2665 Commits

Author SHA1 Message Date
Linus Torvalds
edb0e8f6e2 ARM:
* Nested virtualization support for VGICv3, giving the nested
 hypervisor control of the VGIC hardware when running an L2 VM
 
 * Removal of 'late' nested virtualization feature register masking,
   making the supported feature set directly visible to userspace
 
 * Support for emulating FEAT_PMUv3 on Apple silicon, taking advantage
   of an IMPLEMENTATION DEFINED trap that covers all PMUv3 registers
 
 * Paravirtual interface for discovering the set of CPU implementations
   where a VM may run, addressing a longstanding issue of guest CPU
   errata awareness in big-little systems and cross-implementation VM
   migration
 
 * Userspace control of the registers responsible for identifying a
   particular CPU implementation (MIDR_EL1, REVIDR_EL1, AIDR_EL1),
   allowing VMs to be migrated cross-implementation
 
 * pKVM updates, including support for tracking stage-2 page table
   allocations in the protected hypervisor in the 'SecPageTable' stat
 
 * Fixes to vPMU, ensuring that userspace updates to the vPMU after
   KVM_RUN are reflected into the backing perf events
 
 LoongArch:
 
 * Remove unnecessary header include path
 
 * Assume constant PGD during VM context switch
 
 * Add perf events support for guest VM
 
 RISC-V:
 
 * Disable the kernel perf counter during configure
 
 * KVM selftests improvements for PMU
 
 * Fix warning at the time of KVM module removal
 
 x86:
 
 * Add support for aging of SPTEs without holding mmu_lock.  Not taking mmu_lock
   allows multiple aging actions to run in parallel, and more importantly avoids
   stalling vCPUs.  This includes an implementation of per-rmap-entry locking;
   aging the gfn is done with only a per-rmap single-bin spinlock taken, whereas
   locking an rmap for write requires taking both the per-rmap spinlock and
   the mmu_lock.
 
   Note that this decreases slightly the accuracy of accessed-page information,
   because changes to the SPTE outside aging might not use atomic operations
   even if they could race against a clear of the Accessed bit.  This is
   deliberate because KVM and mm/ tolerate false positives/negatives for
   accessed information, and testing has shown that reducing the latency of
   aging is far more beneficial to overall system performance than providing
   "perfect" young/old information.
 
 * Defer runtime CPUID updates until KVM emulates a CPUID instruction, to
   coalesce updates when multiple pieces of vCPU state are changing, e.g. as
   part of a nested transition.
 
 * Fix a variety of nested emulation bugs, and add VMX support for synthesizing
   nested VM-Exit on interception (instead of injecting #UD into L2).
 
 * Drop "support" for async page faults for protected guests that do not set
   SEND_ALWAYS (i.e. that only want async page faults at CPL3)
 
 * Bring a bit of sanity to x86's VM teardown code, which has accumulated
   a lot of cruft over the years.  Particularly, destroy vCPUs before
   the MMU, despite the latter being a VM-wide operation.
 
 * Add common secure TSC infrastructure for use within SNP and in the
   future TDX
 
 * Block KVM_CAP_SYNC_REGS if guest state is protected.  It does not make
   sense to use the capability if the relevant registers are not
   available for reading or writing.
 
 * Don't take kvm->lock when iterating over vCPUs in the suspend notifier to
   fix a largely theoretical deadlock.
 
 * Use the vCPU's actual Xen PV clock information when starting the Xen timer,
   as the cached state in arch.hv_clock can be stale/bogus.
 
 * Fix a bug where KVM could bleed PVCLOCK_GUEST_STOPPED across different
   PV clocks; restrict PVCLOCK_GUEST_STOPPED to kvmclock, as KVM's suspend
   notifier only accounts for kvmclock, and there's no evidence that the
   flag is actually supported by Xen guests.
 
 * Clean up the per-vCPU "cache" of its reference pvclock, and instead only
   track the vCPU's TSC scaling (multipler+shift) metadata (which is moderately
   expensive to compute, and rarely changes for modern setups).
 
 * Don't write to the Xen hypercall page on MSR writes that are initiated by
   the host (userspace or KVM) to fix a class of bugs where KVM can write to
   guest memory at unexpected times, e.g. during vCPU creation if userspace has
   set the Xen hypercall MSR index to collide with an MSR that KVM emulates.
 
 * Restrict the Xen hypercall MSR index to the unofficial synthetic range to
   reduce the set of possible collisions with MSRs that are emulated by KVM
   (collisions can still happen as KVM emulates Hyper-V MSRs, which also reside
   in the synthetic range).
 
 * Clean up and optimize KVM's handling of Xen MSR writes and xen_hvm_config.
 
 * Update Xen TSC leaves during CPUID emulation instead of modifying the CPUID
   entries when updating PV clocks; there is no guarantee PV clocks will be
   updated between TSC frequency changes and CPUID emulation, and guest reads
   of the TSC leaves should be rare, i.e. are not a hot path.
 
 x86 (Intel):
 
 * Fix a bug where KVM unnecessarily reads XFD_ERR from hardware and thus
   modifies the vCPU's XFD_ERR on a #NM due to CR0.TS=1.
 
 * Pass XFD_ERR as the payload when injecting #NM, as a preparatory step
   for upcoming FRED virtualization support.
 
 * Decouple the EPT entry RWX protection bit macros from the EPT Violation
   bits, both as a general cleanup and in anticipation of adding support for
   emulating Mode-Based Execution Control (MBEC).
 
 * Reject KVM_RUN if userspace manages to gain control and stuff invalid guest
   state while KVM is in the middle of emulating nested VM-Enter.
 
 * Add a macro to handle KVM's sanity checks on entry/exit VMCS control pairs
   in anticipation of adding sanity checks for secondary exit controls (the
   primary field is out of bits).
 
 x86 (AMD):
 
 * Ensure the PSP driver is initialized when both the PSP and KVM modules are
   built-in (the initcall framework doesn't handle dependencies).
 
 * Use long-term pins when registering encrypted memory regions, so that the
   pages are migrated out of MIGRATE_CMA/ZONE_MOVABLE and don't lead to
   excessive fragmentation.
 
 * Add macros and helpers for setting GHCB return/error codes.
 
 * Add support for Idle HLT interception, which elides interception if the vCPU
   has a pending, unmasked virtual IRQ when HLT is executed.
 
 * Fix a bug in INVPCID emulation where KVM fails to check for a non-canonical
   address.
 
 * Don't attempt VMRUN for SEV-ES+ guests if the vCPU's VMSA is invalid, e.g.
   because the vCPU was "destroyed" via SNP's AP Creation hypercall.
 
 * Reject SNP AP Creation if the requested SEV features for the vCPU don't
   match the VM's configured set of features.
 
 Selftests:
 
 * Fix again the Intel PMU counters test; add a data load and do CLFLUSH{OPT} on the data
   instead of executing code.  The theory is that modern Intel CPUs have
   learned new code prefetching tricks that bypass the PMU counters.
 
