package fetcher import ( "encoding/binary" "errors" "math/big" "sync" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" ) var ( knownHash = common.Hash{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} unknownHash = common.Hash{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} bannedHash = common.Hash{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3} genesis = createBlock(1, common.Hash{}, knownHash) ) // idCounter is used by the createHashes method the generate deterministic but unique hashes var idCounter = int64(2) // #1 is the genesis block // createHashes generates a batch of hashes rooted at a specific point in the chain. func createHashes(amount int, root common.Hash) (hashes []common.Hash) { hashes = make([]common.Hash, amount+1) hashes[len(hashes)-1] = root for i := 0; i < len(hashes)-1; i++ { binary.BigEndian.PutUint64(hashes[i][:8], uint64(idCounter)) idCounter++ } return } // createBlock assembles a new block at the given chain height. func createBlock(i int, parent, hash common.Hash) *types.Block { header := &types.Header{Number: big.NewInt(int64(i))} block := types.NewBlockWithHeader(header) block.HeaderHash = hash block.ParentHeaderHash = parent return block } // copyBlock makes a deep copy of a block suitable for local modifications. func copyBlock(block *types.Block) *types.Block { return createBlock(int(block.Number().Int64()), block.ParentHeaderHash, block.HeaderHash) } // createBlocksFromHashes assembles a collection of blocks, each having a correct // place in the given hash chain. func createBlocksFromHashes(hashes []common.Hash) map[common.Hash]*types.Block { blocks := make(map[common.Hash]*types.Block) for i := 0; i < len(hashes); i++ { parent := knownHash if i < len(hashes)-1 { parent = hashes[i+1] } blocks[hashes[i]] = createBlock(len(hashes)-i, parent, hashes[i]) } return blocks } // fetcherTester is a test simulator for mocking out local block chain. type fetcherTester struct { fetcher *Fetcher hashes []common.Hash // Hash chain belonging to the tester blocks map[common.Hash]*types.Block // Blocks belonging to the tester lock sync.RWMutex } // newTester creates a new fetcher test mocker. func newTester() *fetcherTester { tester := &fetcherTester{ hashes: []common.Hash{knownHash}, blocks: map[common.Hash]*types.Block{knownHash: genesis}, } tester.fetcher = New(tester.getBlock, tester.verifyBlock, tester.broadcastBlock, tester.chainHeight, tester.insertChain, tester.dropPeer) tester.fetcher.Start() return tester } // getBlock retrieves a block from the tester's block chain. func (f *fetcherTester) getBlock(hash common.Hash) *types.Block { f.lock.RLock() defer f.lock.RUnlock() return f.blocks[hash] } // verifyBlock is a nop placeholder for the block header verification. func (f *fetcherTester) verifyBlock(block *types.Block, parent *types.Block) error { return nil } // broadcastBlock is a nop placeholder for the block broadcasting. func (f *fetcherTester) broadcastBlock(block *types.Block, propagate bool) { } // chainHeight retrieves the current height (block number) of the chain. func (f *fetcherTester) chainHeight() uint64 { f.lock.RLock() defer f.lock.RUnlock() return f.blocks[f.hashes[len(f.hashes)-1]].NumberU64() } // insertChain injects a new blocks into the simulated chain. func (f *fetcherTester) insertChain(blocks types.Blocks) (int, error) { f.lock.Lock() defer f.lock.Unlock() for i, block := range blocks { // Make sure the parent in known if _, ok := f.blocks[block.ParentHash()]; !ok { return i, errors.New("unknown parent") } // Discard any new blocks if the same height already exists if block.NumberU64() <= f.blocks[f.hashes[len(f.hashes)-1]].NumberU64() { return i, nil } // Otherwise build our current chain f.hashes = append(f.hashes, block.Hash()) f.blocks[block.Hash()] = block } return 0, nil } // dropPeer is a nop placeholder for the peer removal. func (f *fetcherTester) dropPeer(peer string) { } // peerFetcher retrieves a fetcher associated with a simulated peer. func (f *fetcherTester) makeFetcher(blocks map[common.Hash]*types.Block) blockRequesterFn { // Copy all the blocks to ensure they are not tampered with closure := make(map[common.Hash]*types.Block) for hash, block := range blocks { closure[hash] = copyBlock(block) } // Create a function that returns blocks from the closure return func(hashes []common.Hash) error { // Gather the blocks to return blocks := make([]*types.Block, 0, len(hashes)) for _, hash := range hashes { if block, ok := closure[hash]; ok { blocks = append(blocks, block) } } // Return on a new thread go f.fetcher.Filter(blocks) return nil } } // Tests that a fetcher accepts block announcements and initiates retrievals for // them, successfully importing into the local chain. func