mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-10 04:51:20 +00:00
287 lines
5.6 KiB
Go
287 lines
5.6 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package bn256
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
|
|
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
|
|
// GF(p).
|
|
type curvePoint struct {
|
|
x, y, z, t *big.Int
|
|
}
|
|
|
|
var curveB = new(big.Int).SetInt64(3)
|
|
|
|
// curveGen is the generator of G₁.
|
|
var curveGen = &curvePoint{
|
|
new(big.Int).SetInt64(1),
|
|
new(big.Int).SetInt64(2),
|
|
new(big.Int).SetInt64(1),
|
|
new(big.Int).SetInt64(1),
|
|
}
|
|
|
|
func newCurvePoint(pool *bnPool) *curvePoint {
|
|
return &curvePoint{
|
|
pool.Get(),
|
|
pool.Get(),
|
|
pool.Get(),
|
|
pool.Get(),
|
|
}
|
|
}
|
|
|
|
func (c *curvePoint) String() string {
|
|
c.MakeAffine(new(bnPool))
|
|
return "(" + c.x.String() + ", " + c.y.String() + ")"
|
|
}
|
|
|
|
func (c *curvePoint) Put(pool *bnPool) {
|
|
pool.Put(c.x)
|
|
pool.Put(c.y)
|
|
pool.Put(c.z)
|
|
pool.Put(c.t)
|
|
}
|
|
|
|
func (c *curvePoint) Set(a *curvePoint) {
|
|
c.x.Set(a.x)
|
|
c.y.Set(a.y)
|
|
c.z.Set(a.z)
|
|
c.t.Set(a.t)
|
|
}
|
|
|
|
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
|
|
func (c *curvePoint) IsOnCurve() bool {
|
|
yy := new(big.Int).Mul(c.y, c.y)
|
|
xxx := new(big.Int).Mul(c.x, c.x)
|
|
xxx.Mul(xxx, c.x)
|
|
yy.Sub(yy, xxx)
|
|
yy.Sub(yy, curveB)
|
|
if yy.Sign() < 0 || yy.Cmp(P) >= 0 {
|
|
yy.Mod(yy, P)
|
|
}
|
|
return yy.Sign() == 0
|
|
}
|
|
|
|
func (c *curvePoint) SetInfinity() {
|
|
c.z.SetInt64(0)
|
|
}
|
|
|
|
func (c *curvePoint) IsInfinity() bool {
|
|
return c.z.Sign() == 0
|
|
}
|
|
|
|
func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
|
|
if a.IsInfinity() {
|
|
c.Set(b)
|
|
return
|
|
}
|
|
if b.IsInfinity() {
|
|
c.Set(a)
|
|
return
|
|
}
|
|
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
|
|
|
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
|
|
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
|
|
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
|
|
z1z1 := pool.Get().Mul(a.z, a.z)
|
|
z1z1.Mod(z1z1, P)
|
|
z2z2 := pool.Get().Mul(b.z, b.z)
|
|
z2z2.Mod(z2z2, P)
|
|
u1 := pool.Get().Mul(a.x, z2z2)
|
|
u1.Mod(u1, P)
|
|
u2 := pool.Get().Mul(b.x, z1z1)
|
|
u2.Mod(u2, P)
|
|
|
|
t := pool.Get().Mul(b.z, z2z2)
|
|
t.Mod(t, P)
|
|
s1 := pool.Get().Mul(a.y, t)
|
|
s1.Mod(s1, P)
|
|
|
|
t.Mul(a.z, z1z1)
|
|
t.Mod(t, P)
|
|
s2 := pool.Get().Mul(b.y, t)
|
|
s2.Mod(s2, P)
|
|
|
|
// Compute x = (2h)²(s²-u1-u2)
|
|
// where s = (s2-s1)/(u2-u1) is the slope of the line through
|
|
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
|
|
// This is also:
|
|
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
|
|
// = r² - j - 2v
|
|
// with the notations below.
