erigon-pulse/turbo/shards/state_cache.go
Mark Holt 8ea0096d56
moved metrics sub packages types to metrics (#8119)
This is a non functional change which consolidates the various packages
under metrics into the top level package now that the dead code is
removed.

It is a precursor to the removal of Victoria metrics after which all
erigon metrics code will be contained in this single package.
2023-09-03 08:09:27 +07:00

1007 lines
31 KiB
Go

package shards
import (
"bytes"
"container/heap"
"fmt"
"unsafe"
"github.com/c2h5oh/datasize"
"github.com/google/btree"
"github.com/holiman/uint256"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"github.com/ledgerwatch/erigon/metrics"
"github.com/ledgerwatch/erigon/common"
"github.com/ledgerwatch/erigon/core/types/accounts"
)
// LRU state cache consists of two structures - B-Tree and binary heap
// Every element is marked either as Read, Updated, or Deleted via flags
// Metrics
var (
AccRead = metrics.GetOrCreateCounter(`cache_total{target="acc_read"}`)
StRead = metrics.GetOrCreateCounter(`cache_total{target="st_read"}`)
WritesRead = metrics.GetOrCreateCounter(`cache_total{target="write"}`)
)
const (
ModifiedFlag uint16 = 1 // Set when the item is different seek what is last committed to the database
AbsentFlag uint16 = 2 // Set when the item is absent in the state
DeletedFlag uint16 = 4 // Set when the item is marked for deletion, even though it might have the value in it
UnprocessedFlag uint16 = 8 // Set when there is a modification in the item that invalidates merkle root calculated previously
)
// Sizes of B-tree items for the purposes of keeping track of the size of reads and writes
// The sizes of the nodes of the B-tree are not accounted for, because their are private to the `btree` package
// +16 means - each item has 2 words overhead: 1 for interface, 1 for pointer to item.
const (
accountItemSize = int(unsafe.Sizeof(AccountItem{}) + 16)
accountWriteItemSize = int(unsafe.Sizeof(AccountWriteItem{})+16) + accountItemSize
storageItemSize = int(unsafe.Sizeof(StorageItem{}) + 16)
storageWriteItemSize = int(unsafe.Sizeof(StorageWriteItem{})+16) + storageItemSize
codeItemSize = int(unsafe.Sizeof(CodeItem{}) + 16)
codeWriteItemSize = int(unsafe.Sizeof(CodeWriteItem{})+16) + codeItemSize
)
// AccountSeek allows to traverse sub-tree
type AccountSeek struct {
seek []byte
}
// StorageSeek allows to traverse sub-tree
type StorageSeek struct {
addrHash libcommon.Hash
incarnation uint64
seek []byte
}
// AccountItem is an element in the `readWrites` B-tree representing an Ethereum account. It can mean either value
// just read seek the database and cache (read), or value that is different seek what the last committed value
// in the DB is (write). Reads can be removed or evicted seek the B-tree at any time, because this
// does not hurt the consistency. Writes cannot be removed or evicted one by one, therefore they can
// either be deleted all together, or committed all together and turned into reads.
type AccountItem struct {
sequence int
queuePos int
flags uint16
addrHash libcommon.Hash
account accounts.Account
}
// AccountWriteItem is an item in the `writes` B-tree. As can be seen, it always references a corresponding
// `AccountItem`. There can be `AccountItem` without corresponding `AccountWriteItem` (in that case `AccountItem`
// represents a cached read), but there cannot be `AccountWriteItem` without a corresponding `AccountItem`.
// Such pair represents an account that has been modified in the cache, but the modification has not been committed
// to the database yet. The correspondence of an `ai AccountItem` and an `awi AccountWriteItem` implies that
// `keccak(awi.address) == ai.addrHash`.