 * Fix a flaw in the Intel PMU counters test where it asserts that an event is
   counting correctly without actually knowing what the event counts on the
   underlying hardware.
 
 * Fix a variety of flaws, bugs, and false failures/passes dirty_log_test, and
   improve its coverage by collecting all dirty entries on each iteration.
 
 * Fix a few minor bugs related to handling of stats FDs.
 
 * Add infrastructure to make vCPU and VM stats FDs available to tests by
   default (open the FDs during VM/vCPU creation).
 
 * Relax an assertion on the number of HLT exits in the xAPIC IPI test when
   running on a CPU that supports AMD's Idle HLT (which elides interception of
   HLT if a virtual IRQ is pending and unmasked).
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmfcTkEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMnQAf/cPx72hJOdNy4Qrm8M33YLXVRVV00
 yEZ8eN8TWdOclr0ltE/w/ELGh/qS4CU8pjURAk0A6lPioU+mdcTn3dPEqMDMVYom
 uOQ2lusEHw0UuSnGZSEjvZJsE/Ro2NSAsHIB6PWRqig1ZBPJzyu0frce34pMpeQH
 diwriJL9lKPAhBWXnUQ9BKoi1R0P5OLW9ahX4SOWk7cAFg4DLlDE66Nqf6nKqViw
 DwEucTiUEg5+a3d93gihdD4JNl+fb3vI2erxrMxjFjkacl0qgqRu3ei3DG0MfdHU
 wNcFSG5B1n0OECKxr80lr1Ip1KTVNNij0Ks+w6Gc6lSg9c4PptnNkfLK3A==
 =nnCN
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:

   - Nested virtualization support for VGICv3, giving the nested
     hypervisor control of the VGIC hardware when running an L2 VM

   - Removal of 'late' nested virtualization feature register masking,
     making the supported feature set directly visible to userspace

   - Support for emulating FEAT_PMUv3 on Apple silicon, taking advantage
     of an IMPLEMENTATION DEFINED trap that covers all PMUv3 registers

   - Paravirtual interface for discovering the set of CPU
     implementations where a VM may run, addressing a longstanding issue
     of guest CPU errata awareness in big-little systems and
     cross-implementation VM migration

   - Userspace control of the registers responsible for identifying a
     particular CPU implementation (MIDR_EL1, REVIDR_EL1, AIDR_EL1),
     allowing VMs to be migrated cross-implementation

   - pKVM updates, including support for tracking stage-2 page table
     allocations in the protected hypervisor in the 'SecPageTable' stat

   - Fixes to vPMU, ensuring that userspace updates to the vPMU after
     KVM_RUN are reflected into the backing perf events

  LoongArch:

   - Remove unnecessary header include path

   - Assume constant PGD during VM context switch

   - Add perf events support for guest VM

  RISC-V:

   - Disable the kernel perf counter during configure

   - KVM selftests improvements for PMU

   - Fix warning at the time of KVM module removal

  x86:

   - Add support for aging of SPTEs without holding mmu_lock.

     Not taking mmu_lock allows multiple aging actions to run in
     parallel, and more importantly avoids stalling vCPUs. This includes
     an implementation of per-rmap-entry locking; aging the gfn is done
     with only a per-rmap single-bin spinlock taken, whereas locking an
     rmap for write requires taking both the per-rmap spinlock and the
     mmu_lock.

     Note that this decreases slightly the accuracy of accessed-page
     information, because changes to the SPTE outside aging might not
     use atomic operations even if they could race against a clear of
     the Accessed bit.

     This is deliberate because KVM and mm/ tolerate false
     positives/negatives for accessed information, and testing has shown
     that reducing the latency of aging is far more beneficial to
     overall system performance than providing "perfect" young/old
     information.

   - Defer runtime CPUID updates until KVM emulates a CPUID instruction,
     to coalesce updates when multiple pieces of vCPU state are
     changing, e.g. as part of a nested transition

   - Fix a variety of nested emulation bugs, and add VMX support for
     synthesizing nested VM-Exit on interception (instead of injecting
     #UD into L2)

   - Drop "support" for async page faults for protected guests that do
     not set SEND_ALWAYS (i.e. that only want async page faults at CPL3)

   - Bring a bit of sanity to x86's VM teardown code, which has
     accumulated a lot of cruft over the years. Particularly, destroy
     vCPUs before the MMU, despite the latter being a VM-wide operation

   - Add common secure TSC infrastructure for use within SNP and in the
     future TDX

   - Block KVM_CAP_SYNC_REGS if guest state is protected. It does not
     make sense to use the capability if the relevant registers are not
     available for reading or writing

   - Don't take kvm->lock when iterating over vCPUs in the suspend
     notifier to fix a largely theoretical deadlock

   - Use the vCPU's actual Xen PV clock information when starting the
     Xen timer, as the cached state in arch.hv_clock can be stale/bogus

   - Fix a bug where KVM could bleed PVCLOCK_GUEST_STOPPED across
     different PV clocks; restrict PVCLOCK_GUEST_STOPPED to kvmclock, as
     KVM's suspend notifier only accounts for kvmclock, and there's no
     evidence that the flag is actually supported by Xen guests

   - Clean up the per-vCPU "cache" of its reference pvclock, and instead
     only track the vCPU's TSC scaling (multipler+shift) metadata (which
     is moderately expensive to compute, and rarely changes for modern
     setups)

   - Don't write to the Xen hypercall page on MSR writes that are
     initiated by the host (userspace or KVM) to fix a class of bugs
     where KVM can write to guest memory at unexpected times, e.g.
     during vCPU creation if userspace has set the Xen hypercall MSR
     index to collide with an MSR that KVM emulates

   - Restrict the Xen hypercall MSR index to the unofficial synthetic
     range to reduce the set of possible collisions with MSRs that are
     emulated by KVM (collisions can still happen as KVM emulates
     Hyper-V MSRs, which also reside in the synthetic range)

   - Clean up and optimize KVM's handling of Xen MSR writes and
     xen_hvm_config

   - Update Xen TSC leaves during CPUID emulation instead of modifying
     the CPUID entries when updating PV clocks; there is no guarantee PV
     clocks will be updated between TSC frequency changes and CPUID
     emulation, and guest reads of the TSC leaves should be rare, i.e.
     are not a hot path

  x86 (Intel):

   - Fix a bug where KVM unnecessarily reads XFD_ERR from hardware and
     thus modifies the vCPU's XFD_ERR on a #NM due to CR0.TS=1

   - Pass XFD_ERR as the payload when injecting #NM, as a preparatory
     step for upcoming FRED virtualization support

   - Decouple the EPT entry RWX protection bit macros from the EPT
     Violation bits, both as a general cleanup and in anticipation of
     adding support for emulating Mode-Based Execution Control (MBEC)

