erigon-pulse/accounts/abi/bind/backends/simulated.go
Martin Holst Swende f66c118cad cmd, core, eth: background transaction indexing (#20302)
* cmd, core, eth: init tx lookup in background

* core/rawdb: tiny log fixes to make it clearer what's happening

* core, eth: fix rebase errors

* core/rawdb: make reindexing less generic, but more optimal

* rlp: implement rlp list iterator

* core/rawdb: new implementation of tx indexing/unindex using generic tx iterator and hashing rlp-data

* core/rawdb, cmd/utils: fix review concerns

* cmd/utils: fix merge issue

* core/rawdb: add some log formatting polishes

Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
Co-authored-by: Péter Szilágyi <peterke@gmail.com>
# Conflicts:
#	accounts/abi/bind/backends/simulated.go
#	cmd/geth/main.go
#	cmd/geth/usage.go
#	cmd/utils/flags.go
#	consensus/clique/snapshot_test.go
#	core/bench_test.go
#	core/block_validator_test.go
#	core/blockchain.go
#	core/blockchain_test.go
#	core/chain_makers_test.go
#	core/dao_test.go
#	core/rawdb/accessors_indexes.go
#	core/rawdb/schema.go
#	eth/config.go
#	eth/helper_test.go
#	eth/sync.go
#	light/odr_test.go
#	light/trie_test.go
#	light/txpool_test.go
#	miner/worker_test.go
#	tests/block_test_util.go
2020-05-20 15:26:22 +03:00

807 lines
26 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package backends
import (
"context"
"errors"
"fmt"
"math/big"
"sync"
"time"
ethereum "github.com/ledgerwatch/turbo-geth"
"github.com/ledgerwatch/turbo-geth/accounts/abi/bind"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/common/math"
"github.com/ledgerwatch/turbo-geth/consensus"
"github.com/ledgerwatch/turbo-geth/consensus/ethash"
"github.com/ledgerwatch/turbo-geth/core"
"github.com/ledgerwatch/turbo-geth/core/bloombits"
"github.com/ledgerwatch/turbo-geth/core/rawdb"
"github.com/ledgerwatch/turbo-geth/core/state"
"github.com/ledgerwatch/turbo-geth/core/types"
"github.com/ledgerwatch/turbo-geth/core/vm"
"github.com/ledgerwatch/turbo-geth/eth/filters"
"github.com/ledgerwatch/turbo-geth/ethdb"
"github.com/ledgerwatch/turbo-geth/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ledgerwatch/turbo-geth/params"
"github.com/ledgerwatch/turbo-geth/rpc"
)
// This nil assignment ensures compile time that SimulatedBackend implements bind.ContractBackend.
var _ bind.ContractBackend = (*SimulatedBackend)(nil)
var (
errBlockNumberUnsupported = errors.New("simulatedBackend cannot access blocks other than the latest block")
errBlockDoesNotExist = errors.New("block does not exist in blockchain")
errTransactionDoesNotExist = errors.New("transaction does not exist")
)
// SimulatedBackend implements bind.ContractBackend, simulating a blockchain in
// the background. Its main purpose is to allow easily testing contract bindings.
// Simulated backend implements the following interfaces:
// ChainReader, ChainStateReader, ContractBackend, ContractCaller, ContractFilterer, ContractTransactor,
// DeployBackend, GasEstimator, GasPricer, LogFilterer, PendingContractCaller, TransactionReader, and TransactionSender
type SimulatedBackend struct {
prependDb ethdb.Database
database ethdb.Database // In memory database to store our testing data
engine consensus.Engine
blockchain *core.BlockChain // Ethereum blockchain to handle the consensus
mu sync.Mutex
prependBlock *types.Block
pendingHeader *types.Header
gasPool *core.GasPool
pendingBlock *types.Block // Currently pending block that will be imported on request
pendingTds *state.TrieDbState
pendingState *state.IntraBlockState // Currently pending state that will be the active on on request
events *filters.EventSystem // Event system for filtering log events live
config *params.ChainConfig
}
// NewSimulatedBackendWithDatabase creates a new binding backend based on the given database
// and uses a simulated blockchain for testing purposes.