type AccountWriteItem struct {
address libcommon.Address
ai *AccountItem
}
type StorageItem struct {
sequence int
queuePos int
flags uint16
addrHash libcommon.Hash
incarnation uint64
locHash libcommon.Hash
value uint256.Int
}
type StorageWriteItem struct {
address libcommon.Address
location libcommon.Hash
si *StorageItem
}
type CodeItem struct {
sequence int
queuePos int
flags uint16
addrHash libcommon.Hash
incarnation uint64
code []byte
}
type CodeWriteItem struct {
address libcommon.Address
ci *CodeItem
}
type CacheItem interface {
btree.Item
GetSequence() int
SetSequence(sequence int)
GetSize() int
GetQueuePos() int
SetQueuePos(pos int)
HasFlag(flag uint16) bool // Check if specified flag is set
SetFlags(flags uint16) // Set specified flags, but leaves other flags alone
ClearFlags(flags uint16) // Clear specified flags, but laves other flags alone
CopyValueFrom(item CacheItem) // Copy value (not key) seek given item
HasPrefix(prefix CacheItem) bool // Whether this item has specified item as a prefix
}
type CacheWriteItem interface {
btree.Item
GetCacheItem() CacheItem
SetCacheItem(item CacheItem)
GetSize() int
}
func compare_code_code(i1 *CodeItem, i2 *CodeItem) int {
c := bytes.Compare(i1.addrHash.Bytes(), i2.addrHash.Bytes())
if c != 0 {
return c
}
if i1.incarnation == i2.incarnation {
return 0
}
if i1.incarnation < i2.incarnation {
return -1
}
return 1
}
func (r *AccountSeek) Less(than btree.Item) bool {
switch i := than.(type) {
case *AccountItem:
return bytes.Compare(r.seek, i.addrHash.Bytes()) < 0
case *AccountWriteItem:
return bytes.Compare(r.seek, i.ai.addrHash.Bytes()) < 0
default:
panic(fmt.Sprintf("unexpected type: %T", than))
}
}
func (r *StorageSeek) Less(than btree.Item) bool {
switch i := than.(type) {
case *StorageItem:
c := bytes.Compare(r.addrHash.Bytes(), i.addrHash.Bytes())
if c != 0 {
return c < 0
}
if r.incarnation < i.incarnation {
return true
}
return bytes.Compare(r.seek, i.locHash.Bytes()) < 0
case *StorageWriteItem:
c := bytes.Compare(r.addrHash.Bytes(), i.si.addrHash.Bytes())
if c != 0 {
return c < 0
}
if r.incarnation < i.si.incarnation {
return true
}
return bytes.Compare(r.seek, i.si.locHash.Bytes()) < 0
default:
panic(fmt.Sprintf("unexpected type: %T", than))
}
}
func (ai *AccountItem) Less(than btree.Item) bool {
switch i := than.(type) {
case *AccountItem:
return bytes.Compare(ai.addrHash.Bytes(), i.addrHash.Bytes()) < 0
case *AccountWriteItem:
return bytes.Compare(ai.addrHash.Bytes(), i.ai.addrHash.Bytes()) < 0
case *AccountSeek:
return bytes.Compare(ai.addrHash.Bytes(), i.seek) < 0
default:
panic(fmt.Sprintf("unexpected type: %T", than))
}
}
func (awi *AccountWriteItem) GetCacheItem() CacheItem { return awi.ai }
func (awi *AccountWriteItem) SetCacheItem(item CacheItem) { awi.ai = item.(*AccountItem) }
func (awi *AccountWriteItem) GetSize() int { return accountWriteItemSize }
func (awi *AccountWriteItem) Less(than btree.Item) bool {
return awi.ai.Less(than)
}
func (ai *AccountItem) GetSequence() int { return ai.sequence }
func (ai *AccountItem) SetSequence(sequence int) { ai.sequence = sequence }
func (ai *AccountItem) GetSize() int { return accountItemSize }
func (ai *AccountItem) GetQueuePos() int { return ai.queuePos }
func (ai *AccountItem) SetQueuePos(pos int) { ai.queuePos = pos }
func (ai *AccountItem) HasFlag(flag uint16) bool { return ai.flags&flag != 0 }
func (ai *AccountItem) SetFlags(flags uint16) { ai.flags |= flags }
func (ai *AccountItem) ClearFlags(flags uint16) { ai.flags &^= flags }
func (ai *AccountItem) String() string { return fmt.Sprintf("AccountItem(addrHash=%x)", ai.addrHash) }
func (ai *AccountItem) CopyValueFrom(item CacheItem) {
otherAi, ok := item.(*AccountItem)
if !ok {
panic(fmt.Sprintf("expected AccountItem, got %T", item))
}
ai.account.Copy(&otherAi.account)
}
func (swi *StorageWriteItem) Less(than btree.Item) bool {
return swi.si.Less(than.(*StorageWriteItem).si)
}