   - Reject KVM_RUN if userspace manages to gain control and stuff
     invalid guest state while KVM is in the middle of emulating nested
     VM-Enter

   - Add a macro to handle KVM's sanity checks on entry/exit VMCS
     control pairs in anticipation of adding sanity checks for secondary
     exit controls (the primary field is out of bits)

  x86 (AMD):

   - Ensure the PSP driver is initialized when both the PSP and KVM
     modules are built-in (the initcall framework doesn't handle
     dependencies)

   - Use long-term pins when registering encrypted memory regions, so
     that the pages are migrated out of MIGRATE_CMA/ZONE_MOVABLE and
     don't lead to excessive fragmentation

   - Add macros and helpers for setting GHCB return/error codes

   - Add support for Idle HLT interception, which elides interception if
     the vCPU has a pending, unmasked virtual IRQ when HLT is executed

   - Fix a bug in INVPCID emulation where KVM fails to check for a
     non-canonical address

   - Don't attempt VMRUN for SEV-ES+ guests if the vCPU's VMSA is
     invalid, e.g. because the vCPU was "destroyed" via SNP's AP
     Creation hypercall

   - Reject SNP AP Creation if the requested SEV features for the vCPU
     don't match the VM's configured set of features

  Selftests:

   - Fix again the Intel PMU counters test; add a data load and do
     CLFLUSH{OPT} on the data instead of executing code. The theory is
     that modern Intel CPUs have learned new code prefetching tricks
     that bypass the PMU counters

   - Fix a flaw in the Intel PMU counters test where it asserts that an
     event is counting correctly without actually knowing what the event
     counts on the underlying hardware

   - Fix a variety of flaws, bugs, and false failures/passes
     dirty_log_test, and improve its coverage by collecting all dirty
     entries on each iteration

   - Fix a few minor bugs related to handling of stats FDs

   - Add infrastructure to make vCPU and VM stats FDs available to tests
     by default (open the FDs during VM/vCPU creation)

   - Relax an assertion on the number of HLT exits in the xAPIC IPI test
     when running on a CPU that supports AMD's Idle HLT (which elides
     interception of HLT if a virtual IRQ is pending and unmasked)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (216 commits)
  RISC-V: KVM: Optimize comments in kvm_riscv_vcpu_isa_disable_allowed
  RISC-V: KVM: Teardown riscv specific bits after kvm_exit
  LoongArch: KVM: Register perf callbacks for guest
  LoongArch: KVM: Implement arch-specific functions for guest perf
  LoongArch: KVM: Add stub for kvm_arch_vcpu_preempted_in_kernel()
  LoongArch: KVM: Remove PGD saving during VM context switch
  LoongArch: KVM: Remove unnecessary header include path
  KVM: arm64: Tear down vGIC on failed vCPU creation
  KVM: arm64: PMU: Reload when resetting
  KVM: arm64: PMU: Reload when user modifies registers
  KVM: arm64: PMU: Fix SET_ONE_REG for vPMC regs
  KVM: arm64: PMU: Assume PMU presence in pmu-emul.c
  KVM: arm64: PMU: Set raw values from user to PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR}
  KVM: arm64: Create each pKVM hyp vcpu after its corresponding host vcpu
  KVM: arm64: Factor out pKVM hyp vcpu creation to separate function
  KVM: arm64: Initialize HCRX_EL2 traps in pKVM
  KVM: arm64: Factor out setting HCRX_EL2 traps into separate function
  KVM: x86: block KVM_CAP_SYNC_REGS if guest state is protected
  KVM: x86: Add infrastructure for secure TSC
  KVM: x86: Push down setting vcpu.arch.user_set_tsc
  ...
2025-03-25 14:22:07 -07:00
Linus Torvalds
99c21beaab vfs-6.15-rc1.misc
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZ90p4AAKCRCRxhvAZXjc
 ojMIAP9atkG3u7+490+NGWLdulQlaHnD51Owa9MiW87UfKpsTQEArwi/NrJqXJNT
 PFQ2xIa5TxG+9haChR89w3kjZ6b/hgs=
 =iDkx
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.15-rc1.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull misc vfs updates from Christian Brauner:
 "Features:

   - Add CONFIG_DEBUG_VFS infrastucture:
      - Catch invalid modes in open
      - Use the new debug macros in inode_set_cached_link()
      - Use debug-only asserts around fd allocation and install

   - Place f_ref to 3rd cache line in struct file to resolve false
     sharing

Cleanups:

   - Start using anon_inode_getfile_fmode() helper in various places

   - Don't take f_lock during SEEK_CUR if exclusion is guaranteed by
     f_pos_lock

   - Add unlikely() to kcmp()

   - Remove legacy ->remount_fs method from ecryptfs after port to the
     new mount api

   - Remove invalidate_inodes() in favour of evict_inodes()

   - Simplify ep_busy_loopER by removing unused argument

   - Avoid mmap sem relocks when coredumping with many missing pages

   - Inline getname()

   - Inline new_inode_pseudo() and de-staticize alloc_inode()

   - Dodge an atomic in putname if ref == 1

   - Consistently deref the files table with rcu_dereference_raw()

   - Dedup handling of struct filename init and refcounts bumps

   - Use wq_has_sleeper() in end_dir_add()

   - Drop the lock trip around I_NEW wake up in evict()

   - Load the ->i_sb pointer once in inode_sb_list_{add,del}

   - Predict not reaching the limit in alloc_empty_file()

   - Tidy up do_sys_openat2() with likely/unlikely

   - Call inode_sb_list_add() outside of inode hash lock

   - Sort out fd allocation vs dup2 race commentary

   - Turn page_offset() into a wrapper around folio_pos()

   - Remove locking in exportfs around ->get_parent() call

   - try_lookup_one_len() does not need any locks in autofs

   - Fix return type of several functions from long to int in open

   - Fix return type of several functions from long to int in ioctls

  Fixes:

   - Fix watch queue accounting mismatch"

* tag 'vfs-6.15-rc1.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (30 commits)
  fs: sort out fd allocation vs dup2 race commentary, take 2
  fs: call inode_sb_list_add() outside of inode hash lock
  fs: tidy up do_sys_openat2() with likely/unlikely
  fs: predict not reaching the limit in alloc_empty_file()
  fs: load the ->i_sb pointer once in inode_sb_list_{add,del}
  fs: drop the lock trip around I_NEW wake up in evict()
  fs: use wq_has_sleeper() in end_dir_add()
  VFS/autofs: try_lookup_one_len() does not need any locks
  fs: dedup handling of struct filename init and refcounts bumps
  fs: consistently deref the files table with rcu_dereference_raw()
  exportfs: remove locking around ->get_parent() call.
  fs: use debug-only asserts around fd allocation and install
  fs: dodge an atomic in putname if ref == 1
  vfs: Remove invalidate_inodes()
  ecryptfs: remove NULL remount_fs from super_operations
  watch_queue: fix pipe accounting mismatch
  fs: place f_ref to 3rd cache line in struct file to resolve false sharing
  epoll: simplify ep_busy_loop by removing always 0 argument
  fs: Turn page_offset() into a wrapper around folio_pos()
  kcmp: improve performance adding an unlikely hint to task comparisons
  ...
2025-03-24 09:13:50 -07:00
Paolo Bonzini
361da275e5 Merge branch 'kvm-nvmx-and-vm-teardown' into HEAD
The immediate issue being fixed here is a nVMX bug where KVM fails to
detect that, after nested VM-Exit, L1 has a pending IRQ (or NMI).
However, checking for a pending interrupt accesses the legacy PIC, and
x86's kvm_arch_destroy_vm() currently frees the PIC before destroying
vCPUs, i.e. checking for IRQs during the forced nested VM-Exit results
in a NULL pointer deref; that's a prerequisite for the nVMX fix.

