erigon-pulse/txpool/pool_fuzz_test.go
2022-11-11 16:36:22 +01:00

588 lines
18 KiB
Go

//go:build !nofuzz
package txpool
import (
"bytes"
"context"
"encoding/binary"
"testing"
"github.com/holiman/uint256"
"github.com/ledgerwatch/erigon-lib/common/u256"
"github.com/ledgerwatch/erigon-lib/gointerfaces"
"github.com/ledgerwatch/erigon-lib/gointerfaces/remote"
"github.com/ledgerwatch/erigon-lib/kv"
"github.com/ledgerwatch/erigon-lib/kv/kvcache"
"github.com/ledgerwatch/erigon-lib/kv/memdb"
"github.com/ledgerwatch/erigon-lib/rlp"
"github.com/ledgerwatch/erigon-lib/types"
"github.com/ledgerwatch/log/v3"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
// https://go.dev/doc/fuzz/
// golang.org/s/draft-fuzzing-design
//go doc testing
//go doc testing.F
//go doc testing.F.AddRemoteTxs
//go doc testing.F.Fuzz
// go test -trimpath -v -fuzz=Fuzz -fuzztime=10s ./txpool
func init() {
log.Root().SetHandler(log.LvlFilterHandler(log.LvlWarn, log.StderrHandler))
}
/*
func FuzzTwoQueue(f *testing.F) {
f.Add([]uint8{0b1000, 0b0101, 0b0111})
f.Add([]uint8{0b0101, 0b1110, 0b1101, 0b0001})
f.Fuzz(func(t *testing.T, in []uint8) {
t.Parallel()
assert := assert.New(t)
{
sub := NewPendingSubPool(PendingSubPool, 1024)
for _, i := range in {
sub.Add(&metaTx{subPool: SubPoolMarker(i & 0b1111), Tx: &TxSlot{nonce: 1, value: *uint256.NewInt(1)}})
}
sub.EnforceWorstInvariants()
sub.EnforceBestInvariants()
assert.Equal(len(in), sub.best.Len())
assert.Equal(len(in), sub.worst.Len())
assert.Equal(len(in), sub.Len())
var prevBest *uint8
for i := range sub.best.ms {
current := uint8(sub.best.ms[i].subPool)
if prevBest != nil {
assert.LessOrEqual(current, *prevBest)
}
assert.Equal(i, sub.best.ms[i].bestIndex)
prevBest = &current
}
}
{
sub := NewSubPool(BaseFeeSubPool, 1024)
for _, i := range in {
sub.Add(&metaTx{subPool: SubPoolMarker(i & 0b1111), Tx: &TxSlot{nonce: 1, value: *uint256.NewInt(1)}})
}
assert.Equal(len(in), sub.best.Len())
assert.Equal(len(in), sub.worst.Len())
assert.Equal(len(in), sub.Len())
for i := range sub.best.ms {
assert.Equal(i, (sub.best.ms)[i].bestIndex)
}
for i := range sub.worst.ms {
assert.Equal(i, (sub.worst.ms)[i].worstIndex)
}
var prevBest *uint8
i := sub.Len()
for sub.Len() > 0 {
best := uint8(sub.Best().subPool)
assert.Equal(best, uint8(sub.PopBest().subPool))
if prevBest != nil {
assert.LessOrEqual(best, *prevBest)
}
prevBest = &best
i--
}
assert.Zero(i)
assert.Zero(sub.Len())
assert.Zero(sub.best.Len())
assert.Zero(sub.worst.Len())
}
{
sub := NewSubPool(QueuedSubPool, 1024)
for _, i := range in {
sub.Add(&metaTx{subPool: SubPoolMarker(i & 0b1111), Tx: &TxSlot{nonce: 1, value: *uint256.NewInt(1)}})
}
var prev *uint8
i := sub.Len()
for sub.Len() > 0 {
worst := uint8(sub.Worst().subPool)
