], hb.hashStack[len(hb.hashStack)-common.HashLength:])
|
|
|
|
}
|
|
|
|
func (hb *HashBuilder) branchHash(set uint16) {
|
|
//fmt.Printf("BRANCHHASH %b\n", set)
|
|
digits := bits.OnesCount16(set)
|
|
hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:]
|
|
// Calculate the size of the resulting RLP
|
|
totalSize := 17 // These are 17 length prefixes
|
|
var i int
|
|
for digit := uint(0); digit < 16; digit++ {
|
|
if ((uint16(1) << digit) & set) != 0 {
|
|
if hashes[hashStackStride*i] == rlp.EmptyStringCode+common.HashLength {
|
|
totalSize += common.HashLength
|
|
} else {
|
|
// Embedded node
|
|
totalSize += int(hashes[hashStackStride*i] - rlp.EmptyListCode)
|
|
}
|
|
i++
|
|
}
|
|
}
|
|
hb.sha.Reset()
|
|
var lenPrefix [4]byte
|
|
pt := generateStructLen(lenPrefix[:], totalSize)
|
|
if _, err := hb.sha.Write(lenPrefix[:pt]); err != nil {
|
|
panic(err)
|
|
}
|
|
// Output children hashes or embedded RLPs
|
|
i = 0
|
|
var b [1]byte
|
|
b[0] = rlp.EmptyStringCode
|
|
for digit := uint(0); digit < 17; digit++ {
|
|
if ((uint16(1) << digit) & set) != 0 {
|
|
if hashes[hashStackStride*i] == rlp.EmptyStringCode+common.HashLength {
|
|
if _, err := hb.sha.Write(hashes[hashStackStride*i : hashStackStride*(i+1)]); err != nil {
|
|
panic(err)
|
|
}
|
|
} else {
|
|
// Embedded node
|
|
size := int(hashes[hashStackStride*i] - rlp.EmptyListCode)
|
|
if _, err := hb.sha.Write(hashes[hashStackStride*i : hashStackStride*i+size+1]); err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
i++
|
|
} else {
|
|
if _, err := hb.sha.Write(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
}
|
|
hb.hashStack = hb.hashStack[:len(hb.hashStack)-hashStackStride*digits+hashStackStride]
|
|
hb.hashStack[len(hb.hashStack)-hashStackStride] = rlp.EmptyStringCode + common.HashLength
|
|
if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-common.HashLength:]); err != nil {
|
|
panic(err)
|
|
}
|
|
if hashStackStride*len(hb.nodeStack) > len(hb.hashStack) {
|
|
hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1]
|
|
hb.nodeStack[len(hb.nodeStack)-1] = nil
|
|
}
|
|
}
|
|
|
|
func (hb *HashBuilder) hash(number int) {
|
|
panic("not implemented")
|
|
}
|
|
|
|
func (hb *HashBuilder) rootHash() common.Hash {
|
|
var hash common.Hash
|
|
copy(hash[:], hb.hashStack[1:hashStackStride])
|
|
return hash
|
|
}
|
|
|
|
func (hb *HashBuilder) root() node {
|
|
return hb.nodeStack[0]
|
|
}
|
|
|
|
func (hb *HashBuilder) hasRoot() bool {
|
|
return len(hb.nodeStack) > 0
|
|
}
|