The remaining patches attempt to bring a bit of sanity to x86's VM
teardown code, which has accumulated a lot of cruft over the years.  E.g.
KVM currently unloads each vCPU's MMUs in a separate operation from
destroying vCPUs, all because when guest SMP support was added, KVM had a
kludgy MMU teardown flow that broke when a VM had more than one 1 vCPU.
And that oddity lived on, for 18 years...

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-20 13:13:00 -04:00
Sean Christopherson
b2aba529bf KVM: Drop kvm_arch_sync_events() now that all implementations are nops
Remove kvm_arch_sync_events() now that x86 no longer uses it (no other
arch has ever used it).

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Bibo Mao <maobibo@loongson.cn>
Message-ID: <20250224235542.2562848-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-26 13:17:23 -05:00
Sean Christopherson
ed8f966331 KVM: Assert that a destroyed/freed vCPU is no longer visible
After freeing a vCPU, assert that it is no longer reachable, and that
kvm_get_vcpu() doesn't return garbage or a pointer to some other vCPU.
While KVM obviously shouldn't be attempting to access a freed vCPU, it's
all too easy for KVM to make a VM-wide request, e.g. via KVM_BUG_ON() or
kvm_flush_remote_tlbs().

Alternatively, KVM could short-circuit problematic paths if the VM's
refcount has gone to zero, e.g. in kvm_make_all_cpus_request(), or KVM
could try disallow making global requests during teardown.  But given that
deleting the vCPU from the array Just Works, adding logic to the requests
path is unnecessary, and trying to make requests illegal during teardown
would be a fool's errand.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250224235542.2562848-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-26 13:17:23 -05:00
Al Viro
f9835fa147
make use of anon_inode_getfile_fmode()
["fallen through the cracks" misc stuff]

A bunch of anon_inode_getfile() callers follow it with adjusting
->f_mode; we have a helper doing that now, so let's make use
of it.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/r/20250118014434.GT1977892@ZenIV
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2025-02-21 10:25:31 +01:00
James Houghton
aa34b81165 KVM: Allow lockless walk of SPTEs when handing aging mmu_notifier event
It is possible to correctly do aging without taking the KVM MMU lock,
or while taking it for read; add a Kconfig to let architectures do so.
Architectures that select KVM_MMU_LOCKLESS_AGING are responsible for
correctness.

Suggested-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: James Houghton <jthoughton@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20250204004038.1680123-3-jthoughton@google.com
[sean: massage shortlog+changelog, fix Kconfig goof and shorten name]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14 07:16:35 -08:00
James Houghton
374ccd6360 KVM: Rename kvm_handle_hva_range()
Rename kvm_handle_hva_range() to kvm_age_hva_range(),
kvm_handle_hva_range_no_flush() to kvm_age_hva_range_no_flush(), and
__kvm_handle_hva_range() to kvm_handle_hva_range(), as
kvm_age_hva_range() will get more aging-specific functionality.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: James Houghton <jthoughton@google.com>
Link: https://lore.kernel.org/r/20250204004038.1680123-2-jthoughton@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12 11:09:30 -08:00
Paolo Bonzini
6f61269495 KVM: remove kvm_arch_post_init_vm
The only statement in a kvm_arch_post_init_vm implementation
can be moved into the x86 kvm_arch_init_vm.  Do so and remove all
traces from architecture-independent code.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-04 11:27:45 -05:00
Sean Christopherson
66119f8ce1 KVM: Do not restrict the size of KVM-internal memory regions
Exempt KVM-internal memslots from the KVM_MEM_MAX_NR_PAGES restriction, as
the limit on the number of pages exists purely to play nice with dirty
bitmap operations, which use 32-bit values to index the bitmaps, and dirty
logging isn't supported for KVM-internal memslots.

Link: https://lore.kernel.org/all/20240802205003.353672-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Christoph Schlameuss <schlameuss@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20250123144627.312456-2-imbrenda@linux.ibm.com
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Message-ID: <20250123144627.312456-2-imbrenda@linux.ibm.com>
2025-01-31 12:03:52 +01:00
Paolo Bonzini
86eb1aef72 Merge branch 'kvm-mirror-page-tables' into HEAD
As part of enabling TDX virtual machines, support support separation of
private/shared EPT into separate roots.

Confidential computing solutions almost invariably have concepts of
private and shared memory, but they may different a lot in the details.
In SEV, for example, the bit is handled more like a permission bit as
far as the page tables are concerned: the private/shared bit is not
included in the physical address.

For TDX, instead, the bit is more like a physical address bit, with
the host mapping private memory in one half of the address space and
shared in another.  Furthermore, the two halves are mapped by different
EPT roots and only the shared half is managed by KVM; the private half
(also called Secure EPT in Intel documentation) gets managed by the
privileged TDX Module via SEAMCALLs.

As a result, the operations that actually change the private half of
the EPT are limited and relatively slow compared to reading a PTE. For
this reason the design for KVM is to keep a mirror of the private EPT in
host memory.  This allows KVM to quickly walk the EPT and only perform the
slower private EPT operations when it needs to actually modify mid-level
private PTEs.

There are thus three sets of EPT page tables: external, mirror and
direct.  In the case of TDX (the only user of this framework) the
first two cover private memory, whereas the third manages shared
memory:

  external EPT - Hidden within the TDX module, modified via TDX module
                 calls.

  mirror EPT   - Bookkeeping tree used as an optimization by KVM, not
                 used by the processor.

  direct EPT   - Normal EPT that maps unencrypted shared memory.
                 Managed like the EPT of a normal VM.

Modifying external EPT
----------------------

Modifications to the mirrored page tables need to also perform the
same operations to the private page tables, which will be handled via
kvm_x86_ops.  Although this prep series does not interact with the TDX
module at all to actually configure the private EPT, it does lay the
ground work for doing this.

