mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-11 21:40:05 +00:00
231e468e19
git-subtree-dir: erigon-lib git-subtree-mainline:3c8cbda809
git-subtree-split:93d9c9d9fe
141 lines
4.2 KiB
C++
141 lines
4.2 KiB
C++
#ifndef STARKWARE_ALGEBRA_BIG_INT_H_
|
|
#define STARKWARE_ALGEBRA_BIG_INT_H_
|
|
|
|
#include <cstddef>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "gsl-lite.hpp"
|
|
|
|
#include "error_handling.h"
|
|
#include "prng.h"
|
|
|
|
namespace starkware {
|
|
|
|
static constexpr inline __uint128_t Umul128(uint64_t x, uint64_t y) {
|
|
return static_cast<__uint128_t>(x) * static_cast<__uint128_t>(y);
|
|
}
|
|
|
|
template <size_t N>
|
|
class BigInt {
|
|
public:
|
|
static constexpr size_t kDigits = N * std::numeric_limits<uint64_t>::digits;
|
|
|
|
BigInt() = default;
|
|
|
|
template <size_t K>
|
|
constexpr BigInt(const BigInt<K>& v) noexcept; // NOLINT implicit cast.
|
|
constexpr explicit BigInt(const std::array<uint64_t, N>& v) noexcept : value_(v) {}
|
|
constexpr explicit BigInt(uint64_t v) noexcept : value_(std::array<uint64_t, N>({v})) {}
|
|
|
|
static constexpr BigInt One() { return BigInt(std::array<uint64_t, N>({1})); }
|
|
static constexpr BigInt Zero() { return BigInt(std::array<uint64_t, N>({0})); }
|
|
|
|
static BigInt RandomBigInt(Prng* prng);
|
|
|
|
/*
|
|
Returns pair of the form (result, overflow_occurred).
|
|
*/
|
|
static constexpr std::pair<BigInt, bool> Add(const BigInt& a, const BigInt& b);
|
|
constexpr BigInt operator+(const BigInt& other) const { return Add(*this, other).first; }
|
|
constexpr BigInt operator-(const BigInt& other) const { return Sub(*this, other).first; }
|
|
constexpr BigInt operator-() const { return Zero() - *this; }
|
|
|
|
/*
|
|
Multiplies two BigInt<N> numbers, this and other. Returns the result as a
|
|
BigInt<2*N>.
|
|
*/
|
|
constexpr BigInt<2 * N> operator*(const BigInt& other) const;
|
|
|
|
/*
|
|
Multiplies two BigInt<N> numbers modulo a third.
|
|
*/
|
|
static BigInt MulMod(const BigInt& a, const BigInt& b, const BigInt& modulus);
|
|
|
|
/*
|
|
Computes the inverse of *this in the field GF(prime).
|
|
If prime is not a prime number, the behavior is undefined.
|
|
*/
|
|
BigInt InvModPrime(const BigInt& prime) const;
|
|
|
|
/*
|
|
Return pair of the form (result, underflow_occurred).
|
|
*/
|
|
static constexpr std::pair<BigInt, bool> Sub(const BigInt& a, const BigInt& b);
|
|
|
|
constexpr bool operator<(const BigInt& b) const;
|
|
|
|
constexpr bool operator>=(const BigInt& b) const { return !(*this < b); }
|
|
|
|
constexpr bool operator>(const BigInt& b) const { return b < *this; }
|
|
|
|
constexpr bool operator<=(const BigInt& b) const { return !(*this > b); }
|
|
|
|
/*
|
|
Returns the pair (q, r) such that this == q*divisor + r and r < divisor.
|
|
*/
|
|
std::pair<BigInt, BigInt> Div(const BigInt& divisor) const;
|
|
|
|
/*
|
|
Returns the representation of the number as a string of the form "0x...".
|
|
*/
|
|
std::string ToString() const;
|
|
|
|
std::vector<bool> ToBoolVector() const;
|
|
|
|
/*
|
|
Returns (x % target) assuming x is in the range [0, 2*target).
|
|
|
|
The function assumes that target.NumLeadingZeros() > 0.
|
|
|
|
Typically used after a Montgomery reduction which produces an output that
|
|
satisfies the range requirement above.
|
|
*/
|
|
static constexpr BigInt ReduceIfNeeded(const BigInt& x, const BigInt& target);
|
|
|
|
/*
|
|
Calculates x*y/2^256 mod modulus, assuming that montgomery_mprime is
|
|
(-(modulus^-1)) mod 2^64. Assumes that modulus.NumLeadingZeros() > 0.
|
|
*/
|
|
static constexpr BigInt MontMul(
|
|
const BigInt& x, const BigInt& y, const BigInt& modulus, uint64_t montgomery_mprime);
|
|
|
|
constexpr bool operator==(const BigInt& other) const;
|
|
|
|
constexpr bool operator!=(const BigInt& other) const { return !(*this == other); }
|
|
|
|
constexpr uint64_t& operator[](int i) { return gsl::at(value_, i); }
|
|
|
|
constexpr const uint64_t& operator[](int i) const { return gsl::at(value_, i); }
|
|
|
|
static constexpr size_t LimbCount() { return N; }
|
|
|
|
/*
|
|
Returns the number of leading zero's.
|
|
*/
|
|
constexpr size_t NumLeadingZeros() const;
|
|
|
|
private:
|
|
std::array<uint64_t, N> value_;
|
|
};
|
|
|
|
template <size_t N>
|
|
std::ostream& operator<<(std::ostream& os, const BigInt<N>& bigint);
|
|
|
|
} // namespace starkware
|
|
|
|
/*
|
|
Implements the user defined _Z literal that constructs a BigInt of an
|
|
arbitrary size. For example: BigInt<4> a =
|
|
0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001_Z;
|
|
*/
|
|
template <char... Chars>
|
|
static constexpr auto operator"" _Z();
|
|
|
|
#include "big_int.inl"
|
|
|
|
#endif // STARKWARE_ALGEBRA_BIG_INT_H_
|