func NewSimulatedBackendWithDatabase(database ethdb.Database, alloc core.GenesisAlloc, gasLimit uint64) *SimulatedBackend {
genesis := core.Genesis{Config: params.AllEthashProtocolChanges, GasLimit: gasLimit, Alloc: alloc}
genesisBlock := genesis.MustCommit(database)
engine := ethash.NewFaker()
blockchain, err := core.NewBlockChain(database, nil, genesis.Config, engine, vm.Config{}, nil, nil)
if err != nil {
panic(fmt.Sprintf("%v", err))
}
blockchain.EnableReceipts(true)
backend := &SimulatedBackend{
prependBlock: genesisBlock,
prependDb: database.MemCopy(),
database: database,
engine: engine,
blockchain: blockchain,
config: genesis.Config,
events: filters.NewEventSystem(&filterBackend{database, blockchain}, false),
}
backend.emptyPendingBlock()
return backend
}
// NewSimulatedBackend creates a new binding backend using a simulated blockchain
// for testing purposes.
func NewSimulatedBackendWithConfig(alloc core.GenesisAlloc, config *params.ChainConfig, gasLimit uint64) *SimulatedBackend {
database := ethdb.NewMemDatabase()
genesis := core.Genesis{Config: config, GasLimit: gasLimit, Alloc: alloc}
genesisBlock := genesis.MustCommit(database)
engine := ethash.NewFaker()
blockchain, err := core.NewBlockChain(database, nil, genesis.Config, engine, vm.Config{}, nil)
if err != nil {
panic(fmt.Sprintf("%v", err))
}
blockchain.EnableReceipts(true)
backend := &SimulatedBackend{
prependBlock: genesisBlock,
prependDb: database.MemCopy(),
database: database,
engine: engine,
blockchain: blockchain,
config: genesis.Config,
events: filters.NewEventSystem(&filterBackend{database, blockchain}, false),
}
backend.emptyPendingBlock()
return backend
}
// NewSimulatedBackend creates a new binding backend using a simulated blockchain
// for testing purposes.
func NewSimulatedBackend(alloc core.GenesisAlloc, gasLimit uint64) *SimulatedBackend {
return NewSimulatedBackendWithDatabase(ethdb.NewMemDatabase(), alloc, gasLimit)
}
// Close terminates the underlying blockchain's update loop.
func (b *SimulatedBackend) Close() error {
b.blockchain.Stop()
return nil
}
// Commit imports all the pending transactions as a single block and starts a
// fresh new state.
func (b *SimulatedBackend) Commit() {
//fmt.Printf("---- Start committing block %d\n", b.pendingBlock.NumberU64())
b.mu.Lock()
defer b.mu.Unlock()
if _, err := b.blockchain.InsertChain(context.Background(), []*types.Block{b.pendingBlock}); err != nil {
panic(err)
}
//fmt.Printf("---- End committing block %d\n", b.pendingBlock.NumberU64())
b.prependDb = b.database
b.prependBlock = b.pendingBlock
b.emptyPendingBlock()
}
// Rollback aborts all pending transactions, reverting to the last committed state.
func (b *SimulatedBackend) Rollback() {
b.mu.Lock()
defer b.mu.Unlock()
b.rollback()
}
func (b *SimulatedBackend) emptyPendingBlock() {
ctx := b.blockchain.WithContext(context.Background(), big.NewInt(b.prependBlock.Number().Int64()+1))
blocks, _ := core.GenerateChain(ctx, b.config, b.prependBlock, ethash.NewFaker(), b.prependDb.MemCopy(), 1, func(int, *core.BlockGen) {})
b.pendingBlock = blocks[0]
b.pendingHeader = b.pendingBlock.Header()
b.gasPool = new(core.GasPool).AddGas(b.pendingHeader.GasLimit)
b.pendingTds = state.NewTrieDbState(b.prependBlock.Root(), b.prependDb.MemCopy(), b.prependBlock.NumberU64())
b.pendingState = state.New(b.pendingTds)
b.pendingTds.StartNewBuffer()
}
func (b *SimulatedBackend) prependingState() *state.IntraBlockState {
tds := state.NewTrieDbState(b.prependBlock.Root(), b.prependDb.MemCopy(), b.prependBlock.NumberU64())
return state.New(tds)
}
// stateByBlockNumber retrieves a state by a given blocknumber.
