// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // +build !nacl,!js,cgo,!gofuzz package crypto import ( "crypto/ecdsa" "crypto/elliptic" "fmt" "gitlab.com/pulsechaincom/go-pulse/common/math" "gitlab.com/pulsechaincom/go-pulse/crypto/secp256k1" ) // Ecrecover returns the uncompressed public key that created the given signature. func Ecrecover(hash, sig []byte) ([]byte, error) { return secp256k1.RecoverPubkey(hash, sig) } // SigToPub returns the public key that created the given signature. func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { s, err := Ecrecover(hash, sig) if err != nil { return nil, err } x, y := elliptic.Unmarshal(S256(), s) return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil } // Sign calculates an ECDSA signature. // // This function is susceptible to chosen plaintext attacks that can leak // information about the private key that is used for signing. Callers must // be aware that the given digest cannot be chosen by an adversery. Common // solution is to hash any input before calculating the signature. // // The produced signature is in the [R || S || V] format where V is 0 or 1. func Sign(digestHash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) { if len(digestHash) != DigestLength { return nil, fmt.Errorf("hash is required to be exactly %d bytes (%d)", DigestLength, len(digestHash)) } seckey := math.PaddedBigBytes(prv.D, prv.Params().BitSize/8) defer zeroBytes(seckey) return secp256k1.Sign(digestHash, seckey) } // VerifySignature checks that the given public key created signature over digest. // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format. // The signature should have the 64 byte [R || S] format. func VerifySignature(pubkey, digestHash, signature []byte) bool { return secp256k1.VerifySignature(pubkey, digestHash, signature) } // DecompressPubkey parses a public key in the 33-byte compressed format. func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) { x, y := secp256k1.DecompressPubkey(pubkey) if x == nil { return nil, fmt.Errorf("invalid public key") } return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil } // CompressPubkey encodes a public key to the 33-byte compressed format. func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { return secp256k1.CompressPubkey(pubkey.X, pubkey.Y) } // S256 returns an instance of the secp256k1 curve. func S256() elliptic.Curve { return secp256k1.S256() }