assert.Equal(worst, uint8(sub.PopWorst().subPool))
if prev != nil {
assert.GreaterOrEqual(worst, *prev)
}
prev = &worst
i--
}
assert.Zero(i)
assert.Zero(sub.Len())
assert.Zero(sub.best.Len())
assert.Zero(sub.worst.Len())
}
})
}
*/
func u64Slice(in []byte) ([]uint64, bool) {
if len(in) < 8 {
return nil, false
}
res := make([]uint64, len(in)/8)
for i := 0; i < len(res); i++ {
res[i] = binary.BigEndian.Uint64(in[i*8:])
}
return res, true
}
func u8Slice(in []byte) ([]uint64, bool) {
if len(in) < 1 {
return nil, false
}
res := make([]uint64, len(in))
for i := 0; i < len(res); i++ {
res[i] = uint64(in[i] % 32)
}
return res, true
}
func u256Slice(in []byte) ([]uint256.Int, bool) {
if len(in) < 1 {
return nil, false
}
res := make([]uint256.Int, len(in))
for i := 0; i < len(res); i++ {
res[i].SetUint64(uint64(in[i] % 32))
}
return res, true
}
func parseSenders(in []byte) (nonces []uint64, balances []uint256.Int) {
for i := 0; i < len(in)-(1+1-1); i += 1 + 1 {
nonce := uint64(in[i] % 8)
if nonce == 0 {
nonce = 1
}
nonces = append(nonces, nonce)
balances = append(balances, *uint256.NewInt(uint64(in[i+1])))
}
return
}
func poolsFromFuzzBytes(rawTxNonce, rawValues, rawTips, rawFeeCap, rawSender []byte) (sendersInfo map[uint64]*sender, senderIDs map[string]uint64, txs types.TxSlots, ok bool) {
if len(rawTxNonce) < 1 || len(rawValues) < 1 || len(rawTips) < 1 || len(rawFeeCap) < 1 || len(rawSender) < 1+1 {
return nil, nil, txs, false
}
senderNonce, senderBalance := parseSenders(rawSender)
txNonce, ok := u8Slice(rawTxNonce)
if !ok {
return nil, nil, txs, false
}
feeCap, ok := u8Slice(rawFeeCap)
if !ok {
return nil, nil, txs, false
}
tips, ok := u8Slice(rawTips)
if !ok {
return nil, nil, txs, false
}
values, ok := u256Slice(rawValues)
if !ok {
return nil, nil, txs, false
}
sendersInfo = map[uint64]*sender{}
senderIDs = map[string]uint64{}
senders := make(types.Addresses, 20*len(senderNonce))
for i := 0; i < len(senderNonce); i++ {
senderID := uint64(i + 1) //non-zero expected
binary.BigEndian.PutUint64(senders.At(i%senders.Len()), senderID)
sendersInfo[senderID] = newSender(senderNonce[i], senderBalance[i%len(senderBalance)])
senderIDs[string(senders.At(i%senders.Len()))] = senderID
}
txs.Txs = make([]*types.TxSlot, len(txNonce))
parseCtx := types.NewTxParseContext(*u256.N1)
parseCtx.WithSender(false)
for i := range txNonce {
txs.Txs[i] = &types.TxSlot{
Nonce: txNonce[i],
Value: values[i%len(values)],
Tip: *uint256.NewInt(tips[i%len(tips)]),
FeeCap: *uint256.NewInt(feeCap[i%len(feeCap)]),
}
txRlp := fakeRlpTx(txs.Txs[i], senders.At(i%senders.Len()))
_, err := parseCtx.ParseTransaction(txRlp, 0, txs.Txs[i], nil, false, nil)
if err != nil {
panic(err)
}
txs.Senders = append(txs.Senders, senders.At(i%senders.Len())...)
