erigon-pulse/trie/node.go
Alex Sharov ff23980dc6
Intermediate hash phase 2 (#341)
* add env INTERMEDIATE_TRIE_CACHE
* try to use assert.New() pattern
* Fix "maligned" linter warnings to reduce space consumption of structs:

core/types/accounts/account.go:18:14: struct of size 136 bytes could be of size 128 bytes (maligned)
type Account struct {
--
trie/node.go:44:10: struct of size 80 bytes could be of size 72 bytes (maligned)
	duoNode struct {
--
trie/resolve_set.go:28:17: struct of size 56 bytes could be of size 48 bytes (maligned)
type ResolveSet struct {
--
trie/resolver.go:34:15: struct of size 88 bytes could be of size 72 bytes (maligned)
type Resolver struct {
--
trie/visual.go:32:17: struct of size 104 bytes could be of size 96 bytes (maligned)
type VisualOpts struct {
2020-01-31 14:31:50 +07:00

286 lines
6.9 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"io"
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/rlp"
)
var indices = []string{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "[17]"}
type node interface {
print(io.Writer)
fstring(string) string
dirty() bool
hash() []byte
}
type (
// DESCRIBED: docs/programmers_guide/guide.md#hexary-radix-patricia-tree
fullNode struct {
flags nodeFlag
Children [17]node // Actual trie node data to encode/decode (needs custom encoder)
}
// DESCRIBED: docs/programmers_guide/guide.md#hexary-radix-patricia-tree
duoNode struct {
flags nodeFlag
mask uint32 // Bitmask. The set bits indicate the child is not nil
child1 node
child2 node
}
// DESCRIBED: docs/programmers_guide/guide.md#hexary-radix-patricia-tree
shortNode struct {
Key []byte // HEX encoding
Val node
}
hashNode []byte
valueNode []byte
accountNode struct {
accounts.Account
storage node
hashCorrect bool
}
)
// nilValueNode is used when collapsing internal trie nodes for hashing, since
// unset children need to serialize correctly.
var nilValueNode = valueNode(nil)
// EncodeRLP encodes a full node into the consensus RLP format.
func (n *fullNode) EncodeRLP(w io.Writer) error {
var nodes [17]node
for i, child := range &n.Children {
if child != nil {
nodes[i] = child
} else {
nodes[i] = nilValueNode
}
}
return rlp.Encode(w, nodes)
}
func (n *duoNode) EncodeRLP(w io.Writer) error {
var children [17]node
i1, i2 := n.childrenIdx()
children[i1] = n.child1
children[i2] = n.child2
for i := 0; i < 17; i++ {
if i != int(i1) && i != int(i2) {
children[i] = valueNode(nil)
}
}
return rlp.Encode(w, children)
}
func (n *duoNode) childrenIdx() (i1 byte, i2 byte) {
child := 1
var m uint32 = 1
for i := 0; i < 17; i++ {
if (n.mask & m) > 0 {
if child == 1 {
i1 = byte(i)
child = 2
} else if child == 2 {
i2 = byte(i)
break
}
}
m <<= 1
}
return i1, i2
}
func (n *fullNode) copy() *fullNode {
c := *n
return &c
}
func (n *fullNode) mask() uint32 {
var m uint32
for i, child := range n.Children {
if child != nil {
m |= (uint32(1) << uint(i))
}
}
return m
}
func (n *fullNode) hashesExcept(idx byte) (uint32, []common.Hash, map[byte]*shortNode) {
hashes := []common.Hash{}
var mask uint32
var m map[byte]*shortNode
for i, child := range n.Children {
if child != nil && i != int(idx) {
short := false
if s, ok := child.(*shortNode); ok {
if m == nil {
m = make(map[byte]*shortNode)
}
m[byte(i)] = s
short = true
}
if !short {
mask |= (uint32(1) << uint(i))