func (b *SimulatedBackend) stateByBlockNumber(ctx context.Context, blockNumber *big.Int) (*state.IntraBlockState, error) {
if blockNumber == nil || blockNumber.Cmp(b.blockchain.CurrentBlock().Number()) == 0 {
s, _, err := b.blockchain.State()
return s, err
}
state, _, err := b.blockchain.StateAt(uint64(blockNumber.Int64()))
return state, err
}
// CodeAt returns the code associated with a certain account in the blockchain.
func (b *SimulatedBackend) CodeAt(ctx context.Context, contract common.Address, blockNumber *big.Int) ([]byte, error) {
b.mu.Lock()
defer b.mu.Unlock()
statedb, err := b.stateByBlockNumber(ctx, blockNumber)
if err != nil {
return nil, err
}
return statedb.GetCode(contract), nil
}
// BalanceAt returns the wei balance of a certain account in the blockchain.
func (b *SimulatedBackend) BalanceAt(ctx context.Context, contract common.Address, blockNumber *big.Int) (*big.Int, error) {
b.mu.Lock()
defer b.mu.Unlock()
statedb, err := b.stateByBlockNumber(ctx, blockNumber)
if err != nil {
return nil, err
}
return statedb.GetBalance(contract), nil
}
// NonceAt returns the nonce of a certain account in the blockchain.
func (b *SimulatedBackend) NonceAt(ctx context.Context, contract common.Address, blockNumber *big.Int) (uint64, error) {
b.mu.Lock()
defer b.mu.Unlock()
statedb, err := b.stateByBlockNumber(ctx, blockNumber)
if err != nil {
return 0, err
}
return statedb.GetNonce(contract), nil
}
// StorageAt returns the value of key in the storage of an account in the blockchain.
func (b *SimulatedBackend) StorageAt(ctx context.Context, contract common.Address, key common.Hash, blockNumber *big.Int) ([]byte, error) {
b.mu.Lock()
defer b.mu.Unlock()
statedb, err := b.stateByBlockNumber(ctx, blockNumber)
if err != nil {
return nil, err
}
val := statedb.GetState(contract, key)
return val[:], nil
}
// TransactionReceipt returns the receipt of a transaction.
func (b *SimulatedBackend) TransactionReceipt(ctx context.Context, txHash common.Hash) (*types.Receipt, error) {
b.mu.Lock()
defer b.mu.Unlock()
receipt, _, _, _ := rawdb.ReadReceipt(b.database, txHash, b.config)
return receipt, nil
}
// TransactionByHash checks the pool of pending transactions in addition to the
// blockchain. The isPending return value indicates whether the transaction has been
// mined yet. Note that the transaction may not be part of the canonical chain even if
// it's not pending.
func (b *SimulatedBackend) TransactionByHash(ctx context.Context, txHash common.Hash) (*types.Transaction, bool, error) {
b.mu.Lock()
defer b.mu.Unlock()
tx := b.pendingBlock.Transaction(txHash)
if tx != nil {
return tx, true, nil
}
tx, _, _, _ = rawdb.ReadTransaction(b.database, txHash)
if tx != nil {
return tx, false, nil
}
return nil, false, ethereum.NotFound
}
// BlockByHash retrieves a block based on the block hash
func (b *SimulatedBackend) BlockByHash(ctx context.Context, hash common.Hash) (*types.Block, error) {
b.mu.Lock()
defer b.mu.Unlock()
if hash == b.pendingBlock.Hash() {
return b.pendingBlock, nil
}
block := b.blockchain.GetBlockByHash(hash)
if block != nil {
return block, nil
}
return nil, errBlockDoesNotExist
}
// BlockByNumber retrieves a block from the database by number, caching it
// (associated with its hash) if found.
func (b *SimulatedBackend) BlockByNumber(ctx context.Context, number *big.Int) (*types.Block, error) {
b.mu.Lock()
defer b.mu.Unlock()
if number == nil || number.Cmp(b.pendingBlock.Number()) == 0 {
return b.blockchain.CurrentBlock(), nil
}
block := b.blockchain.GetBlockByNumber(uint64(number.Int64()))
if block == nil {
return nil, errBlockDoesNotExist
}
return block, nil
}
// HeaderByHash returns a block header from the current canonical chain.