func (swi *StorageWriteItem) GetCacheItem() CacheItem { return swi.si }
func (swi *StorageWriteItem) SetCacheItem(item CacheItem) { swi.si = item.(*StorageItem) }
func (swi *StorageWriteItem) GetSize() int { return storageWriteItemSize }
func (si *StorageItem) Less(than btree.Item) bool {
switch i := than.(type) {
case *StorageItem:
c := bytes.Compare(si.addrHash.Bytes(), i.addrHash.Bytes())
if c != 0 {
return c < 0
}
if si.incarnation < i.incarnation {
return true
}
return bytes.Compare(si.locHash.Bytes(), i.locHash.Bytes()) < 0
case *StorageWriteItem:
c := bytes.Compare(si.addrHash.Bytes(), i.si.addrHash.Bytes())
if c != 0 {
return c < 0
}
if si.incarnation < i.si.incarnation {
return true
}
return bytes.Compare(si.locHash.Bytes(), i.si.locHash.Bytes()) < 0
case *StorageSeek:
c := bytes.Compare(si.addrHash.Bytes(), i.addrHash.Bytes())
if c != 0 {
return c < 0
}
if si.incarnation < i.incarnation {
return true
}
return bytes.Compare(si.locHash.Bytes(), i.seek) < 0
default:
panic(fmt.Sprintf("unexpected type: %T", than))
}
}
func (si *StorageItem) GetSequence() int { return si.sequence }
func (si *StorageItem) SetSequence(sequence int) { si.sequence = sequence }
func (si *StorageItem) GetSize() int { return storageItemSize }
func (si *StorageItem) GetQueuePos() int { return si.queuePos }
func (si *StorageItem) SetQueuePos(pos int) { si.queuePos = pos }
func (si *StorageItem) HasFlag(flag uint16) bool { return si.flags&flag != 0 }
func (si *StorageItem) SetFlags(flags uint16) { si.flags |= flags }
func (si *StorageItem) ClearFlags(flags uint16) { si.flags &^= flags }
func (si *StorageItem) String() string {
return fmt.Sprintf("StorageItem(addrHash=%x,incarnation=%d,locHash=%x)", si.addrHash, si.incarnation, si.locHash)
}
func (si *StorageItem) CopyValueFrom(item CacheItem) {
otherSi, ok := item.(*StorageItem)
if !ok {
panic(fmt.Sprintf("expected StorageCacheItem, got %T", item))
}
si.value.Set(&otherSi.value)
}
func (ci *CodeItem) Less(than btree.Item) bool {
return compare_code_code(ci, than.(*CodeItem)) < 0
}
func (cwi *CodeWriteItem) Less(than btree.Item) bool {
i := than.(*CodeWriteItem)
c := bytes.Compare(cwi.address.Bytes(), i.address.Bytes())
if c == 0 {
return cwi.ci.incarnation < i.ci.incarnation
}
return c < 0
}
func (cwi *CodeWriteItem) GetCacheItem() CacheItem { return cwi.ci }
func (cwi *CodeWriteItem) SetCacheItem(item CacheItem) { cwi.ci = item.(*CodeItem) }
func (cwi *CodeWriteItem) GetSize() int { return codeWriteItemSize + len(cwi.ci.code) }
func (ci *CodeItem) GetSequence() int { return ci.sequence }
func (ci *CodeItem) SetSequence(sequence int) { ci.sequence = sequence }
func (ci *CodeItem) GetSize() int { return codeItemSize + len(ci.code) }
func (ci *CodeItem) GetQueuePos() int { return ci.queuePos }
func (ci *CodeItem) SetQueuePos(pos int) { ci.queuePos = pos }
func (ci *CodeItem) HasFlag(flag uint16) bool { return ci.flags&flag != 0 }
func (ci *CodeItem) SetFlags(flags uint16) { ci.flags |= flags }
func (ci *CodeItem) ClearFlags(flags uint16) { ci.flags &^= flags }
func (ci *CodeItem) String() string {
return fmt.Sprintf("CodeItem(addrHash=%x,incarnation=%d)", ci.addrHash, ci.incarnation)
}
func (ci *CodeItem) CopyValueFrom(item CacheItem) {
otherCi, ok := item.(*CodeItem)
if !ok {
panic(fmt.Sprintf("expected CodeCacheItem, got %T", item))
}
ci.code = make([]byte, len(otherCi.code))
copy(ci.code, otherCi.code)
}
// Heap for reads
type ReadHeap struct {
items []CacheItem
}
func (rh ReadHeap) Len() int { return len(rh.items) }
func (rh ReadHeap) Less(i, j int) bool { return rh.items[i].GetSequence() < rh.items[j].GetSequence() }
func (rh ReadHeap) Swap(i, j int) {
// Swap queue positions in the B-tree leaves too
rh.items[i].SetQueuePos(j)
rh.items[j].SetQueuePos(i)
rh.items[i], rh.items[j] = rh.items[j], rh.items[i]
}
func (rh *ReadHeap) Push(x interface{}) {
// Push and Pop use pointer receivers because they modify the slice's length,
// not just its contents.