hashes = append(hashes, common.BytesToHash(child.hash()))
}
}
}
return mask, hashes, m
}
func (n *fullNode) duoCopy() *duoNode {
c := duoNode{}
first := true
for i, child := range n.Children {
if child == nil {
continue
}
if first {
first = false
c.mask |= (uint32(1) << uint(i))
c.child1 = child
} else {
c.mask |= (uint32(1) << uint(i))
c.child2 = child
break
}
}
if !n.flags.dirty {
copy(c.flags.hash[:], n.flags.hash[:])
}
c.flags.dirty = n.flags.dirty
return &c
}
func (n *duoNode) fullCopy() *fullNode {
c := fullNode{}
i1, i2 := n.childrenIdx()
c.Children[i1] = n.child1
c.Children[i2] = n.child2
if !n.flags.dirty {
copy(c.flags.hash[:], n.flags.hash[:])
}
c.flags.dirty = n.flags.dirty
return &c
}
func (n *duoNode) hashesExcept(idx byte) (uint32, []common.Hash, map[byte]*shortNode) {
i1, i2 := n.childrenIdx()
var hash1, hash2 common.Hash
var short1, short2 *shortNode
if n.child1 != nil {
if s, ok := n.child1.(*shortNode); ok {
short1 = s
}
if short1 == nil {
hash1 = common.BytesToHash(n.child1.hash())
}
}
if n.child2 != nil {
if s, ok := n.child2.(*shortNode); ok {
short2 = s
}
if short2 == nil {
hash2 = common.BytesToHash(n.child2.hash())
}
}
switch idx {
case i1:
if short2 == nil {
return uint32(1) << i2, []common.Hash{hash2}, nil
} else {
m := make(map[byte]*shortNode)
m[i2] = short2
return 0, []common.Hash{}, m
}
case i2:
if short1 == nil {
return uint32(1) << i1, []common.Hash{hash1}, nil
} else {
m := make(map[byte]*shortNode)
m[i1] = short1
return 0, []common.Hash{}, m
}
default:
if short1 == nil {
if short2 == nil {
return (uint32(1) << i1) | (uint32(1) << i2), []common.Hash{hash1, hash2}, nil
} else {
m := make(map[byte]*shortNode)
m[i2] = short2
return (uint32(1) << i1), []common.Hash{hash1}, m
}
} else {
if short2 == nil {
m := make(map[byte]*shortNode)
m[i1] = short1
return (uint32(1) << i2), []common.Hash{hash2}, m
} else {
m := make(map[byte]*shortNode)
m[i1] = short1
m[i2] = short2
return 0, []common.Hash{}, m
}
}
}
}
func (n *duoNode) copy() *duoNode {
c := *n
return &c
}
func (n *shortNode) copy() *shortNode {
c := *n
return &c
}
// nodeFlag contains caching-related metadata about a node.
type nodeFlag struct {
hash common.Hash // cached hash of the node
dirty bool // whether the hash field represent the true hash
}
func (n hashNode) dirty() bool { return false }
func (n valueNode) dirty() bool { return true }
func (n *fullNode) dirty() bool { return n.flags.dirty }
func (n *duoNode) dirty() bool { return n.flags.dirty }
func (n *shortNode) dirty() bool { return true }
func (an *accountNode) dirty() bool { return true }
func (n hashNode) hash() []byte { return n }
func (n valueNode) hash() []byte { return nil }
func (n *fullNode) hash() []byte { return n.flags.hash[:] }
func (n *duoNode) hash() []byte { return n.flags.hash[:] }
func (n *shortNode) hash() []byte { return nil }
func (an *accountNode) hash() []byte { return nil }
// Pretty printing.
func (n fullNode) String() string { return n.fstring("") }
func (n duoNode) String() string { return n.fstring("") }
func (n shortNode) String() string { return n.fstring("") }
func (n hashNode) String() string { return n.fstring("") }
func (n valueNode) String() string { return n.fstring("") }
func (an accountNode) String() string { return an.fstring("") }