func (b *SimulatedBackend) HeaderByHash(ctx context.Context, hash common.Hash) (*types.Header, error) {
b.mu.Lock()
defer b.mu.Unlock()
if hash == b.pendingBlock.Hash() {
return b.pendingBlock.Header(), nil
}
header := b.blockchain.GetHeaderByHash(hash)
if header == nil {
return nil, errBlockDoesNotExist
}
return header, nil
}
// HeaderByNumber returns a block header from the current canonical chain. If number is
// nil, the latest known header is returned.
func (b *SimulatedBackend) HeaderByNumber(ctx context.Context, block *big.Int) (*types.Header, error) {
b.mu.Lock()
defer b.mu.Unlock()
if block == nil || block.Cmp(b.pendingBlock.Number()) == 0 {
return b.blockchain.CurrentHeader(), nil
}
return b.blockchain.GetHeaderByNumber(uint64(block.Int64())), nil
}
// TransactionCount returns the number of transactions in a given block
func (b *SimulatedBackend) TransactionCount(ctx context.Context, blockHash common.Hash) (uint, error) {
b.mu.Lock()
defer b.mu.Unlock()
if blockHash == b.pendingBlock.Hash() {
return uint(b.pendingBlock.Transactions().Len()), nil
}
block := b.blockchain.GetBlockByHash(blockHash)
if block == nil {
return uint(0), errBlockDoesNotExist
}
return uint(block.Transactions().Len()), nil
}
// TransactionInBlock returns the transaction for a specific block at a specific index
func (b *SimulatedBackend) TransactionInBlock(ctx context.Context, blockHash common.Hash, index uint) (*types.Transaction, error) {
b.mu.Lock()
defer b.mu.Unlock()
if blockHash == b.pendingBlock.Hash() {
transactions := b.pendingBlock.Transactions()
if uint(len(transactions)) < index+1 {
return nil, errTransactionDoesNotExist
}
return transactions[index], nil
}
block := b.blockchain.GetBlockByHash(blockHash)
if block == nil {
return nil, errBlockDoesNotExist
}
transactions := block.Transactions()
if uint(len(transactions)) < index+1 {
return nil, errTransactionDoesNotExist
}
return transactions[index], nil
}
// PendingCodeAt returns the code associated with an account in the pending state.
func (b *SimulatedBackend) PendingCodeAt(ctx context.Context, contract common.Address) ([]byte, error) {
b.mu.Lock()
defer b.mu.Unlock()
return b.pendingState.GetCode(contract), nil
}
// CallContract executes a contract call.
func (b *SimulatedBackend) CallContract(ctx context.Context, call ethereum.CallMsg, blockNumber *big.Int) ([]byte, error) {
b.mu.Lock()
defer b.mu.Unlock()
if blockNumber != nil && blockNumber.Cmp(b.blockchain.CurrentBlock().Number()) != 0 {
return nil, errBlockNumberUnsupported
}
state, err := b.blockchain.State()
if err != nil {
return nil, err
}
res, err := b.callContract(ctx, call, b.blockchain.CurrentBlock(), state)
if err != nil {
return nil, err
}
return res.Return(), nil
}
// PendingCallContract executes a contract call on the pending state.
func (b *SimulatedBackend) PendingCallContract(ctx context.Context, call ethereum.CallMsg) ([]byte, error) {
b.mu.Lock()
defer b.mu.Unlock()
defer b.pendingState.RevertToSnapshot(b.pendingState.Snapshot())
res, err := b.callContract(ctx, call, b.pendingBlock, b.pendingState)
if err != nil {
return nil, err
}
return res.Return(), nil
}
// PendingNonceAt implements PendingStateReader.PendingNonceAt, retrieving
// the nonce currently pending for the account.
func (b *SimulatedBackend) PendingNonceAt(ctx context.Context, account common.Address) (uint64, error) {
b.mu.Lock()
defer b.mu.Unlock()
return b.pendingState.GetOrNewStateObject(account).Nonce(), nil
}
// SuggestGasPrice implements ContractTransactor.SuggestGasPrice. Since the simulated
// chain doesn't have miners, we just return a gas price of 1 for any call.
func (b *SimulatedBackend) SuggestGasPrice(ctx context.Context) (*big.Int, error) {
return big.NewInt(1), nil
}
// EstimateGas executes the requested code against the currently pending block/state and
// returns the used amount of gas.