cacheItem := x.(CacheItem)
cacheItem.SetQueuePos(len(rh.items))
rh.items = append(rh.items, cacheItem)
}
func (rh *ReadHeap) Pop() interface{} {
cacheItem := rh.items[len(rh.items)-1]
rh.items = rh.items[:len(rh.items)-1]
return cacheItem
}
// StateCache is the structure containing B-trees and priority queues for the state cache
type StateCache struct {
readWrites [5]*btree.BTree // Mixed reads and writes
writes [5]*btree.BTree // Only writes for the effective iteration
readQueue [5]ReadHeap // Priority queue of read elements eligible for eviction (sorted by sequence)
limit datasize.ByteSize // Total size of the readQueue (if new item causes the size to go over the limit, some existing items are evicted)
readSize int
writeSize int
sequence int // Current sequence assigned to any item that has been "touched" (created, deleted, read). Incremented after every touch
unprocQueue [5]UnprocessedHeap // Priority queue of items appeared since last root calculation processing (sorted by the keys - addrHash, incarnation, locHash)
}
func id(a interface{}) uint8 {
switch a.(type) {
case *AccountItem, *AccountWriteItem, *AccountSeek:
return 0
case *StorageItem, *StorageWriteItem, *StorageSeek:
return 1
case *CodeItem, *CodeWriteItem:
return 2
case *AccountHashItem, *AccountHashWriteItem:
return 3
case *StorageHashItem, *StorageHashWriteItem:
return 4
default:
panic(fmt.Sprintf("unexpected type: %T", a))
}
}
// NewStateCache create a new state cache based on the B-trees of specific degree. The second and the third parameters are the limit on the number of reads and writes to cache, respectively
func NewStateCache(degree int, limit datasize.ByteSize) *StateCache {
var sc StateCache
sc.limit = limit
for i := 0; i < len(sc.readWrites); i++ {
sc.readWrites[i] = btree.New(degree)
}
for i := 0; i < len(sc.writes); i++ {
sc.writes[i] = btree.New(degree)
}
for i := 0; i < len(sc.readQueue); i++ {
heap.Init(&sc.readQueue[i])
}
for i := 0; i < len(sc.unprocQueue); i++ {
heap.Init(&sc.unprocQueue[i])
}
return &sc
}
// Clone creates a clone cache which can be modified independently, but it shares the parts of the cache that are common
func (sc *StateCache) Clone() *StateCache {
var clone StateCache
for i := range clone.readWrites {
clone.readWrites[i] = sc.readWrites[i].Clone()
clone.writes[i] = sc.writes[i].Clone()
clone.limit = sc.limit
heap.Init(&clone.readQueue[i])
heap.Init(&clone.unprocQueue[i])
}
return &clone
}
func (sc *StateCache) get(key btree.Item) (CacheItem, bool) {
WritesRead.Inc()
item := sc.readWrites[id(key)].Get(key)
if item == nil {
return nil, false
}
cacheItem := item.(CacheItem)
if cacheItem.HasFlag(DeletedFlag) || cacheItem.HasFlag(AbsentFlag) {
return nil, true
}
return cacheItem, true
}
// GetAccount searches and account with given address, without modifying any structures
// Second return value is true if such account is found
func (sc *StateCache) GetAccount(address []byte) (*accounts.Account, bool) {
AccRead.Inc()
var key AccountItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(key.addrHash[:])
if item, ok := sc.get(&key); ok {
if item != nil {
return &item.(*AccountItem).account, true
}
return nil, true
}
return nil, false
}
func (sc *StateCache) HasAccountWithInPrefix(addrHashPrefix []byte) bool {
AccRead.Inc()
seek := &AccountSeek{seek: addrHashPrefix}
var found bool
sc.readWrites[id(seek)].AscendGreaterOrEqual(seek, func(i btree.Item) bool {
found = bytes.HasPrefix(i.(*AccountItem).addrHash.Bytes(), addrHashPrefix)
return false
})
return found
}
// GetDeletedAccount attempts to retrieve the last version of account before it was deleted