In some ways updating the private EPT is as simple as plumbing PTE
modifications through to also call into the TDX module; however, the
locking is more complicated because inserting a single PTE cannot anymore
be done atomically with a single CMPXCHG.  For this reason, the existing
FROZEN_SPTE mechanism is used whenever a call to the TDX module updates the
private EPT.  FROZEN_SPTE acts basically as a spinlock on a PTE.  Besides
protecting operation of KVM, it limits the set of cases in which the
TDX module will encounter contention on its own PTE locks.

Zapping external EPT
--------------------
While the framework tries to be relatively generic, and to be
understandable without knowing TDX much in detail, some requirements of
TDX sometimes leak; for example the private page tables also cannot be
zapped while the range has anything mapped, so the mirrored/private page
tables need to be protected from KVM operations that zap any non-leaf
PTEs, for example kvm_mmu_reset_context() or kvm_mmu_zap_all_fast().

For normal VMs, guest memory is zapped for several reasons: user
memory getting paged out by the guest, memslots getting deleted,
passthrough of devices with non-coherent DMA.  Confidential computing
adds to these the conversion of memory between shared and privates. These
operations must not zap any private memory that is in use by the guest.

This is possible because the only zapping that is out of the control
of KVM/userspace is paging out userspace memory, which cannot apply to
guestmemfd operations.  Thus a TDX VM will only zap private memory from
memslot deletion and from conversion between private and shared memory
which is triggered by the guest.

To avoid zapping too much memory, enums are introduced so that operations
can choose to target only private or shared memory, and thus only
direct or mirror EPT.  For example:

  Memslot deletion           - Private and shared
  MMU notifier based zapping - Shared only
  Conversion to shared       - Private only
  Conversion to private      - Shared only

Other cases of zapping will not be supported for KVM, for example
APICv update or non-coherent DMA status update; for the latter, TDX will
simply require that the CPU supports self-snoop and honor guest PAT
unconditionally for shared memory.
2025-01-20 07:15:58 -05:00
Paolo Bonzini
7a9164dc69 KVM vcpu_array fixes and cleanups for 6.14:
- Explicitly verify the target vCPU is online in kvm_get_vcpu() to fix a bug
    where KVM would return a pointer to a vCPU prior to it being fully online,
    and give kvm_for_each_vcpu() similar treatment to fix a similar flaw.
 
  - Wait for a vCPU to come online prior to executing a vCPU ioctl to fix a
    bug where userspace could coerce KVM into handling the ioctl on a vCPU that
    isn't yet onlined.
 
  - Gracefully handle xa_insert() failures even though such failuires should be
    impossible in practice.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmeJpxQACgkQOlYIJqCj
 N/0mrxAAia8fym/sz70XJQyOPta9v/PvvqPpmZ1SuAeoHBUxbyqF+HqSpi5n6TIA
 GijHfM5/LC4krRcS4765Pa6UjsxOeoOqbR+PAO9XZ6A5b93pJt5kKQw5JJE7ZckE
 GNJbxCtfnKUP04GTb60pwKr7oVizlUf9AP8x1vGkp2mnnUa/VJTkwziSjum0FIB0
 5tSzNEQL7gegomkzoqsIZxk+F2fxo9uuGu+ACTts51oEf1AC1kSljroSp65m4LhB
 0d0c+4n5bTP5BhvP3DJC1OAi+nouyKCyV6NoM48J5x3RqQGd53ilBNqvY+O1caLv
 LNnlmebPcVmGaWGWq6ta41xyG7klqnvITQe7mVeukSP38/82zkcTryiW4vTbykGz
 7doz7ZcYefUf3U0aFouTHMr53uiUy+ysWCQkFKJvddJCT9vyjHKroWRJvq4dKRGK
 tLfMDKU2/qCnSalWwmSErdLSRDVVZI8tbAFzsk0s/P2kspyiYzgB3LEGy8UGuB6G
 Cov6cCmFI6trpYNwVU4tEVGfPEtqhf4odTzbvwOo1ekZzBwa/6WSGZa5eMQjV4tA
 ikAgaVQYbduUyikEY+A0LUBVqvoVqCUG9eUKaSUHQTIImZ3Hnc0DcUT/RfNdk27A
 nYI+Jz2OFoz1rY8QTXUHEn0IDTZL9ipREeAejbYXg4dee5QTwNY=
 =nx41
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-vcpu_array-6.14' of https://github.com/kvm-x86/linux into HEAD

KVM vcpu_array fixes and cleanups for 6.14:

 - Explicitly verify the target vCPU is online in kvm_get_vcpu() to fix a bug
   where KVM would return a pointer to a vCPU prior to it being fully online,
   and give kvm_for_each_vcpu() similar treatment to fix a similar flaw.

 - Wait for a vCPU to come online prior to executing a vCPU ioctl to fix a
   bug where userspace could coerce KVM into handling the ioctl on a vCPU that
   isn't yet onlined.

 - Gracefully handle xa_insert() failures even though such failuires should be
   impossible in practice.
2025-01-20 06:36:40 -05:00
Sean Christopherson
0cc3cb2151 KVM: Disallow all flags for KVM-internal memslots
Disallow all flags for KVM-internal memslots as all existing flags require
some amount of userspace interaction to have any meaning.  In addition to
guarding against KVM goofs, explicitly disallowing dirty logging of KVM-
internal memslots will (hopefully) allow exempting KVM-internal memslots
from the KVM_MEM_MAX_NR_PAGES limit, which appears to exist purely because
the dirty bitmap operations use a 32-bit index.

Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Christoph Schlameuss <schlameuss@linux.ibm.com>
Link: https://lore.kernel.org/r/20250111002022.1230573-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-14 17:36:16 -08:00
Sean Christopherson
344315e93d KVM: x86: Drop double-underscores from __kvm_set_memory_region()
Now that there's no outer wrapper for __kvm_set_memory_region() and it's
static, drop its double-underscore prefix.

No functional change intended.

Cc: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Christoph Schlameuss <schlameuss@linux.ibm.com>
Link: https://lore.kernel.org/r/20250111002022.1230573-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-14 17:36:16 -08:00
Sean Christopherson
156bffdb2b KVM: Add a dedicated API for setting KVM-internal memslots
Add a dedicated API for setting internal memslots, and have it explicitly
disallow setting userspace memslots.  Setting a userspace memslots without
a direct command from userspace would result in all manner of issues.

No functional change intended.

Cc: Tao Su <tao1.su@linux.intel.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Christoph Schlameuss <schlameuss@linux.ibm.com>
Link: https://lore.kernel.org/r/20250111002022.1230573-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-14 17:36:15 -08:00
Sean Christopherson
d131f0042f KVM: Assert slots_lock is held when setting memory regions
Add proper lockdep assertions in __kvm_set_memory_region() and
__x86_set_memory_region() instead of relying comments.

Opportunistically delete __kvm_set_memory_region()'s entire function
comment as the API doesn't allocate memory or select a gfn, and the
"mostly for framebuffers" comment hasn't been true for a very long time.