txs.IsLocal = append(txs.IsLocal, true)
}
return sendersInfo, senderIDs, txs, true
}
// fakeRlpTx add anything what identifying tx to `data` to make hash unique
func fakeRlpTx(slot *types.TxSlot, data []byte) []byte {
dataLen := rlp.U64Len(1) + //chainID
rlp.U64Len(slot.Nonce) + rlp.U256Len(&slot.Tip) + rlp.U256Len(&slot.FeeCap) +
rlp.U64Len(0) + // gas
rlp.StringLen(0) + // dest addr
rlp.U256Len(&slot.Value) +
rlp.StringLen(len(data)) + // data
rlp.ListPrefixLen(0) + //access list
+3 // v,r,s
buf := make([]byte, 1+rlp.ListPrefixLen(dataLen)+dataLen)
buf[0] = byte(types.DynamicFeeTxType)
p := 1
p += rlp.EncodeListPrefix(dataLen, buf[p:])
p += rlp.EncodeU64(1, buf[p:]) //chainID
p += rlp.EncodeU64(slot.Nonce, buf[p:])
bb := bytes.NewBuffer(buf[p:p])
_ = slot.Tip.EncodeRLP(bb)
p += rlp.U256Len(&slot.Tip)
bb = bytes.NewBuffer(buf[p:p])
_ = slot.FeeCap.EncodeRLP(bb)
p += rlp.U256Len(&slot.FeeCap)
p += rlp.EncodeU64(0, buf[p:]) //gas
p += rlp.EncodeString([]byte{}, buf[p:]) //destrination addr
bb = bytes.NewBuffer(buf[p:p])
_ = slot.Value.EncodeRLP(bb)
p += rlp.U256Len(&slot.Value)
p += rlp.EncodeString(data, buf[p:]) //data
p += rlp.EncodeListPrefix(0, buf[p:]) // access list
p += rlp.EncodeU64(1, buf[p:]) //v
p += rlp.EncodeU64(1, buf[p:]) //r
p += rlp.EncodeU64(1, buf[p:]) //s
_ = p
return buf[:]
}
func iterateSubPoolUnordered(subPool *SubPool, f func(tx *metaTx)) {
for i := 0; i < subPool.best.Len(); i++ {
f((subPool.best.ms)[i])
}
}
func splitDataset(in types.TxSlots) (types.TxSlots, types.TxSlots, types.TxSlots, types.TxSlots) {
p1, p2, p3, p4 := types.TxSlots{}, types.TxSlots{}, types.TxSlots{}, types.TxSlots{}
l := len(in.Txs) / 4
p1.Txs = in.Txs[:l]
p1.IsLocal = in.IsLocal[:l]
p1.Senders = in.Senders[:l*20]
p2.Txs = in.Txs[l : 2*l]
p2.IsLocal = in.IsLocal[l : 2*l]
p2.Senders = in.Senders[l*20 : 2*l*20]
p3.Txs = in.Txs[2*l : 3*l]
p3.IsLocal = in.IsLocal[2*l : 3*l]
p3.Senders = in.Senders[2*l*20 : 3*l*20]
p4.Txs = in.Txs[3*l : 4*l]
p4.IsLocal = in.IsLocal[3*l : 4*l]
p4.Senders = in.Senders[3*l*20 : 4*l*20]
return p1, p2, p3, p4
}
func FuzzOnNewBlocks(f *testing.F) {
var u64 = [1 * 4]byte{1}
var senderAddr = [1 + 1 + 1]byte{1}
f.Add(u64[:], u64[:], u64[:], u64[:], senderAddr[:], uint8(12))
f.Add(u64[:], u64[:], u64[:], u64[:], senderAddr[:], uint8(14))
f.Add(u64[:], u64[:], u64[:], u64[:], senderAddr[:], uint8(123))
f.Fuzz(func(t *testing.T, txNonce, values, tips, feeCap, senderAddr []byte, pendingBaseFee1 uint8) {
//t.Parallel()
ctx := context.Background()
pendingBaseFee := uint64(pendingBaseFee1%16 + 1)
if pendingBaseFee == 0 {
t.Skip()
}
senders, senderIDs, txs, ok := poolsFromFuzzBytes(txNonce, values, tips, feeCap, senderAddr)
if !ok {
t.Skip()
}
assert, require := assert.New(t), require.New(t)
assert.NoError(txs.Valid())
var prevHashes types.Hashes
ch := make(chan types.Hashes, 100)
db, coreDB := memdb.NewTestPoolDB(t), memdb.NewTestDB(t)
cfg := DefaultConfig
