mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2024-12-22 11:41:19 +00:00
f466243417
Update libsecp256k1, Go wrapper and tests
337 lines
8.7 KiB
Go
337 lines
8.7 KiB
Go
// Copyright 2014 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package crypto
|
|
|
|
import (
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"fmt"
|
|
"io"
|
|
"io/ioutil"
|
|
"math/big"
|
|
"os"
|
|
|
|
"encoding/hex"
|
|
"encoding/json"
|
|
"errors"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/crypto/ecies"
|
|
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
|
"github.com/ethereum/go-ethereum/crypto/sha3"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
"github.com/pborman/uuid"
|
|
"golang.org/x/crypto/pbkdf2"
|
|
"golang.org/x/crypto/ripemd160"
|
|
)
|
|
|
|
var secp256k1n *big.Int
|
|
|
|
func init() {
|
|
// specify the params for the s256 curve
|
|
ecies.AddParamsForCurve(S256(), ecies.ECIES_AES128_SHA256)
|
|
secp256k1n = common.String2Big("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141")
|
|
}
|
|
|
|
func Sha3(data ...[]byte) []byte {
|
|
d := sha3.NewKeccak256()
|
|
for _, b := range data {
|
|
d.Write(b)
|
|
}
|
|
return d.Sum(nil)
|
|
}
|
|
|
|
func Sha3Hash(data ...[]byte) (h common.Hash) {
|
|
d := sha3.NewKeccak256()
|
|
for _, b := range data {
|
|
d.Write(b)
|
|
}
|
|
d.Sum(h[:0])
|
|
return h
|
|
}
|
|
|
|
// Creates an ethereum address given the bytes and the nonce
|
|
func CreateAddress(b common.Address, nonce uint64) common.Address {
|
|
data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
|
|
return common.BytesToAddress(Sha3(data)[12:])
|
|
//return Sha3(common.NewValue([]interface{}{b, nonce}).Encode())[12:]
|
|
}
|
|
|
|
func Sha256(data []byte) []byte {
|
|
hash := sha256.Sum256(data)
|
|
|
|
return hash[:]
|
|
}
|
|
|
|
func Ripemd160(data []byte) []byte {
|
|
ripemd := ripemd160.New()
|
|
ripemd.Write(data)
|
|
|
|
return ripemd.Sum(nil)
|
|
}
|
|
|
|
func Ecrecover(hash, sig []byte) ([]byte, error) {
|
|
return secp256k1.RecoverPubkey(hash, sig)
|
|
}
|
|
|
|
// New methods using proper ecdsa keys from the stdlib
|
|
func ToECDSA(prv []byte) *ecdsa.PrivateKey {
|
|
if len(prv) == 0 {
|
|
return nil
|
|
}
|
|
|
|
priv := new(ecdsa.PrivateKey)
|
|
priv.PublicKey.Curve = S256()
|
|
priv.D = common.BigD(prv)
|
|
priv.PublicKey.X, priv.PublicKey.Y = S256().ScalarBaseMult(prv)
|
|
return priv
|
|
}
|
|
|
|
func FromECDSA(prv *ecdsa.PrivateKey) []byte {
|
|
if prv == nil {
|
|
return nil
|
|
}
|
|
return prv.D.Bytes()
|
|
}
|
|
|
|
func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
|
|
if len(pub) == 0 {
|
|
return nil
|
|
}
|
|
x, y := elliptic.Unmarshal(S256(), pub)
|
|
return &ecdsa.PublicKey{S256(), x, y}
|
|
}
|
|
|
|
func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
|
|
if pub == nil || pub.X == nil || pub.Y == nil {
|
|
return nil
|
|
}
|
|
return elliptic.Marshal(S256(), pub.X, pub.Y)
|
|
}
|
|
|
|
// HexToECDSA parses a secp256k1 private key.
|
|
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
|
|
b, err := hex.DecodeString(hexkey)
|
|
if err != nil {
|
|
return nil, errors.New("invalid hex string")
|
|
}
|
|
if len(b) != 32 {
|
|
return nil, errors.New("invalid length, need 256 bits")
|
|
}
|
|
return ToECDSA(b), nil
|
|
}
|
|
|
|
// LoadECDSA loads a secp256k1 private key from the given file.
|
|
// The key data is expected to be hex-encoded.
|
|
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
|
|
buf := make([]byte, 64)
|
|
fd, err := os.Open(file)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer fd.Close()
|
|
if _, err := io.ReadFull(fd, buf); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
key, err := hex.DecodeString(string(buf))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return ToECDSA(key), nil
|
|
}
|
|
|
|
// SaveECDSA saves a secp256k1 private key to the given file with
|
|
// restrictive permissions. The key data is saved hex-encoded.
|
|
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
|
|
k := hex.EncodeToString(FromECDSA(key))
|
|
return ioutil.WriteFile(file, []byte(k), 0600)
|
|
}
|
|
|
|
func GenerateKey() (*ecdsa.PrivateKey, error) {
|
|
return ecdsa.GenerateKey(S256(), rand.Reader)
|
|
}
|
|
|
|
func ValidateSignatureValues(v byte, r, s *big.Int) bool {
|
|
if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
|
|
return false
|
|
}
|
|
vint := uint32(v)
|
|
if r.Cmp(secp256k1n) < 0 && s.Cmp(secp256k1n) < 0 && (vint == 27 || vint == 28) {
|
|
return true
|
|
} else {
|
|
return false
|
|
}
|
|
}
|
|
|
|
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
|
|
s, err := Ecrecover(hash, sig)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
x, y := elliptic.Unmarshal(S256(), s)
|
|
return &ecdsa.PublicKey{S256(), x, y}, nil
|
|
}
|
|
|
|
func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
|
|
if len(hash) != 32 {
|
|
return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
|
|
}
|
|
|
|
seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
|
|
defer zeroBytes(seckey)
|
|
sig, err = secp256k1.Sign(hash, seckey)
|
|
return
|
|
}
|
|
|
|
func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) {
|
|
return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil)
|
|
}
|
|
|
|
func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) {
|
|
key := ecies.ImportECDSA(prv)
|
|
return key.Decrypt(rand.Reader, ct, nil, nil)
|
|
}
|
|
|
|
// Used only by block tests.