Cc: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Christoph Schlameuss <schlameuss@linux.ibm.com>
Link: https://lore.kernel.org/r/20250111002022.1230573-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-14 17:36:15 -08:00
Sean Christopherson
f81a6d12bf KVM: Open code kvm_set_memory_region() into its sole caller (ioctl() API)
Open code kvm_set_memory_region() into its sole caller in preparation for
adding a dedicated API for setting internal memslots.

Oppurtunistically use the fancy new guard(mutex) to avoid a local 'r'
variable.

Cc: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Christoph Schlameuss <schlameuss@linux.ibm.com>
Link: https://lore.kernel.org/r/20250111002022.1230573-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-14 17:36:15 -08:00
Isaku Yamahata
dca6c88532 KVM: Add member to struct kvm_gfn_range to indicate private/shared
Add new members to strut kvm_gfn_range to indicate which mapping
(private-vs-shared) to operate on: enum kvm_gfn_range_filter
attr_filter. Update the core zapping operations to set them appropriately.

TDX utilizes two GPA aliases for the same memslots, one for memory that is
for private memory and one that is for shared. For private memory, KVM
cannot always perform the same operations it does on memory for default
VMs, such as zapping pages and having them be faulted back in, as this
requires guest coordination. However, some operations such as guest driven
conversion of memory between private and shared should zap private memory.

Internally to the MMU, private and shared mappings are tracked on separate
roots. Mapping and zapping operations will operate on the respective GFN
alias for each root (private or shared). So zapping operations will by
default zap both aliases. Add fields in struct kvm_gfn_range to allow
callers to specify which aliases so they can only target the aliases
appropriate for their specific operation.

There was feedback that target aliases should be specified such that the
default value (0) is to operate on both aliases. Several options were
considered. Several variations of having separate bools defined such
that the default behavior was to process both aliases. They either allowed
nonsensical configurations, or were confusing for the caller. A simple
enum was also explored and was close, but was hard to process in the
caller. Instead, use an enum with the default value (0) reserved as a
disallowed value. Catch ranges that didn't have the target aliases
specified by looking for that specific value.

Set target alias with enum appropriately for these MMU operations:
 - For KVM's mmu notifier callbacks, zap shared pages only because private
   pages won't have a userspace mapping
 - For setting memory attributes, kvm_arch_pre_set_memory_attributes()
   chooses the aliases based on the attribute.
 - For guest_memfd invalidations, zap private only.

Link: https://lore.kernel.org/kvm/ZivIF9vjKcuGie3s@google.com/
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <20240718211230.1492011-3-rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23 08:28:55 -05:00
Yan Zhao
67b43038ce KVM: guest_memfd: Remove RCU-protected attribute from slot->gmem.file
Remove the RCU-protected attribute from slot->gmem.file. No need to use RCU
primitives rcu_assign_pointer()/synchronize_rcu() to update this pointer.

- slot->gmem.file is updated in 3 places:
  kvm_gmem_bind(), kvm_gmem_unbind(), kvm_gmem_release().
  All of them are protected by kvm->slots_lock.

- slot->gmem.file is read in 2 paths:
  (1) kvm_gmem_populate
        kvm_gmem_get_file
        __kvm_gmem_get_pfn

  (2) kvm_gmem_get_pfn
         kvm_gmem_get_file
         __kvm_gmem_get_pfn

  Path (1) kvm_gmem_populate() requires holding kvm->slots_lock, so
  slot->gmem.file is protected by the kvm->slots_lock in this path.

  Path (2) kvm_gmem_get_pfn() does not require holding kvm->slots_lock.
  However, it's also not guarded by rcu_read_lock() and rcu_read_unlock().
  So synchronize_rcu() in kvm_gmem_unbind()/kvm_gmem_release() actually
  will not wait for the readers in kvm_gmem_get_pfn() due to lack of RCU
  read-side critical section.

  The path (2) kvm_gmem_get_pfn() is safe without RCU protection because:
  a) kvm_gmem_bind() is called on a new memslot, before the memslot is
     visible to kvm_gmem_get_pfn().
  b) kvm->srcu ensures that kvm_gmem_unbind() and freeing of a memslot
     occur after the memslot is no longer visible to kvm_gmem_get_pfn().
  c) get_file_active() ensures that kvm_gmem_get_pfn() will not access the
     stale file if kvm_gmem_release() sets it to NULL.  This is because if
     kvm_gmem_release() occurs before kvm_gmem_get_pfn(), get_file_active()
     will return NULL; if get_file_active() does not return NULL,
     kvm_gmem_release() should not occur until after kvm_gmem_get_pfn()
     releases the file reference.

Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241104084303.29909-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23 08:28:49 -05:00
Sean Christopherson
01528db67f KVM: Drop hack that "manually" informs lockdep of kvm->lock vs. vcpu->mutex
Now that KVM takes vcpu->mutex inside kvm->lock when creating a vCPU, drop
the hack to manually inform lockdep of the kvm->lock => vcpu->mutex
ordering.

This effectively reverts commit 42a90008f890 ("KVM: Ensure lockdep knows
about kvm->lock vs. vcpu->mutex ordering rule").

Cc: Oliver Upton <oliver.upton@linux.dev>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241009150455.1057573-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-16 14:37:30 -08:00
Sean Christopherson
e53dc37f5a KVM: Don't BUG() the kernel if xa_insert() fails with -EBUSY
WARN once instead of triggering a BUG if xa_insert() fails because it
encountered an existing entry.  While KVM guarantees there should be no
existing entry, there's no reason to BUG the kernel, as KVM needs to
gracefully handle failure anyways.

Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241009150455.1057573-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-16 14:37:30 -08:00
Sean Christopherson
d0831edcd8 Revert "KVM: Fix vcpu_array[0] races"
Now that KVM loads from vcpu_array if and only if the target index is
valid with respect to online_vcpus, i.e. now that it is safe to erase a
not-fully-onlined vCPU entry, revert to storing into vcpu_array before
success is guaranteed.

If xa_store() fails, which _should_ be impossible, then putting the vCPU's
reference to 'struct kvm' results in a refcounting bug as the vCPU fd has
been installed and owns the vCPU's reference.

This was found by inspection, but forcing the xa_store() to fail
confirms the problem:

 | Unable to handle kernel paging request at virtual address ffff800080ecd960
 | Call trace:
 |  _raw_spin_lock_irq+0x2c/0x70
 |  kvm_irqfd_release+0x24/0xa0
 |  kvm_vm_release+0x1c/0x38
 |  __fput+0x88/0x2ec
 |  ____fput+0x10/0x1c
 |  task_work_run+0xb0/0xd4
 |  do_exit+0x210/0x854
 |  do_group_exit+0x70/0x98
 |  get_signal+0x6b0/0x73c
 |  do_signal+0xa4/0x11e8
 |  do_notify_resume+0x60/0x12c
 |  el0_svc+0x64/0x68
 |  el0t_64_sync_handler+0x84/0xfc
 |  el0t_64_sync+0x190/0x194
 | Code: b9000909 d503201f 2a1f03e1 52800028 (88e17c08)

Practically speaking, this is a non-issue as xa_store() can't fail, absent
a nasty kernel bug.  But the code is visually jarring and technically
broken.