sendersCache := kvcache.New(kvcache.DefaultCoherentConfig)
pool, err := New(ch, coreDB, cfg, sendersCache, *u256.N1)
assert.NoError(err)
pool.senders.senderIDs = senderIDs
for addr, id := range senderIDs {
pool.senders.senderID2Addr[id] = []byte(addr)
}
pool.senders.senderID = uint64(len(senderIDs))
check := func(unwindTxs, minedTxs types.TxSlots, msg string) {
pending, baseFee, queued := pool.pending, pool.baseFee, pool.queued
best, worst := pending.Best(), pending.Worst()
assert.LessOrEqual(pending.Len(), cfg.PendingSubPoolLimit)
assert.False(worst != nil && best == nil, msg)
assert.False(worst == nil && best != nil, msg)
if worst != nil && worst.subPool < 0b1110 {
t.Fatalf("pending worst too small %b", worst.subPool)
}
for _, tx := range pending.best.ms {
i := tx.Tx
if tx.subPool&NoNonceGaps > 0 {
assert.GreaterOrEqual(i.Nonce, senders[i.SenderID].nonce, msg, i.SenderID)
}
if tx.subPool&EnoughFeeCapProtocol > 0 {
assert.LessOrEqual(calcProtocolBaseFee(pendingBaseFee), tx.Tx.FeeCap, msg)
}
if tx.subPool&EnoughFeeCapBlock > 0 {
assert.LessOrEqual(pendingBaseFee, tx.Tx.FeeCap, msg)
}
// side data structures must have all txs
assert.True(pool.all.has(tx), msg)
_, ok = pool.byHash[string(i.IDHash[:])]
assert.True(ok)
// pools can't have more then 1 tx with same SenderID+Nonce
iterateSubPoolUnordered(baseFee, func(mtx2 *metaTx) {
tx2 := mtx2.Tx
assert.False(tx2.SenderID == i.SenderID && tx2.Nonce == i.Nonce, msg)
})
iterateSubPoolUnordered(queued, func(mtx2 *metaTx) {
tx2 := mtx2.Tx
assert.False(tx2.SenderID == i.SenderID && tx2.Nonce == i.Nonce, msg)
})
}
best, worst = baseFee.Best(), baseFee.Worst()
assert.False(worst != nil && best == nil, msg)
assert.False(worst == nil && best != nil, msg)
assert.LessOrEqual(baseFee.Len(), cfg.BaseFeeSubPoolLimit, msg)
if worst != nil && worst.subPool < 0b1100 {
t.Fatalf("baseFee worst too small %b", worst.subPool)
}
iterateSubPoolUnordered(baseFee, func(tx *metaTx) {
i := tx.Tx
if tx.subPool&NoNonceGaps > 0 {
assert.GreaterOrEqual(i.Nonce, senders[i.SenderID].nonce, msg)
}
if tx.subPool&EnoughFeeCapProtocol > 0 {
assert.LessOrEqual(calcProtocolBaseFee(pendingBaseFee), tx.Tx.FeeCap, msg)
}
if tx.subPool&EnoughFeeCapBlock > 0 {
assert.LessOrEqual(pendingBaseFee, tx.Tx.FeeCap, msg)
}
assert.True(pool.all.has(tx), msg)
_, ok = pool.byHash[string(i.IDHash[:])]
assert.True(ok, msg)
})
best, worst = queued.Best(), queued.Worst()
assert.LessOrEqual(queued.Len(), cfg.QueuedSubPoolLimit)
assert.False(worst != nil && best == nil, msg)
assert.False(worst == nil && best != nil, msg)
iterateSubPoolUnordered(queued, func(tx *metaTx) {
i := tx.Tx
if tx.subPool&NoNonceGaps > 0 {
assert.GreaterOrEqual(i.Nonce, senders[i.SenderID].nonce, msg, i.SenderID, senders[i.SenderID].nonce)
}
if tx.subPool&EnoughFeeCapProtocol > 0 {
assert.LessOrEqual(calcProtocolBaseFee(pendingBaseFee), tx.Tx.FeeCap, msg)
}
if tx.subPool&EnoughFeeCapBlock > 0 {