TestSequentialAnnouncements(t *testing.T) { // Create a chain of blocks to import targetBlocks := 24 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) tester := newTester() fetcher := tester.makeFetcher(blocks) // Iteratively announce blocks until all are imported for i := len(hashes) - 1; i >= 0; i-- { tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher) time.Sleep(50 * time.Millisecond) } if imported := len(tester.blocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that if blocks are announced by multiple peers (or even the same buggy // peer), they will only get downloaded at most once. func TestConcurrentAnnouncements(t *testing.T) { // Create a chain of blocks to import targetBlocks := 24 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) // Assemble a tester with a built in counter for the requests tester := newTester() fetcher := tester.makeFetcher(blocks) counter := uint32(0) wrapper := func(hashes []common.Hash) error { atomic.AddUint32(&counter, uint32(len(hashes))) return fetcher(hashes) } // Iteratively announce blocks until all are imported for i := len(hashes) - 1; i >= 0; i-- { tester.fetcher.Notify("first", hashes[i], time.Now().Add(-arriveTimeout), wrapper) tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout+time.Millisecond), wrapper) tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout-time.Millisecond), wrapper) time.Sleep(50 * time.Millisecond) } if imported := len(tester.blocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } // Make sure no blocks were retrieved twice if int(counter) != targetBlocks { t.Fatalf("retrieval count mismatch: have %v, want %v", counter, targetBlocks) } } // Tests that announcements arriving while a previous is being fetched still // results in a valid import. func TestOverlappingAnnouncements(t *testing.T) { // Create a chain of blocks to import targetBlocks := 24 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) tester := newTester() fetcher := tester.makeFetcher(blocks) // Iteratively announce blocks, but overlap them continuously delay, overlap := 50*time.Millisecond, time.Duration(5) for i := len(hashes) - 1; i >= 0; i-- { tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout+overlap*delay), fetcher) time.Sleep(delay) } time.Sleep(overlap * delay) if imported := len(tester.blocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that announces already being retrieved will not be duplicated. func TestPendingDeduplication(t *testing.T) { // Create a hash and corresponding block hashes := createHashes(1, knownHash) blocks := createBlocksFromHashes(hashes) // Assemble a tester with a built in counter and delayed fetcher tester := newTester() fetcher := tester.makeFetcher(blocks) delay := 50 * time.Millisecond counter := uint32(0) wrapper := func(hashes []common.Hash) error { atomic.AddUint32(&counter, uint32(len(hashes))) // Simulate a long running fetch go func() { time.Sleep(delay) fetcher(hashes) }() return nil } // Announce the same block many times until it's fetched (wait for any pending ops) for tester.getBlock(hashes[0]) == nil { tester.fetcher.Notify("repeater", hashes[0], time.Now().Add(-arriveTimeout), wrapper) time.Sleep(time.Millisecond) } time.Sleep(delay) // Check that all blocks were imported and none fetched twice if imported := len(tester.blocks); imported != 2 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, 2) } if int(counter) != 1 { t.Fatalf("retrieval count mismatch: have %v, want %v", counter, 1) } } // Tests that announcements retrieved in a random order are cached and eventually // imported when all the gaps are filled in. func TestRandomArrivalImport(t *testing.T) { // Create a chain of blocks to import, and choose one to delay targetBlocks := 24 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) skip := targetBlocks / 2 tester := newTester() fetcher := tester.makeFetcher(blocks) // Iteratively announce blocks, skipping one entry for i := len(hashes) - 1; i >= 0; i-- { if i != skip { tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher) time.Sleep(50 * time.Millisecond) } } // Finally announce the skipped entry and check full import tester.fetcher.Notify("valid", hashes[skip], time.Now().Add(-arriveTimeout), fetcher) time.Sleep(50 * time.Millisecond) if imported := len(tester.blocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that direct block enqueues (due to block propagation vs. hash announce) // are correctly schedule, filling and import queue gaps. func TestQueueGapFill(t *testing.T) { // Create a chain of blocks to import, and choose one to not announce at all targetBlocks := 24 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) skip := targetBlocks / 2 tester := newTester() fetcher := tester.makeFetcher(blocks) // Iteratively