|
|
h := pool.Get().Sub(u2, u1)
|
|
xEqual := h.Sign() == 0
|
|
|
|
t.Add(h, h)
|
|
// i = 4h²
|
|
i := pool.Get().Mul(t, t)
|
|
i.Mod(i, P)
|
|
// j = 4h³
|
|
j := pool.Get().Mul(h, i)
|
|
j.Mod(j, P)
|
|
|
|
t.Sub(s2, s1)
|
|
yEqual := t.Sign() == 0
|
|
if xEqual && yEqual {
|
|
c.Double(a, pool)
|
|
return
|
|
}
|
|
r := pool.Get().Add(t, t)
|
|
|
|
v := pool.Get().Mul(u1, i)
|
|
v.Mod(v, P)
|
|
|
|
// t4 = 4(s2-s1)²
|
|
t4 := pool.Get().Mul(r, r)
|
|
t4.Mod(t4, P)
|
|
t.Add(v, v)
|
|
t6 := pool.Get().Sub(t4, j)
|
|
c.x.Sub(t6, t)
|
|
|
|
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
|
|
// This is also
|
|
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
|
|
t.Sub(v, c.x) // t7
|
|
t4.Mul(s1, j) // t8
|
|
t4.Mod(t4, P)
|
|
t6.Add(t4, t4) // t9
|
|
t4.Mul(r, t) // t10
|
|
t4.Mod(t4, P)
|
|
c.y.Sub(t4, t6)
|
|
|
|
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
|
|
t.Add(a.z, b.z) // t11
|
|
t4.Mul(t, t) // t12
|
|
t4.Mod(t4, P)
|
|
t.Sub(t4, z1z1) // t13
|
|
t4.Sub(t, z2z2) // t14
|
|
c.z.Mul(t4, h)
|
|
c.z.Mod(c.z, P)
|
|
|
|
pool.Put(z1z1)
|
|
pool.Put(z2z2)
|
|
pool.Put(u1)
|
|
pool.Put(u2)
|
|
pool.Put(t)
|
|
pool.Put(s1)
|
|
pool.Put(s2)
|
|
pool.Put(h)
|
|
pool.Put(i)
|
|
pool.Put(j)
|
|
pool.Put(r)
|
|
pool.Put(v)
|
|
pool.Put(t4)
|
|
pool.Put(t6)
|
|
}
|
|
|
|
func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
|
A := pool.Get().Mul(a.x, a.x)
|
|
A.Mod(A, P)
|
|
B := pool.Get().Mul(a.y, a.y)
|
|
B.Mod(B, P)
|
|
C_ := pool.Get().Mul(B, B)
|
|
C_.Mod(C_, P)
|
|
|
|
t := pool.Get().Add(a.x, B)
|
|
t2 := pool.Get().Mul(t, t)
|
|
t2.Mod(t2, P)
|
|
t.Sub(t2, A)
|
|
t2.Sub(t, C_)
|
|
d := pool.Get().Add(t2, t2)
|
|
t.Add(A, A)
|
|
e := pool.Get().Add(t, A)
|
|
f := pool.Get().Mul(e, e)
|
|
f.Mod(f, P)
|
|
|
|
t.Add(d, d)
|
|
c.x.Sub(f, t)
|
|
|
|
t.Add(C_, C_)
|
|
t2.Add(t, t)
|
|
t.Add(t2, t2)
|
|
c.y.Sub(d, c.x)
|
|
t2.Mul(e, c.y)
|
|
t2.Mod(t2, P)
|
|
c.y.Sub(t2, t)
|
|
|
|
t.Mul(a.y, a.z)
|
|
t.Mod(t, P)
|
|
c.z.Add(t, t)
|
|
|
|
pool.Put(A)
|
|
pool.Put(B)
|
|
pool.Put(C_)
|
|
pool.Put(t)
|
|
pool.Put(t2)
|
|
pool.Put(d)
|
|
pool.Put(e)
|
|
pool.Put(f)
|
|
}
|
|
|
|
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
|
|
sum := newCurvePoint(pool)
|
|
sum.SetInfinity()
|
|
t := newCurvePoint(pool)
|
|
|
|
for i := scalar.BitLen(); i >= 0; i-- {
|
|
t.Double(sum, pool)
|
|
if scalar.Bit(i) != 0 {
|
|
sum.Add(t, a, pool)
|
|
} else {
|
|
sum.Set(t)
|
|
}
|
|
}
|
|
|
|
c.Set(sum)
|
|
sum.Put(pool)
|
|
t.Put(pool)
|
|
return c
|
|
}
|
|
|
|
// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
|
|
// c to 0 : 1 : 0.
|
|
func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
|
|
if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
|
|
return c
|
|
}
|
|
if c.IsInfinity() {
|
|
c.x.SetInt64(0)
|
|
c.y.SetInt64(1)
|
|
c.z.SetInt64(0)
|
|
c.t.SetInt64(0)
|
|
return c
|
|
}
|
|
zInv := pool.Get().ModInverse(c.z, P)
|
|
t := pool.Get().Mul(c.y, zInv)
|
|
t.Mod(t, P)
|
|
zInv2 := pool.Get().Mul(zInv, zInv)
|
|
zInv2.Mod(zInv2, P)
|
|
c.y.Mul(t, zInv2)
|
|
c.y.Mod(c.y, P)
|
|
t.Mul(c.x, zInv2)
|
|
t.Mod(t, P)
|
|
c.x.Set(t)
|
|
c.z.SetInt64(1)
|
|
c.t.SetInt64(1)
|
|
|
|
pool.Put(zInv)
|
|
pool.Put(t)
|
|
pool.Put(zInv2)
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *curvePoint) Negative(a *curvePoint) {
|
|
c.x.Set(a.x)
|
|
c.y.Neg(a.y)
|
|
c.z.Set(a.z)
|
|
c.t.SetInt64(0)
|
|
}
|