mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-04 01:54:28 +00:00
c4805e0262
* issue/issue-281-create_binding_to_pedersen_hash * Add //nolint * Add more nolints * move nolint * Remove nolit * Add gcc install * Upd .ci * Remove staticcheck * Add envs * try to exclude pedersen_hash from test * try to fix mac os build * Add include for mac os * Add include for mac os * Fix runner_os * remove test for macos * Change restrictions * restrict tests to ubuntu * Try test windows * Add build constraint
132 lines
4.4 KiB
C++
132 lines
4.4 KiB
C++
#ifndef STARKWARE_ALGEBRA_PRIME_FIELD_ELEMENT_H_
|
|
#define STARKWARE_ALGEBRA_PRIME_FIELD_ELEMENT_H_
|
|
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "big_int.h"
|
|
#include "error_handling.h"
|
|
#include "prng.h"
|
|
|
|
namespace starkware {
|
|
|
|
/*
|
|
Represents an element of GF(p) for p = 2^251 + 17 * 2^192 + 1.
|
|
The value is stored in Montgomery representation.
|
|
*/
|
|
class PrimeFieldElement {
|
|
public:
|
|
using ValueType = BigInt<4>;
|
|
static constexpr ValueType kModulus =
|
|
0x800000000000011000000000000000000000000000000000000000000000001_Z;
|
|
static constexpr ValueType kMontgomeryR =
|
|
0x7fffffffffffdf0ffffffffffffffffffffffffffffffffffffffffffffffe1_Z;
|
|
static constexpr ValueType kMontgomeryRSquared =
|
|
0x7ffd4ab5e008810ffffffffff6f800000000001330ffffffffffd737e000401_Z;
|
|
static constexpr ValueType kMontgomeryRCubed =
|
|
0x38e5f79873c0a6df47d84f8363000187545706677ffcc06cc7177d1406df18e_Z;
|
|
static constexpr uint64_t kMontgomeryMPrime = ~uint64_t(0);
|
|
static constexpr ValueType kHalfMultiplicativeGroupSize =
|
|
0x400000000000008800000000000000000000000000000000000000000000000_Z;
|
|
|
|
PrimeFieldElement() = delete;
|
|
|
|
static PrimeFieldElement FromUint(uint64_t val) {
|
|
return PrimeFieldElement(
|
|
// Note that because MontgomeryMul divides by r we need to multiply by r^2 here.
|
|
MontgomeryMul(ValueType(val), kMontgomeryRSquared));
|
|
}
|
|
|
|
static constexpr PrimeFieldElement FromBigInt(const ValueType& val) {
|
|
return PrimeFieldElement(
|
|
// Note that because MontgomeryMul divides by r we need to multiply by r^2 here.
|
|
MontgomeryMul(val, kMontgomeryRSquared));
|
|
}
|
|
|
|
static PrimeFieldElement RandomElement(Prng* prng);
|
|
|
|
static constexpr PrimeFieldElement Zero() { return PrimeFieldElement(ValueType({})); }
|
|
|
|
static constexpr PrimeFieldElement One() { return PrimeFieldElement(kMontgomeryR); }
|
|
|
|
PrimeFieldElement operator*(const PrimeFieldElement& rhs) const {
|
|
return PrimeFieldElement(MontgomeryMul(value_, rhs.value_));
|
|
}
|
|
|
|
PrimeFieldElement operator+(const PrimeFieldElement& rhs) const {
|
|
return PrimeFieldElement{ValueType::ReduceIfNeeded(value_ + rhs.value_, kModulus)};
|
|
}
|
|
|
|
PrimeFieldElement operator-(const PrimeFieldElement& rhs) const {
|
|
return PrimeFieldElement{(value_ >= rhs.value_) ? (value_ - rhs.value_)
|
|
: (value_ + kModulus - rhs.value_)};
|
|
}
|
|
|
|
PrimeFieldElement operator-() const { return Zero() - *this; }
|
|
|
|
PrimeFieldElement operator/(const PrimeFieldElement& rhs) const { return *this * rhs.Inverse(); }
|
|
|
|
bool operator==(const PrimeFieldElement& rhs) const { return value_ == rhs.value_; }
|
|
bool operator!=(const PrimeFieldElement& rhs) const { return !(*this == rhs); }
|
|
|
|
PrimeFieldElement Inverse() const {
|
|
ASSERT(*this != PrimeFieldElement::Zero(), "Zero does not have an inverse");
|
|
return Pow((kModulus - 0x2_Z).ToBoolVector());
|
|
}
|
|
|
|
/*
|
|
Returns the power of a field element, where exponent_bits[0] is the least significant bit of the
|
|
exponent.
|
|
Note that this function doesn't support negative exponents.
|
|
*/
|
|
PrimeFieldElement Pow(const std::vector<bool>& exponent_bits) const;
|
|
|
|
/*
|
|
Returns the power of a field element for the given exponent.
|
|
*/
|
|
PrimeFieldElement Pow(const uint64_t exponent) const;
|
|
|
|
/*
|
|
For a field element x, returns true if there exists a field element y such that x = y^2.
|
|
*/
|
|
bool IsSquare() const;
|
|
|
|
/*
|
|
For a field element x, returns an element y such that y^2 = x. If no such y exists, the function
|
|
throws an exception.
|
|
*/
|
|
PrimeFieldElement Sqrt() const;
|
|
|
|
/*
|
|
Returns the standard representation.
|
|
|
|
A value in the range [0, kBigPrimeConstants::kModulus) in non-Montogomery representation.
|
|
*/
|
|
ValueType ToStandardForm() const { return MontgomeryMul(value_, ValueType::One()); }
|
|
|
|
std::string ToString() const { return ToStandardForm().ToString(); }
|
|
|
|
private:
|
|
explicit constexpr PrimeFieldElement(ValueType val) : value_(val) {}
|
|
|
|
static constexpr ValueType MontgomeryMul(const ValueType& x, const ValueType& y) {
|
|
return ValueType::MontMul(x, y, kModulus, kMontgomeryMPrime);
|
|
}
|
|
|
|
ValueType value_;
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, const PrimeFieldElement& element) {
|
|
return out << element.ToString();
|
|
}
|
|
|
|
} // namespace starkware
|
|
|
|
#endif // STARKWARE_ALGEBRA_PRIME_FIELD_ELEMENT_H_
|