announce blocks, skipping one entry for i := len(hashes) - 1; i >= 0; i-- { if i != skip { tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher) time.Sleep(50 * time.Millisecond) } } // Fill the missing block directly as if propagated tester.fetcher.Enqueue("valid", blocks[hashes[skip]]) time.Sleep(50 * time.Millisecond) if imported := len(tester.blocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that blocks arriving from various sources (multiple propagations, hash // announces, etc) do not get scheduled for import multiple times. func TestImportDeduplication(t *testing.T) { // Create two blocks to import (one for duplication, the other for stalling) hashes := createHashes(2, knownHash) blocks := createBlocksFromHashes(hashes) // Create the tester and wrap the importer with a counter tester := newTester() fetcher := tester.makeFetcher(blocks) counter := uint32(0) tester.fetcher.insertChain = func(blocks types.Blocks) (int, error) { atomic.AddUint32(&counter, uint32(len(blocks))) return tester.insertChain(blocks) } // Announce the duplicating block, wait for retrieval, and also propagate directly tester.fetcher.Notify("valid", hashes[0], time.Now().Add(-arriveTimeout), fetcher) time.Sleep(50 * time.Millisecond) tester.fetcher.Enqueue("valid", blocks[hashes[0]]) tester.fetcher.Enqueue("valid", blocks[hashes[0]]) tester.fetcher.Enqueue("valid", blocks[hashes[0]]) // Fill the missing block directly as if propagated, and check import uniqueness tester.fetcher.Enqueue("valid", blocks[hashes[1]]) time.Sleep(50 * time.Millisecond) if imported := len(tester.blocks); imported != 3 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, 3) } if counter != 2 { t.Fatalf("import invocation count mismatch: have %v, want %v", counter, 2) } } // Tests that blocks with numbers much lower or higher than out current head get // discarded no prevent wasting resources on useless blocks from faulty peers. func TestDistantDiscarding(t *testing.T) { // Create a long chain to import hashes := createHashes(3*maxQueueDist, knownHash) blocks := createBlocksFromHashes(hashes) head := hashes[len(hashes)/2] // Create a tester and simulate a head block being the middle of the above chain tester := newTester() tester.hashes = []common.Hash{head} tester.blocks = map[common.Hash]*types.Block{head: blocks[head]} // Ensure that a block with a lower number than the threshold is discarded tester.fetcher.Enqueue("lower", blocks[hashes[0]]) time.Sleep(10 * time.Millisecond) if !tester.fetcher.queue.Empty() { t.Fatalf("fetcher queued stale block") } // Ensure that a block with a higher number than the threshold is discarded tester.fetcher.Enqueue("higher", blocks[hashes[len(hashes)-1]]) time.Sleep(10 * time.Millisecond) if !tester.fetcher.queue.Empty() { t.Fatalf("fetcher queued future block") } } // Tests that if multiple uncles (i.e. blocks at the same height) are queued for // importing, then they will get inserted in phases, previous heights needing to // complete before the next numbered blocks can begin. func TestCompetingImports(t *testing.T) { // Generate a few soft-forks for concurrent imports hashesA := createHashes(16, knownHash) hashesB := createHashes(16, knownHash) hashesC := createHashes(16, knownHash) blocksA := createBlocksFromHashes(hashesA) blocksB := createBlocksFromHashes(hashesB) blocksC := createBlocksFromHashes(hashesC) // Create a tester, and override the import to check number reversals tester := newTester() first := int32(1) height := uint64(1) tester.fetcher.insertChain = func(blocks types.Blocks) (int, error) { // Check for any phase reordering if prev := atomic.LoadUint64(&height); blocks[0].NumberU64() < prev { t.Errorf("phase reversal: have %v, want %v", blocks[0].NumberU64(), prev) } atomic.StoreUint64(&height, blocks[0].NumberU64()) // Sleep a bit on the first import not to race with the enqueues if atomic.CompareAndSwapInt32(&first, 1, 0) { time.Sleep(50 * time.Millisecond) } return tester.insertChain(blocks) } // Queue up everything but with a missing link for i := 0; i < len(hashesA)-2; i++ { tester.fetcher.Enqueue("chain A", blocksA[hashesA[i]]) tester.fetcher.Enqueue("chain B", blocksB[hashesB[i]]) tester.fetcher.Enqueue("chain C", blocksC[hashesC[i]]) } // Add the three missing links, and wait for a full import tester.fetcher.Enqueue("chain A", blocksA[hashesA[len(hashesA)-2]]) tester.fetcher.Enqueue("chain B", blocksB[hashesB[len(hashesB)-2]]) tester.fetcher.Enqueue("chain C", blocksC[hashesC[len(hashesC)-2]]) start := time.Now() for len(tester.hashes) != len(hashesA) && time.Since(start) < time.Second { time.Sleep(50 * time.Millisecond) } if len(tester.hashes) != len(hashesA) { t.Fatalf("chain length mismatch: have %v, want %v", len(tester.hashes), len(hashesA)) } }