func (sc *StateCache) GetDeletedAccount(address []byte) *accounts.Account {
key := &AccountItem{}
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(key.addrHash[:])
item := sc.readWrites[id(key)].Get(key)
if item == nil {
return nil
}
ai := item.(*AccountItem)
if !ai.HasFlag(DeletedFlag) {
return nil
}
return &ai.account
}
// GetStorage searches storage item with given address, incarnation, and location, without modifying any structures
// Second return value is true if such item is found
func (sc *StateCache) GetStorage(address []byte, incarnation uint64, location []byte) ([]byte, bool) {
StRead.Inc()
var key StorageItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(key.addrHash[:])
key.incarnation = incarnation
h.Sha.Reset()
//nolint:errcheck
h.Sha.Write(location)
//nolint:errcheck
h.Sha.Read(key.locHash[:])
if item, ok := sc.get(&key); ok {
if item != nil {
return item.(*StorageItem).value.Bytes(), true
}
return nil, true
}
return nil, false
}
// GetCode searches contract code with given address, without modifying any structures
// Second return value is true if such item is found
func (sc *StateCache) GetCode(address []byte, incarnation uint64) ([]byte, bool) {
var key CodeItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(key.addrHash[:])
key.incarnation = incarnation
if item, ok := sc.get(&key); ok {
if item != nil {
return item.(*CodeItem).code, true
}
return nil, true
}
return nil, false
}
func (sc *StateCache) setRead(item CacheItem, absent bool) {
id := id(item)
if sc.readWrites[id].Get(item) != nil {
panic(fmt.Sprintf("item must not be present in the cache before doing setRead: %s", item))
}
item.SetSequence(sc.sequence)
sc.sequence++
item.ClearFlags(ModifiedFlag | DeletedFlag)
if absent {
item.SetFlags(AbsentFlag)
} else {
item.ClearFlags(AbsentFlag)
}
if sc.limit != 0 && sc.readSize+item.GetSize() > int(sc.limit) {
for sc.readQueue[id].Len() > 0 && sc.readSize+item.GetSize() > int(sc.limit) {
// Read queue cannot grow anymore, need to evict one element
cacheItem := heap.Pop(&sc.readQueue[id]).(CacheItem)
sc.readSize -= cacheItem.GetSize()
sc.readWrites[id].Delete(cacheItem)
}
}
// Push new element on the read queue
heap.Push(&sc.readQueue[id], item)
sc.readWrites[id].ReplaceOrInsert(item)
sc.readSize += item.GetSize()
}
func (sc *StateCache) readQueuesLen() (res int) {
for i := 0; i < len(sc.readQueue); i++ {
res += sc.readQueue[i].Len()
}
return
}
// SetAccountRead adds given account to the cache, marking it as a read (not written)
func (sc *StateCache) SetAccountRead(address []byte, account *accounts.Account) {
var ai AccountItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ai.addrHash[:])
ai.account.Copy(account)
sc.setRead(&ai, false /* absent */)
}
// hack to set hashed addr - we don't have another one in trie stage
func (sc *StateCache) DeprecatedSetAccountRead(addrHash libcommon.Hash, account *accounts.Account) {
var ai AccountItem
ai.addrHash.SetBytes(addrHash.Bytes())
ai.account.Copy(account)
sc.setRead(&ai, false /* absent */)
}
func (sc *StateCache) GetAccountByHashedAddress(addrHash libcommon.Hash) (*accounts.Account, bool) {
var key AccountItem
key.addrHash.SetBytes(addrHash.Bytes())
if item, ok := sc.get(&key); ok {
if item != nil {
return &item.(*AccountItem).account, true
}
return nil, true
}
return nil, false
}
func (sc *StateCache) GetStorageByHashedAddress(addrHash libcommon.Hash, incarnation uint64, locHash libcommon.Hash) ([]byte, bool) {
key := StorageItem{
addrHash: addrHash,
incarnation: incarnation,
locHash: locHash,
}
if item, ok := sc.get(&key); ok {
if item != nil {