assert.LessOrEqual(pendingBaseFee, tx.Tx.FeeCap, msg)
}
assert.True(pool.all.has(tx), "%s, %d, %x", msg, tx.Tx.Nonce, tx.Tx.IDHash)
_, ok = pool.byHash[string(i.IDHash[:])]
assert.True(ok, msg)
assert.GreaterOrEqual(tx.Tx.FeeCap, pool.cfg.MinFeeCap)
})
// all txs in side data structures must be in some queue
for _, txn := range pool.byHash {
require.True(txn.bestIndex >= 0, msg)
assert.True(txn.worstIndex >= 0, msg)
}
for id := range senders {
//assert.True(senders[i].all.Len() > 0)
pool.all.ascend(id, func(mt *metaTx) bool {
require.True(mt.worstIndex >= 0, msg)
assert.True(mt.bestIndex >= 0, msg)
return true
})
}
// mined txs must be removed
for i := range minedTxs.Txs {
_, ok = pool.byHash[string(minedTxs.Txs[i].IDHash[:])]
assert.False(ok, msg)
}
if queued.Len() > 3 {
// Less func must be transitive (choose 3 semi-random elements)
i := queued.Len() - 1
if queued.best.Less(i, i-1) && queued.best.Less(i-1, i-2) {
assert.True(queued.best.Less(i, i-2))
}
}
}
checkNotify := func(unwindTxs, minedTxs types.TxSlots, msg string) {
select {
case newHashes := <-ch:
assert.Greater(len(newHashes), 0)
for i := 0; i < newHashes.Len(); i++ {
newHash := newHashes.At(i)
for j := range unwindTxs.Txs {
if bytes.Equal(unwindTxs.Txs[j].IDHash[:], newHash) {
mt := pool.all.get(unwindTxs.Txs[j].SenderID, unwindTxs.Txs[j].Nonce)
require.True(mt != nil && mt.currentSubPool == PendingSubPool, msg)
}
}
for j := range minedTxs.Txs {
if bytes.Equal(minedTxs.Txs[j].IDHash[:], newHash) {
mt := pool.all.get(unwindTxs.Txs[j].SenderID, unwindTxs.Txs[j].Nonce)
require.True(mt != nil && mt.currentSubPool == PendingSubPool, msg)
}
}
}
default: // no notifications - means pools must be unchanged or drop some txs
pendingHashes := copyHashes(pool.pending)
require.Zero(extractNewHashes(pendingHashes, prevHashes).Len())
}
prevHashes = copyHashes(pool.pending)
}
tx, err := db.BeginRw(ctx)
require.NoError(err)
defer tx.Rollback()
// start blocks from 0, set empty hash - then kvcache will also work on this
h0, h22 := gointerfaces.ConvertHashToH256([32]byte{}), gointerfaces.ConvertHashToH256([32]byte{22})
var txID uint64
_ = coreDB.View(ctx, func(tx kv.Tx) error {
txID = tx.ViewID()
return nil
})
change := &remote.StateChangeBatch{
StateVersionID: txID,
PendingBlockBaseFee: pendingBaseFee,
ChangeBatch: []*remote.StateChange{
{BlockHeight: 0, BlockHash: h0},
},
}
for id, sender := range senders {
var addr [20]byte
copy(addr[:], pool.senders.senderID2Addr[id])
v := make([]byte, types.EncodeSenderLengthForStorage(sender.nonce, sender.balance))
types.EncodeSender(sender.nonce, sender.balance, v)
change.ChangeBatch[0].Changes = append(change.ChangeBatch[0].Changes, &remote.AccountChange{
Action: remote.Action_UPSERT,
Address: gointerfaces.ConvertAddressToH160(addr),
Data: v,
})
}
// go to first fork
txs1, txs2, p2pReceived, txs3 := splitDataset(txs)
err = pool.OnNewBlock(ctx, change, txs1, types.TxSlots{}, tx)
assert.NoError(err)