This reverts commit afb2acb2e3a32e4d56f7fbd819769b98ed1b7520.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Michal Luczaj <mhal@rbox.co>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Reported-by: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241009150455.1057573-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-16 14:37:30 -08:00
Sean Christopherson
6e2b2358b3 KVM: Grab vcpu->mutex across installing the vCPU's fd and bumping online_vcpus
During vCPU creation, acquire vcpu->mutex prior to exposing the vCPU to
userspace, and hold the mutex until online_vcpus is bumped, i.e. until the
vCPU is fully online from KVM's perspective.

To ensure asynchronous vCPU ioctls also wait for the vCPU to come online,
explicitly check online_vcpus at the start of kvm_vcpu_ioctl(), and take
the vCPU's mutex to wait if necessary (having to wait for any ioctl should
be exceedingly rare, i.e. not worth optimizing).

Reported-by: Will Deacon <will@kernel.org>
Reported-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/all/20240730155646.1687-1-will@kernel.org
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241009150455.1057573-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-16 14:37:30 -08:00
Linus Torvalds
4aca98a8a1 VFIO updates for v6.13
- Constify an unmodified structure used in linking vfio and kvm.
    (Christophe JAILLET)
 
  - Add ID for an additional hardware SKU supported by the nvgrace-gpu
    vfio-pci variant driver. (Ankit Agrawal)
 
  - Fix incorrect signed cast in QAT vfio-pci variant driver, negating
    test in check_add_overflow(), though still caught by later tests.
    (Giovanni Cabiddu)
 
  - Additional debugfs attributes exposed in hisi_acc vfio-pci variant
    driver for migration debugging. (Longfang Liu)
 
  - Migration support is added to the virtio vfio-pci variant driver,
    becoming the primary feature of the driver while retaining emulation
    of virtio legacy support as a secondary option. (Yishai Hadas)
 
  - Fixes to a few unwind flows in the mlx5 vfio-pci driver discovered
    through reviews of the virtio variant driver. (Yishai Hadas)
 
  - Fix an unlikely issue where a PCI device exposed to userspace with
    an unknown capability at the base of the extended capability chain
    can overflow an array index. (Avihai Horon)
 -----BEGIN PGP SIGNATURE-----
 
 iQJPBAABCAA5FiEEQvbATlQL0amee4qQI5ubbjuwiyIFAmdE2SEbHGFsZXgud2ls
 bGlhbXNvbkByZWRoYXQuY29tAAoJECObm247sIsiXa8P/ikuJ33L7sHnLJErYzHB
 j2IPNY224LQrpXY+Rnfe4HVCcaSGO7Azeh95DYBFl7ZJ9QJxZbFhUt7Fl8jiKEOj
 k5ag0e+SP4+5tMp2lZBehTa+xlZQLJ4QXMRxWF2kpfXyX7v6JaNKZhXWJ6lPvbrL
 zco911Qr1Y5Kqc/kdgX6HGfNusoScj9d0leHNIrka2FFJnq3qZqGtmRKWe9V9zP3
 Ke5idU1vYNNBDbOz51D6hZbxZLGxIkblG15sw7LNE3O1lhWznfG+gkJm7u7curlj
 CrwR4XvXkgAtglsi8KOJHW84s4BO87UgAde3RUUXgXFcfkTQDSOGQuYVDVSKgFOs
 eJCagrpz0p5jlS6LfrUyHU9FhK1sbDQdb8iJQRUUPVlR9U0kfxFbyv3HX7JmGoWw
 csOr8Eh2dXmC4EWan9rscw2lxYdoeSmJW0qLhhcGylO7kUGxXRm8vP+MVenkfINX
 9OPtsOsFhU7HDl54UsujBA5x8h03HIWmHz3rx8NllxL1E8cfhXivKUViuV8jCXB3
 6rVT5mn2VHnXICiWZFXVmjZgrAK3mBfA+6ugi/nbWVdnn8VMomLuB/Df+62wSPSV
 ICApuWFBhSuSVmQcJ6fsCX6a8x+E2bZDPw9xqZP7krPUdP1j5rJofgZ7wkdYToRv
 HN0p5NcNwnoW2aM5chN9Ons1
 =nTtY
 -----END PGP SIGNATURE-----

Merge tag 'vfio-v6.13-rc1' of https://github.com/awilliam/linux-vfio

Pull VFIO updates from Alex Williamson:

 - Constify an unmodified structure used in linking vfio and kvm
   (Christophe JAILLET)

 - Add ID for an additional hardware SKU supported by the nvgrace-gpu
   vfio-pci variant driver (Ankit Agrawal)

 - Fix incorrect signed cast in QAT vfio-pci variant driver, negating
   test in check_add_overflow(), though still caught by later tests
   (Giovanni Cabiddu)

 - Additional debugfs attributes exposed in hisi_acc vfio-pci variant
   driver for migration debugging (Longfang Liu)

 - Migration support is added to the virtio vfio-pci variant driver,
   becoming the primary feature of the driver while retaining emulation
   of virtio legacy support as a secondary option (Yishai Hadas)

 - Fixes to a few unwind flows in the mlx5 vfio-pci driver discovered
   through reviews of the virtio variant driver (Yishai Hadas)

 - Fix an unlikely issue where a PCI device exposed to userspace with an
   unknown capability at the base of the extended capability chain can
   overflow an array index (Avihai Horon)

* tag 'vfio-v6.13-rc1' of https://github.com/awilliam/linux-vfio:
  vfio/pci: Properly hide first-in-list PCIe extended capability
  vfio/mlx5: Fix unwind flows in mlx5vf_pci_save/resume_device_data()
  vfio/mlx5: Fix an unwind issue in mlx5vf_add_migration_pages()
  vfio/virtio: Enable live migration once VIRTIO_PCI was configured
  vfio/virtio: Add PRE_COPY support for live migration
  vfio/virtio: Add support for the basic live migration functionality
  virtio-pci: Introduce APIs to execute device parts admin commands
  virtio: Manage device and driver capabilities via the admin commands
  virtio: Extend the admin command to include the result size
  virtio_pci: Introduce device parts access commands
  Documentation: add debugfs description for hisi migration
  hisi_acc_vfio_pci: register debugfs for hisilicon migration driver
  hisi_acc_vfio_pci: create subfunction for data reading
  hisi_acc_vfio_pci: extract public functions for container_of
  vfio/qat: fix overflow check in qat_vf_resume_write()
  vfio/nvgrace-gpu: Add a new GH200 SKU to the devid table
  kvm/vfio: Constify struct kvm_device_ops
2024-11-27 12:57:03 -08:00
Linus Torvalds
9f16d5e6f2 The biggest change here is eliminating the awful idea that KVM had, of
essentially guessing which pfns are refcounted pages.  The reason to
 do so was that KVM needs to map both non-refcounted pages (for example
 BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain
 refcounted pages.  However, the result was security issues in the past,
 and more recently the inability to map VM_IO and VM_PFNMAP memory
 that _is_ backed by struct page but is not refcounted.  In particular
 this broke virtio-gpu blob resources (which directly map host graphics
 buffers into the guest as "vram" for the virtio-gpu device) with the
 amdgpu driver, because amdgpu allocates non-compound higher order pages
 and the tail pages could not be mapped into KVM.
 