return item.(*StorageItem).value.Bytes(), true
}
return nil, true
}
return nil, false
}
// SetAccountRead adds given account address to the cache, marking it as a absent
func (sc *StateCache) SetAccountAbsent(address []byte) {
var ai AccountItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ai.addrHash[:])
sc.setRead(&ai, true /* absent */)
}
func (sc *StateCache) setWrite(item CacheItem, writeItem CacheWriteItem, del bool) {
id := id(item)
// Check if this is going to be modification of the existing entry
if existing := sc.writes[id].Get(writeItem); existing != nil {
cacheWriteItem := existing.(CacheWriteItem)
cacheItem := cacheWriteItem.GetCacheItem()
sc.readSize += item.GetSize()
sc.readSize -= cacheItem.GetSize()
sc.writeSize += writeItem.GetSize()
sc.writeSize -= cacheWriteItem.GetSize()
if del {
cacheItem.SetFlags(DeletedFlag)
} else {
cacheItem.CopyValueFrom(item)
cacheItem.ClearFlags(DeletedFlag)
}
cacheItem.SetSequence(sc.sequence)
sc.sequence++
return
}
// Now see if there is such item in the readWrite B-tree - then we replace read entry with write entry
if existing := sc.readWrites[id].Get(item); existing != nil {
cacheItem := existing.(CacheItem)
// Remove seek the reads queue
if sc.readQueue[id].Len() > 0 {
heap.Remove(&sc.readQueue[id], cacheItem.GetQueuePos())
}
sc.readSize += item.GetSize()
sc.readSize -= cacheItem.GetSize()
cacheItem.SetFlags(ModifiedFlag)
cacheItem.ClearFlags(AbsentFlag)
if del {
cacheItem.SetFlags(DeletedFlag)
} else {
cacheItem.CopyValueFrom(item)
cacheItem.ClearFlags(DeletedFlag)
}
cacheItem.SetSequence(sc.sequence)
sc.sequence++
writeItem.SetCacheItem(cacheItem)
sc.writes[id].ReplaceOrInsert(writeItem)
sc.writeSize += writeItem.GetSize()
return
}
if sc.limit != 0 && sc.readSize+item.GetSize() > int(sc.limit) {
for sc.readQueue[id].Len() > 0 && sc.readSize+item.GetSize() > int(sc.limit) {
// There is no space available, need to evict one read element
cacheItem := heap.Pop(&sc.readQueue[id]).(CacheItem)
sc.readWrites[id].Delete(cacheItem)
sc.readSize -= cacheItem.GetSize()
}
}
item.SetSequence(sc.sequence)
sc.sequence++
item.SetFlags(ModifiedFlag)
item.ClearFlags(AbsentFlag)
if del {
item.SetFlags(DeletedFlag)
} else {
item.ClearFlags(DeletedFlag)
}
sc.readWrites[id].ReplaceOrInsert(item)
sc.readSize += item.GetSize()
writeItem.SetCacheItem(item)
sc.writes[id].ReplaceOrInsert(writeItem)
sc.writeSize += writeItem.GetSize()
}
// SetAccountWrite adds given account to the cache, marking it as written (cannot be evicted)
func (sc *StateCache) SetAccountWrite(address []byte, account *accounts.Account) {
var ai AccountItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ai.addrHash[:])
ai.account.Copy(account)
var awi AccountWriteItem
copy(awi.address[:], address)
awi.ai = &ai
sc.setWrite(&ai, &awi, false /* delete */)
}
// SetAccountDelete is very similar to SetAccountWrite with the difference that there no set value
func (sc *StateCache) SetAccountDelete(address []byte) {
var ai AccountItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ai.addrHash[:])
var awi AccountWriteItem
copy(awi.address[:], address)
awi.ai = &ai
sc.setWrite(&ai, &awi, true /* delete */)
}
func (sc *StateCache) SetStorageRead(address []byte, incarnation uint64, location []byte, value []byte) {
var si StorageItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(si.addrHash[:])
si.incarnation = incarnation
h.Sha.Reset()
//nolint:errcheck
h.Sha.Write(location)
//nolint:errcheck
h.Sha.Read(si.locHash[:])
si.value.SetBytes(value)
sc.setRead(&si, false /* absent */)
}
// hack to set hashed addr - we don't have another one in trie stage