check(txs1, types.TxSlots{}, "fork1")
checkNotify(txs1, types.TxSlots{}, "fork1")
_, _, _ = p2pReceived, txs2, txs3
change = &remote.StateChangeBatch{
StateVersionID: txID,
PendingBlockBaseFee: pendingBaseFee,
ChangeBatch: []*remote.StateChange{
{BlockHeight: 1, BlockHash: h0},
},
}
err = pool.OnNewBlock(ctx, change, types.TxSlots{}, txs2, tx)
assert.NoError(err)
check(types.TxSlots{}, txs2, "fork1 mined")
checkNotify(types.TxSlots{}, txs2, "fork1 mined")
// unwind everything and switch to new fork (need unwind mined now)
change = &remote.StateChangeBatch{
StateVersionID: txID,
PendingBlockBaseFee: pendingBaseFee,
ChangeBatch: []*remote.StateChange{
{BlockHeight: 0, BlockHash: h0, Direction: remote.Direction_UNWIND},
},
}
err = pool.OnNewBlock(ctx, change, txs2, types.TxSlots{}, tx)
assert.NoError(err)
check(txs2, types.TxSlots{}, "fork2")
checkNotify(txs2, types.TxSlots{}, "fork2")
change = &remote.StateChangeBatch{
StateVersionID: txID,
PendingBlockBaseFee: pendingBaseFee,
ChangeBatch: []*remote.StateChange{
{BlockHeight: 1, BlockHash: h22},
},
}
err = pool.OnNewBlock(ctx, change, types.TxSlots{}, txs3, tx)
assert.NoError(err)
check(types.TxSlots{}, txs3, "fork2 mined")
checkNotify(types.TxSlots{}, txs3, "fork2 mined")
// add some remote txs from p2p
pool.AddRemoteTxs(ctx, p2pReceived)
err = pool.processRemoteTxs(ctx)
assert.NoError(err)
check(p2pReceived, types.TxSlots{}, "p2pmsg1")
checkNotify(p2pReceived, types.TxSlots{}, "p2pmsg1")
err = pool.flushLocked(tx) // we don't test eviction here, because dedicated test exists
require.NoError(err)
check(p2pReceived, types.TxSlots{}, "after_flush")
checkNotify(p2pReceived, types.TxSlots{}, "after_flush")
p2, err := New(ch, coreDB, DefaultConfig, sendersCache, *u256.N1)
assert.NoError(err)
p2.senders = pool.senders // senders are not persisted
err = coreDB.View(ctx, func(coreTx kv.Tx) error { return p2.fromDB(ctx, tx, coreTx) })
require.NoError(err)
for _, txn := range p2.byHash {
assert.Nil(txn.Tx.Rlp)
}
check(txs2, types.TxSlots{}, "fromDB")
checkNotify(txs2, types.TxSlots{}, "fromDB")
assert.Equal(pool.senders.senderID, p2.senders.senderID)
assert.Equal(pool.lastSeenBlock.Load(), p2.lastSeenBlock.Load())
assert.Equal(pool.pending.Len(), p2.pending.Len())
assert.Equal(pool.baseFee.Len(), p2.baseFee.Len())
require.Equal(pool.queued.Len(), p2.queued.Len())
assert.Equal(pool.pendingBaseFee.Load(), p2.pendingBaseFee.Load())
})
}
func copyHashes(p *PendingPool) (hashes types.Hashes) {
for i := range p.best.ms {
hashes = append(hashes, p.best.ms[i].Tx.IDHash[:]...)
}
return hashes
}
// extractNewHashes - extract from h1 hashes which do not exist in h2
func extractNewHashes(h1, h2 types.Hashes) (result types.Hashes) {
for i := 0; i < h1.Len(); i++ {
found := false
for j := 0; j < h2.Len(); j++ {
if bytes.Equal(h1.At(i), h2.At(j)) {
found = true
break
}
}
if !found {
result = append(result, h1.At(i)...)
}
}
return result
}