lighthouse-pulse/ssz
2018-09-18 12:12:35 +10:00
..
src Remove commented-out function 2018-09-13 13:06:41 +10:00
Cargo.toml Add WIP ssz module 2018-08-09 13:56:58 +10:00
README.md Add detailed dependencies 2018-09-18 12:12:35 +10:00

simpleserialize (ssz) [WIP]

This is currently a Work In Progress crate.

SimpleSerialize is a serialization protocol described by Vitalik Buterin. The method is tentatively intended for use in the Ethereum Beacon Chain as described in the Ethereum 2.1 Spec.

There are two primary sources for this spec, and they are presently conflicting:

This implementation is presently a placeholder until the final spec is decided. Do not rely upon it for reference.

Table of Contents

TODO

  • Wait for spec to finalize.
  • Implement encoding for all useful types.
  • Implement decoding.

SimpleSerialize Overview

The simpleserialize method for serialization follows simple byte conversion, making it effective and efficient for encoding and decoding.

The decoding requires knowledge of the data type and the order of the serialization.

Syntax:

Shorthand Meaning
big big endian
little little endian
to_bytes convert to bytes params (size, byte order)
from_bytes convert from bytes params (bytes, byte order)
value the value to serialize
len(value) get the length of the value. (number of bytes etc)

Serialize/Encode

int or uint: 8/16/24/32/64/256

Convert directly to bytes the size of the int. (e.g. int16 = 2 bytes)

Check to perform Code
Int size is not 0 int_size > 0
Size is a byte integer int_size % 8 == 0
Value is less than max 2**int_size > value
buffer_size = int_size / 8
return value.to_bytes(buffer_size, 'big')

Address

The address should already come as a hash/byte format. Ensure that length is 20.

assert( len(value) == 20 )
return value

Hash32

The hash32 should already be a 32 byte length serialized data format. The safety check ensures the 32 byte length is satisfied.

assert( len(value) == 32 )
return value

Bytes

For general byte type:

  1. Get the length/number of bytes; Encode into a 4byte integer.
  2. Append the value to the length and return: [ length_bytes ] + [ value_bytes ]
byte_length = (len(value)).to_bytes(4, 'big')
return byte_length + value

List

For lists of values, get the length of the list and then serialize the value of each item in the list:

  1. For each item in list:
    1. serialize.
    2. append to string.
  2. Get size of serialized string. Encode into a 4 byte integer.
serialized_list_string = ''

for item in value:
   serialized_list_string += serialize(item)

serialized_len = len(serialized_list_string)

return serialized_len + serialized_list_string

Deserialize/Decode

The decoding requires knowledge of the type of the item to be decoded. When performing decoding on an entire serialized string, it also requires knowledge of what order the objects have been serialized in.

Note: Each return will provide deserialized_object, new_index keeping track of the new index.

At each step, the following checks should be made:

Check Type Check
Ensure sufficient length length(rawbytes) > current_index + deserialize_length

Int or Uint: 8/16/24/32/64/256

Convert directly from bytes into integer utilising the number of bytes the same size as the integer length. (e.g. int16 == 2 bytes)

byte_length = int_size / 8
new_index = current_index + int_size
return int.from_bytes(rawbytes[current_index:current_index+int_size], 'big'), new_index

Address

Return the 20 bytes.

new_index = current_index + 20
return rawbytes[current_index:current_index+20], new_index

Hash32

Return the 32 bytes.

new_index = current_index + 32
return rawbytes[current_index:current_index+32], new_index

Bytes

Get the length of the bytes, return the bytes.

bytes_length = int.from_bytes(rawbytes[current_index:current_index+4], 'big')
new_index = current_index + 4 + bytes_lenth
return rawbytes[current_index+4:current_index+4+bytes_length], new_index

List

  1. Get the length of the serialized list bytes.
  2. Loop through the bytes;
    1. Deserialize the object with that length.
    2. Keep track of current position

Note Before: there are a number of checks to be performed, ensuring there is enough room left.

Check type code
rawbytes has enough left for length len(rawbytes) > current_index + 4
total_length = int.from_bytes(rawbytes[current_index:current_index+4], 'big')
new_index = current_index + 4 + total_length
item_index = current_index + 4
deserialized_list = []

while item_index < new_index:
   object, item_index = deserialize(rawbytes, item_index, item_type)
   deserialized_list.append(object)

return deserialized_list, new_index

Technical Overview

The SimpleSerialize is a simple method for serializing objects for use in the Ethereum beacon chain proposed by Vitalik Buterin. There are currently two implementations denoting the functionality, the Reference Implementation and the Module in Ethereum research. It is being developed as a crate for the Rust programming language.

The crate will provide the functionality to serialize several types in accordance with the spec and provide a serialized stream of bytes.

Building

ssz currently builds on rust v1.27.1

Installing Rust

The Rustup tool provides functionality to easily manage rust on your local instance. It is a recommended method for installing rust.

Installing on Linux or OSX:

curl https://sh.rustup.rs -sSf | sh

Installing on Windows:

Dependencies

All dependencies are listed in the Cargo.toml file.

To build and install all related dependencies:

cargo build

bytes v0.4.9

The bytes crate provides effective Byte Buffer implementations and interfaces.

Documentation: https://docs.rs/bytes/0.4.9/bytes/

ethereum-types

The ethereum-types provide primitives for types that are commonly used in the ethereum protocol. This crate is provided by Parity.

Github: https://github.com/paritytech/primitives


Interface

Encodable

A type is Encodable if it has a valid ssz_append function. This is used to ensure that the object/type can be serialized.

pub trait Encodable {
    fn ssz_append(&self, s: &mut SszStream);
}

SszStream

The main implementation is the SszStream struct. The struct contains a buffer of bytes, a Vector of uint8.

new()

Create a new, empty instance of the SszStream.

let mut ssz = SszStream::new()

append(&mut self, value: &E) -> &mut Self

Appends a value that can be encoded into the stream.

Parameter Description
value Encodable value to append to the stream.
ssz.append(&x)

append_encoded_val(&mut self, vec: &Vec)

Appends some ssz encoded bytes to the stream.

Parameter Description
vec A vector of serialized ssz bytes.
let mut a = [0, 1];
ssz.append_encoded_val(&a.to_vec());

append_vec(&mut self, vec: &Vec)

Appends some vector (list) of encodable values to the stream.

Parameter Description
vec Vector of Encodable objects to be serialized.
ssz.append_vec(attestations);

drain(self) -> Vec

Consumes the ssz stream and returns the buffer of bytes.

ssz.drain()

Usage

Serializing/Encoding

Rust

Create the simpleserialize stream that will produce the serialized objects.

let mut ssz = SszStream::new();

Encode the values that you need by using the append(..) method on the SszStream.

The append function is how the value gets serialized.

let x: u64 = 1 << 32;
ssz.append(&x);

To get the serialized byte vector use drain() on the SszStream.

ssz.drain()

Example

// 1 << 32 = 4294967296;
// As bytes it should equal: [0,0,0,1,0,0,0]
let x: u64 = 1 << 32;

// Create the new ssz stream
let mut ssz = SszStream::new();

// Serialize x
ssz.append(&x);

// Check that it is correct.
assert_eq!(ssz.drain(), vec![0,0,0,1,0,0,0]);