func (sc *StateCache) DeprecatedSetStorageRead(addrHash libcommon.Hash, incarnation uint64, locHash libcommon.Hash, val []byte) {
var i StorageItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
copy(i.addrHash[:], addrHash.Bytes())
i.incarnation = incarnation
i.locHash.SetBytes(locHash.Bytes())
i.value.SetBytes(val)
sc.setRead(&i, false /* absent */)
}
// hack to set hashed addr - we don't have another one in trie stage
func (sc *StateCache) DeprecatedSetAccountWrite(addrHash libcommon.Hash, account *accounts.Account) {
var ai AccountItem
copy(ai.addrHash[:], addrHash.Bytes())
ai.account.Copy(account)
var awi AccountWriteItem
awi.ai = &ai
sc.setWrite(&ai, &awi, false /* delete */)
}
// hack to set hashed addr - we don't have another one in trie stage
func (sc *StateCache) DeprecatedSetAccountDelete(addrHash libcommon.Hash) {
var ai AccountItem
copy(ai.addrHash[:], addrHash.Bytes())
var awi AccountWriteItem
awi.ai = &ai
sc.setWrite(&ai, &awi, true /* delete */)
}
// hack to set hashed addr - we don't have another one in trie stage
func (sc *StateCache) DeprecatedSetStorageDelete(addrHash libcommon.Hash, incarnation uint64, locHash libcommon.Hash) {
var si StorageItem
copy(si.addrHash[:], addrHash.Bytes())
si.incarnation = incarnation
copy(si.locHash[:], locHash.Bytes())
var swi StorageWriteItem
swi.si = &si
sc.setWrite(&si, &swi, true /* delete */)
}
// hack to set hashed addr - we don't have another one in trie stage
func (sc *StateCache) DeprecatedSetStorageWrite(addrHash libcommon.Hash, incarnation uint64, locHash libcommon.Hash, v []byte) {
var si StorageItem
copy(si.addrHash[:], addrHash.Bytes())
si.incarnation = incarnation
copy(si.locHash[:], locHash.Bytes())
si.value.SetBytes(v)
var swi StorageWriteItem
swi.si = &si
sc.setWrite(&si, &swi, false /* delete */)
}
func (sc *StateCache) SetStorageAbsent(address []byte, incarnation uint64, location []byte) {
var si StorageItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(si.addrHash[:])
si.incarnation = incarnation
h.Sha.Reset()
//nolint:errcheck
h.Sha.Write(location)
//nolint:errcheck
h.Sha.Read(si.locHash[:])
sc.setRead(&si, true /* absent */)
}
func (sc *StateCache) SetStorageWrite(address []byte, incarnation uint64, location []byte, value []byte) {
var si StorageItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(si.addrHash[:])
si.incarnation = incarnation
h.Sha.Reset()
//nolint:errcheck
h.Sha.Write(location)
//nolint:errcheck
h.Sha.Read(si.locHash[:])
si.value.SetBytes(value)
var swi StorageWriteItem
copy(swi.address[:], address)
copy(swi.location[:], location)
swi.si = &si
sc.setWrite(&si, &swi, false /* delete */)
}
func (sc *StateCache) SetStorageDelete(address []byte, incarnation uint64, location []byte) {
var si StorageItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(si.addrHash[:])
si.incarnation = incarnation
h.Sha.Reset()
//nolint:errcheck
h.Sha.Write(location)
//nolint:errcheck
h.Sha.Read(si.locHash[:])
var swi StorageWriteItem
copy(swi.address[:], address)
copy(swi.location[:], location)
swi.si = &si
sc.setWrite(&si, &swi, true /* delete */)
}
func (sc *StateCache) SetCodeRead(address []byte, incarnation uint64, code []byte) {
var ci CodeItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ci.addrHash[:])
ci.incarnation = incarnation
ci.code = make([]byte, len(code))
copy(ci.code, code)
sc.setRead(&ci, false /* absent */)
}
func (sc *StateCache) SetCodeAbsent(address []byte, incarnation uint64) {
var ci CodeItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ci.addrHash[:])
ci.incarnation = incarnation
sc.setRead(&ci, true /* absent */)
}