|
|
func ImportBlockTestKey(privKeyBytes []byte) error {
|
|
ks := NewKeyStorePassphrase(common.DefaultDataDir() + "/keystore")
|
|
ecKey := ToECDSA(privKeyBytes)
|
|
key := &Key{
|
|
Id: uuid.NewRandom(),
|
|
Address: PubkeyToAddress(ecKey.PublicKey),
|
|
PrivateKey: ecKey,
|
|
}
|
|
err := ks.StoreKey(key, "")
|
|
return err
|
|
}
|
|
|
|
// creates a Key and stores that in the given KeyStore by decrypting a presale key JSON
|
|
func ImportPreSaleKey(keyStore KeyStore, keyJSON []byte, password string) (*Key, error) {
|
|
key, err := decryptPreSaleKey(keyJSON, password)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
key.Id = uuid.NewRandom()
|
|
err = keyStore.StoreKey(key, password)
|
|
return key, err
|
|
}
|
|
|
|
func decryptPreSaleKey(fileContent []byte, password string) (key *Key, err error) {
|
|
preSaleKeyStruct := struct {
|
|
EncSeed string
|
|
EthAddr string
|
|
Email string
|
|
BtcAddr string
|
|
}{}
|
|
err = json.Unmarshal(fileContent, &preSaleKeyStruct)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
encSeedBytes, err := hex.DecodeString(preSaleKeyStruct.EncSeed)
|
|
iv := encSeedBytes[:16]
|
|
cipherText := encSeedBytes[16:]
|
|
/*
|
|
See https://github.com/ethereum/pyethsaletool
|
|
|
|
pyethsaletool generates the encryption key from password by
|
|
2000 rounds of PBKDF2 with HMAC-SHA-256 using password as salt (:().
|
|
16 byte key length within PBKDF2 and resulting key is used as AES key
|
|
*/
|
|
passBytes := []byte(password)
|
|
derivedKey := pbkdf2.Key(passBytes, passBytes, 2000, 16, sha256.New)
|
|
plainText, err := aesCBCDecrypt(derivedKey, cipherText, iv)
|
|
ethPriv := Sha3(plainText)
|
|
ecKey := ToECDSA(ethPriv)
|
|
key = &Key{
|
|
Id: nil,
|
|
Address: PubkeyToAddress(ecKey.PublicKey),
|
|
PrivateKey: ecKey,
|
|
}
|
|
derivedAddr := hex.EncodeToString(key.Address.Bytes()) // needed because .Hex() gives leading "0x"
|
|
expectedAddr := preSaleKeyStruct.EthAddr
|
|
if derivedAddr != expectedAddr {
|
|
err = errors.New(fmt.Sprintf("decrypted addr not equal to expected addr ", derivedAddr, expectedAddr))
|
|
}
|
|
return key, err
|
|
}
|
|
|
|
// AES-128 is selected due to size of encryptKey
|
|
func aesCTRXOR(key, inText, iv []byte) ([]byte, error) {
|
|
aesBlock, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
stream := cipher.NewCTR(aesBlock, iv)
|
|
outText := make([]byte, len(inText))
|
|
stream.XORKeyStream(outText, inText)
|
|
return outText, err
|
|
}
|
|
|
|
func aesCBCDecrypt(key, cipherText, iv []byte) ([]byte, error) {
|
|
aesBlock, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
decrypter := cipher.NewCBCDecrypter(aesBlock, iv)
|
|
paddedPlaintext := make([]byte, len(cipherText))
|
|
decrypter.CryptBlocks(paddedPlaintext, cipherText)
|
|
plaintext := PKCS7Unpad(paddedPlaintext)
|
|
if plaintext == nil {
|
|
err = errors.New("Decryption failed: PKCS7Unpad failed after AES decryption")
|
|
}
|
|
return plaintext, err
|
|
}
|
|
|
|
// From https://leanpub.com/gocrypto/read#leanpub-auto-block-cipher-modes
|
|
func PKCS7Unpad(in []byte) []byte {
|
|
if len(in) == 0 {
|
|
return nil
|
|
}
|
|
|
|
padding := in[len(in)-1]
|
|
if int(padding) > len(in) || padding > aes.BlockSize {
|
|
return nil
|
|
} else if padding == 0 {
|
|
return nil
|
|
}
|
|
|
|
for i := len(in) - 1; i > len(in)-int(padding)-1; i-- {
|
|
if in[i] != padding {
|
|
return nil
|
|
}
|
|
}
|
|
return in[:len(in)-int(padding)]
|
|
}
|
|
|
|
func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
|
|
pubBytes := FromECDSAPub(&p)
|
|
return common.BytesToAddress(Sha3(pubBytes[1:])[12:])
|
|
}
|
|
|
|
func zeroBytes(bytes []byte) {
|
|
for i := range bytes {
|
|
bytes[i] = 0
|
|
}
|
|
}
|