func (b *SimulatedBackend) EstimateGas(ctx context.Context, call ethereum.CallMsg) (uint64, error) {
b.mu.Lock()
defer b.mu.Unlock()
// Determine the lowest and highest possible gas limits to binary search in between
var (
lo uint64 = params.TxGas - 1
hi uint64
cap uint64
)
if call.Gas >= params.TxGas {
hi = call.Gas
} else {
hi = b.pendingBlock.GasLimit()
}
// Recap the highest gas allowance with account's balance.
if call.GasPrice != nil && call.GasPrice.Uint64() != 0 {
balance := b.pendingState.GetBalance(call.From) // from can't be nil
available := new(big.Int).Set(balance)
if call.Value != nil {
if call.Value.Cmp(available) >= 0 {
return 0, errors.New("insufficient funds for transfer")
}
available.Sub(available, call.Value)
}
allowance := new(big.Int).Div(available, call.GasPrice)
if hi > allowance.Uint64() {
transfer := call.Value
if transfer == nil {
transfer = new(big.Int)
}
log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance,
"sent", transfer, "gasprice", call.GasPrice, "fundable", allowance)
hi = allowance.Uint64()
}
}
cap = hi
// Create a helper to check if a gas allowance results in an executable transaction
executable := func(gas uint64) (bool, *core.ExecutionResult, error) {
call.Gas = gas
snapshot := b.pendingState.Snapshot()
res, err := b.callContract(ctx, call, b.pendingBlock, b.pendingState)
b.pendingState.RevertToSnapshot(snapshot)
if err != nil {
if err == core.ErrIntrinsicGas {
return true, nil, nil // Special case, raise gas limit
}
return true, nil, err // Bail out
}
return res.Failed(), res, nil
}
// Execute the binary search and hone in on an executable gas limit
for lo+1 < hi {
mid := (hi + lo) / 2
failed, _, err := executable(mid)
// If the error is not nil(consensus error), it means the provided message
// call or transaction will never be accepted no matter how much gas it is
// assigned. Return the error directly, don't struggle any more
if err != nil {
return 0, err
}
if failed {
lo = mid
} else {
hi = mid
}
}
// Reject the transaction as invalid if it still fails at the highest allowance
if hi == cap {
failed, result, err := executable(hi)
if err != nil {
return 0, err
}
if failed {
if result != nil && result.Err != vm.ErrOutOfGas {
errMsg := fmt.Sprintf("always failing transaction (%v)", result.Err)
if len(result.Revert()) > 0 {
ret, err := abi.UnpackRevert(result.Revert())
if err != nil {
errMsg += fmt.Sprintf(" (%#x)", result.Revert())
} else {
errMsg += fmt.Sprintf(" (%s)", ret)
}
}
return 0, errors.New(errMsg)
}
// Otherwise, the specified gas cap is too low
return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap)
}
}
return hi, nil
}
// callContract implements common code between normal and pending contract calls.
// state is modified during execution, make sure to copy it if necessary.
func (b *SimulatedBackend) callContract(ctx context.Context, call ethereum.CallMsg, block *types.Block, statedb *state.StateDB) (*core.ExecutionResult, error) {
// Ensure message is initialized properly.
if call.GasPrice == nil {
call.GasPrice = big.NewInt(1)
}
if call.Gas == 0 {
call.Gas = 50000000
}
if call.Value == nil {
call.Value = new(big.Int)
}
// Set infinite balance to the fake caller account.
from := statedb.GetOrNewStateObject(call.From)
from.SetBalance(math.MaxBig256)
// Execute the call.
msg := callmsg{call}
evmContext := core.NewEVMContext(msg, block.Header(), b.blockchain, nil)
// Create a new environment which holds all relevant information
// about the transaction and calling mechanisms.
vmenv := vm.NewEVM(evmContext, statedb, b.config, vm.Config{})
gaspool := new(core.GasPool).AddGas(math.MaxUint64)
return core.NewStateTransition(vmenv, msg, gaspool).TransitionDb()
}
// SendTransaction updates the pending block to include the given transaction.