func (sc *StateCache) SetCodeWrite(address []byte, incarnation uint64, code []byte) {
// Check if this is going to be modification of the existing entry
var ci CodeItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ci.addrHash[:])
ci.incarnation = incarnation
ci.code = make([]byte, len(code))
copy(ci.code, code)
var cwi CodeWriteItem
copy(cwi.address[:], address)
cwi.ci = &ci
sc.setWrite(&ci, &cwi, false /* delete */)
}
func (sc *StateCache) SetCodeDelete(address []byte, incarnation uint64) {
// Check if this is going to be modification of the existing entry
var ci CodeItem
h := common.NewHasher()
defer common.ReturnHasherToPool(h)
//nolint:errcheck
h.Sha.Write(address)
//nolint:errcheck
h.Sha.Read(ci.addrHash[:])
ci.incarnation = incarnation
ci.code = nil
var cwi CodeWriteItem
copy(cwi.address[:], address)
cwi.ci = &ci
sc.setWrite(&ci, &cwi, true /* delete */)
}
func (sc *StateCache) PrepareWrites() [5]*btree.BTree {
var writes [5]*btree.BTree
for i := 0; i < len(sc.writes); i++ {
sc.writes[i].Ascend(func(i btree.Item) bool {
writeItem := i.(CacheWriteItem)
cacheItem := writeItem.GetCacheItem()
cacheItem.ClearFlags(ModifiedFlag)
if cacheItem.HasFlag(DeletedFlag) {
cacheItem.ClearFlags(DeletedFlag)
cacheItem.SetFlags(AbsentFlag)
}
return true
})
writes[i] = sc.writes[i].Clone()
sc.writes[i].Clear(true /* addNodesToFreeList */)
sc.writeSize = 0
}
return writes
}
func WalkWrites(
writes [5]*btree.BTree,
accountWrite func(address []byte, account *accounts.Account) error,
accountDelete func(address []byte, original *accounts.Account) error,
storageWrite func(address []byte, incarnation uint64, location []byte, value []byte) error,
storageDelete func(address []byte, incarnation uint64, location []byte) error,
codeWrite func(address []byte, incarnation uint64, code []byte) error,
codeDelete func(address []byte, incarnation uint64) error,
) error {
var err error
for i := 0; i < len(writes); i++ {
writes[i].Ascend(func(i btree.Item) bool {
switch it := i.(type) {
case *AccountWriteItem:
if it.ai.flags&AbsentFlag != 0 {
if err = accountDelete(it.address.Bytes(), &it.ai.account); err != nil {
return false
}
} else {
if err = accountWrite(it.address.Bytes(), &it.ai.account); err != nil {
return false
}
}
case *StorageWriteItem:
if it.si.flags&AbsentFlag != 0 {
if err = storageDelete(it.address.Bytes(), it.si.incarnation, it.location.Bytes()); err != nil {
return false
}
} else {
if err = storageWrite(it.address.Bytes(), it.si.incarnation, it.location.Bytes(), it.si.value.Bytes()); err != nil {
return false
}
}
case *CodeWriteItem:
if it.ci.flags&AbsentFlag != 0 {
if err = codeDelete(it.address.Bytes(), it.ci.incarnation); err != nil {
return false
}
} else {
if err = codeWrite(it.address.Bytes(), it.ci.incarnation, it.ci.code); err != nil {
return false
}
}
}
return true
})
}
return err
}
func (sc *StateCache) TurnWritesToReads(writes [5]*btree.BTree) {
for i := 0; i < len(writes); i++ {
readQueue := &sc.readQueue[i]
writes[i].Ascend(func(it btree.Item) bool {
cacheWriteItem := it.(CacheWriteItem)
cacheItem := cacheWriteItem.GetCacheItem()
if !cacheItem.HasFlag(ModifiedFlag) {
// Cannot touch items that have been modified since we have taken away the writes
heap.Push(readQueue, cacheItem)
}
return true
})
}
}
func (sc *StateCache) TotalCount() (res int) {
for i := 0; i < len(sc.readWrites); i++ {
res += sc.readWrites[i].Len()
}
return
}
func (sc *StateCache) WriteCount() (res int) {
for i := 0; i < len(sc.readWrites); i++ {
res += sc.writes[i].Len()
}
return
}
func (sc *StateCache) WriteSize() int { return sc.writeSize }
func (sc *StateCache) ReadSize() int { return sc.readSize }