// It panics if the transaction is invalid.
func (b *SimulatedBackend) SendTransaction(ctx context.Context, tx *types.Transaction) error {
b.mu.Lock()
defer b.mu.Unlock()
sender, err := types.Sender(types.NewEIP155Signer(b.config.ChainID), tx)
if err != nil {
return fmt.Errorf("invalid transaction: %v", err)
}
nonce := b.pendingState.GetNonce(sender)
if tx.Nonce() != nonce {
return fmt.Errorf("invalid transaction nonce: got %d, want %d", tx.Nonce(), nonce)
}
b.pendingState.Prepare(tx.Hash(), common.Hash{}, len(b.pendingBlock.Transactions()))
if _, err := core.ApplyTransaction(
b.config, b.blockchain,
&b.pendingHeader.Coinbase, b.gasPool,
b.pendingState, b.pendingTds.TrieStateWriter(),
b.pendingHeader, tx,
&b.pendingHeader.GasUsed, vm.Config{}); err != nil {
return err
}
//fmt.Printf("==== Start producing block %d\n", (b.prependBlock.NumberU64() + 1))
ctx = b.blockchain.WithContext(ctx, big.NewInt(b.prependBlock.Number().Int64()+1))
blocks, _ := core.GenerateChain(ctx, b.config, b.prependBlock, ethash.NewFaker(), b.prependDb.MemCopy(), 1, func(number int, block *core.BlockGen) {
for _, tx := range b.pendingBlock.Transactions() {
block.AddTxWithChain(b.blockchain, tx)
}
block.AddTxWithChain(b.blockchain, tx)
})
//fmt.Printf("==== End producing block %d\n", (b.prependBlock.NumberU64() + 1))
b.pendingBlock = blocks[0]
b.pendingHeader = b.pendingBlock.Header()
return nil
}
// FilterLogs executes a log filter operation, blocking during execution and
// returning all the results in one batch.
//
// TODO(karalabe): Deprecate when the subscription one can return past data too.
func (b *SimulatedBackend) FilterLogs(ctx context.Context, query ethereum.FilterQuery) ([]types.Log, error) {
var filter *filters.Filter
if query.BlockHash != nil {
// Block filter requested, construct a single-shot filter
filter = filters.NewBlockFilter(&filterBackend{b.database, b.blockchain}, *query.BlockHash, query.Addresses, query.Topics)
} else {
// Initialize unset filter boundaried to run from genesis to chain head
from := int64(0)
if query.FromBlock != nil {
from = query.FromBlock.Int64()
}
to := int64(-1)
if query.ToBlock != nil {
to = query.ToBlock.Int64()
}
// Construct the range filter
filter = filters.NewRangeFilter(&filterBackend{b.database, b.blockchain}, from, to, query.Addresses, query.Topics)
}
// Run the filter and return all the logs
logs, err := filter.Logs(ctx)
if err != nil {
return nil, err
}
res := make([]types.Log, len(logs))
for i, log := range logs {
res[i] = *log
}
return res, nil
}
// SubscribeFilterLogs creates a background log filtering operation, returning a
// subscription immediately, which can be used to stream the found events.
func (b *SimulatedBackend) SubscribeFilterLogs(ctx context.Context, query ethereum.FilterQuery, ch chan<- types.Log) (ethereum.Subscription, error) {
// Subscribe to contract events
sink := make(chan []*types.Log)
sub, err := b.events.SubscribeLogs(query, sink)
if err != nil {
return nil, err
}
// Since we're getting logs in batches, we need to flatten them into a plain stream
return event.NewSubscription(func(quit <-chan struct{}) error {
defer sub.Unsubscribe()
for {
select {
case logs := <-sink:
for _, log := range logs {
select {
case ch <- *log:
case err := <-sub.Err():
return err
case <-quit:
return nil
}
}
case err := <-sub.Err():
return err
case <-quit:
return nil
}
}
}), nil
}
// SubscribeNewHead returns an event subscription for a new header
func (b *SimulatedBackend) SubscribeNewHead(ctx context.Context, ch chan<- *types.Header) (ethereum.Subscription, error) {
// subscribe to a new head
sink := make(chan *types.Header)
sub := b.events.SubscribeNewHeads(sink)
return event.NewSubscription(func(quit <-chan struct{}) error {
defer sub.Unsubscribe()
for {
select {
case head := <-sink:
select {
case ch <- head:
case err := <-sub.Err():
return err
case <-quit:
return nil
}
case err := <-sub.Err():
return err
case <-quit:
return nil
}
}
}), nil
}
// AdjustTime adds a time shift to the simulated clock.
func (b *SimulatedBackend) AdjustTime(adjustment time.Duration) error {
b.mu.Lock()
defer b.mu.Unlock()
ctx := b.blockchain.WithContext(context.Background(), big.NewInt(b.prependBlock.Number().Int64()+1))
blocks, _ := core.GenerateChain(ctx, b.config, b.prependBlock, ethash.NewFaker(), b.prependDb.MemCopy(), 1, func(number int, block *core.BlockGen) {
for _, tx := range b.pendingBlock.Transactions() {
block.AddTxWithChain(b.blockchain, tx)
}
block.OffsetTime(int64(adjustment.Seconds()))
})
b.pendingBlock = blocks[0]
b.pendingHeader = b.pendingBlock.Header()
return nil
}
// Blockchain returns the underlying blockchain.
func (b *SimulatedBackend) Blockchain() *core.BlockChain {
return b.blockchain
}
// callmsg implements core.Message to allow passing it as a transaction simulator.
type callmsg struct {
ethereum.CallMsg
}
func (m callmsg) From() common.Address { return m.CallMsg.From }
func (m callmsg) Nonce() uint64 { return 0 }
func (m callmsg) CheckNonce() bool { return false }
func (m callmsg) To() *common.Address { return m.CallMsg.To }
func (m callmsg) GasPrice() *big.Int { return m.CallMsg.GasPrice }
func (m callmsg) Gas() uint64 { return m.CallMsg.Gas }
func (m callmsg) Value() *big.Int { return m.CallMsg.Value }
func (m callmsg) Data() []byte { return m.CallMsg.Data }
// filterBackend implements filters.Backend to support filtering for logs without
// taking bloom-bits acceleration structures into account.
type filterBackend struct {
db ethdb.Database
bc *core.BlockChain
}
func (fb *filterBackend) ChainDb() ethdb.Database { return fb.db }
func (fb *filterBackend) EventMux() *event.TypeMux { panic("not supported") }
func (fb *filterBackend) HeaderByNumber(ctx context.Context, block rpc.BlockNumber) (*types.Header, error) {
if block == rpc.LatestBlockNumber {
return fb.bc.CurrentHeader(), nil
}
return fb.bc.GetHeaderByNumber(uint64(block.Int64())), nil
}
func (fb *filterBackend) HeaderByHash(ctx context.Context, hash common.Hash) (*types.Header, error) {
return fb.bc.GetHeaderByHash(hash), nil
}
func (fb *filterBackend) GetReceipts(ctx context.Context, hash common.Hash) (types.Receipts, error) {
number := rawdb.ReadHeaderNumber(fb.db, hash)
if number == nil {
return nil, nil
}
return rawdb.ReadReceipts(fb.db, hash, *number, fb.bc.Config()), nil
}
func (fb *filterBackend) GetLogs(ctx context.Context, hash common.Hash) ([][]*types.Log, error) {
number := rawdb.ReadHeaderNumber(fb.db, hash)
if number == nil {
return nil, nil
}
receipts := rawdb.ReadReceipts(fb.db, hash, *number, fb.bc.Config())
if receipts == nil {
return nil, nil
}
logs := make([][]*types.Log, len(receipts))
for i, receipt := range receipts {
logs[i] = receipt.Logs
}
return logs, nil
}
func (fb *filterBackend) SubscribeNewTxsEvent(ch chan<- core.NewTxsEvent) event.Subscription {
return nullSubscription()
}
func (fb *filterBackend) SubscribeChainEvent(ch chan<- core.ChainEvent) event.Subscription {
return fb.bc.SubscribeChainEvent(ch)
}
func (fb *filterBackend) SubscribeRemovedLogsEvent(ch chan<- core.RemovedLogsEvent) event.Subscription {
return fb.bc.SubscribeRemovedLogsEvent(ch)
}
func (fb *filterBackend) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription {
return fb.bc.SubscribeLogsEvent(ch)
}
func (fb *filterBackend) SubscribePendingLogsEvent(ch chan<- []*types.Log) event.Subscription {
return nullSubscription()
}
func (fb *filterBackend) BloomStatus() (uint64, uint64) { return 4096, 0 }
func (fb *filterBackend) ServiceFilter(ctx context.Context, ms *bloombits.MatcherSession) {
panic("not supported")
}
func nullSubscription() event.Subscription {
return event.NewSubscription(func(quit <-chan struct{}) error {
<-quit
return nil
})
}