 This requires adjusting all uses of struct page in the per-architecture
 code, to always work on the pfn whenever possible.  The large series that
 did this, from David Stevens and Sean Christopherson, also cleaned up
 substantially the set of functions that provided arch code with the
 pfn for a host virtual addresses.  The previous maze of twisty little
 passages, all different, is replaced by five functions (__gfn_to_page,
 __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages)
 saving almost 200 lines of code.
 
 ARM:
 
 * Support for stage-1 permission indirection (FEAT_S1PIE) and
   permission overlays (FEAT_S1POE), including nested virt + the
   emulated page table walker
 
 * Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call
   was introduced in PSCIv1.3 as a mechanism to request hibernation,
   similar to the S4 state in ACPI
 
 * Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
   part of it, introduce trivial initialization of the host's MPAM
   context so KVM can use the corresponding traps
 
 * PMU support under nested virtualization, honoring the guest
   hypervisor's trap configuration and event filtering when running a
   nested guest
 
 * Fixes to vgic ITS serialization where stale device/interrupt table
   entries are not zeroed when the mapping is invalidated by the VM
 
 * Avoid emulated MMIO completion if userspace has requested synchronous
   external abort injection
 
 * Various fixes and cleanups affecting pKVM, vCPU initialization, and
   selftests
 
 LoongArch:
 
 * Add iocsr and mmio bus simulation in kernel.
 
 * Add in-kernel interrupt controller emulation.
 
 * Add support for virtualization extensions to the eiointc irqchip.
 
 PPC:
 
 * Drop lingering and utterly obsolete references to PPC970 KVM, which was
   removed 10 years ago.
 
 * Fix incorrect documentation references to non-existing ioctls
 
 RISC-V:
 
 * Accelerate KVM RISC-V when running as a guest
 
 * Perf support to collect KVM guest statistics from host side
 
 s390:
 
 * New selftests: more ucontrol selftests and CPU model sanity checks
 
 * Support for the gen17 CPU model
 
 * List registers supported by KVM_GET/SET_ONE_REG in the documentation
 
 x86:
 
 * Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
   documentation, harden against unexpected changes.  Even if the hardware
   A/D tracking is disabled, it is possible to use the hardware-defined A/D
   bits to track if a PFN is Accessed and/or Dirty, and that removes a lot
   of special cases.
 
 * Elide TLB flushes when aging secondary PTEs, as has been done in x86's
   primary MMU for over 10 years.
 
 * Recover huge pages in-place in the TDP MMU when dirty page logging is
   toggled off, instead of zapping them and waiting until the page is
   re-accessed to create a huge mapping.  This reduces vCPU jitter.
 
 * Batch TLB flushes when dirty page logging is toggled off.  This reduces
   the time it takes to disable dirty logging by ~3x.
 
 * Remove the shrinker that was (poorly) attempting to reclaim shadow page
   tables in low-memory situations.
 
 * Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
 
 * Advertise CPUIDs for new instructions in Clearwater Forest
 
 * Quirk KVM's misguided behavior of initialized certain feature MSRs to
   their maximum supported feature set, which can result in KVM creating
   invalid vCPU state.  E.g. initializing PERF_CAPABILITIES to a non-zero
   value results in the vCPU having invalid state if userspace hides PDCM
   from the guest, which in turn can lead to save/restore failures.
 
 * Fix KVM's handling of non-canonical checks for vCPUs that support LA57
   to better follow the "architecture", in quotes because the actual
   behavior is poorly documented.  E.g. most MSR writes and descriptor
   table loads ignore CR4.LA57 and operate purely on whether the CPU
   supports LA57.
 
 * Bypass the register cache when querying CPL from kvm_sched_out(), as
   filling the cache from IRQ context is generally unsafe; harden the
   cache accessors to try to prevent similar issues from occuring in the
   future.  The issue that triggered this change was already fixed in 6.12,
   but was still kinda latent.
 
 * Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
   over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
 
 * Minor cleanups
 
 * Switch hugepage recovery thread to use vhost_task.  These kthreads can
   consume significant amounts of CPU time on behalf of a VM or in response
   to how the VM behaves (for example how it accesses its memory); therefore
   KVM tried to place the thread in the VM's cgroups and charge the CPU
   time consumed by that work to the VM's container.  However the kthreads
   did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM
   instances inside could not complete freezing.  Fix this by replacing the
   kthread with a PF_USER_WORKER thread, via the vhost_task abstraction.
   Another 100+ lines removed, with generally better behavior too like
   having these threads properly parented in the process tree.
 
 * Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't
   really work; there was really nothing to work around anyway: the broken
   patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL
   MSR is virtualized and therefore unaffected by the erratum.
 
 * Fix 6.12 regression where CONFIG_KVM will be built as a module even
   if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'.
 
 x86 selftests:
 
 * x86 selftests can now use AVX.
 
 Documentation:
 
 * Use rST internal links
 
 * Reorganize the introduction to the API document
 
 Generic:
 
 * Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
   of RCU, so that running a vCPU on a different task doesn't encounter long
   due to having to wait for all CPUs become quiescent.  In general both reads
   and writes are rare, but userspace that supports confidential computing is
   introducing the use of "helper" vCPUs that may jump from one host processor
   to another.  Those will be very happy to trigger a synchronize_rcu(), and
   the effect on performance is quite the disaster.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4
 dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS
 letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI
 1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+
 t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW
 ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig==
 =lWpE
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "The biggest change here is eliminating the awful idea that KVM had of
  essentially guessing which pfns are refcounted pages.

  The reason to do so was that KVM needs to map both non-refcounted
  pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
  VMAs that contain refcounted pages.

  However, the result was security issues in the past, and more recently
  the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
  struct page but is not refcounted. In particular this broke virtio-gpu
  blob resources (which directly map host graphics buffers into the
  guest as "vram" for the virtio-gpu device) with the amdgpu driver,
  because amdgpu allocates non-compound higher order pages and the tail
  pages could not be mapped into KVM.

  This requires adjusting all uses of struct page in the
  per-architecture code, to always work on the pfn whenever possible.
  The large series that did this, from David Stevens and Sean
  Christopherson, also cleaned up substantially the set of functions
  that provided arch code with the pfn for a host virtual addresses.

  The previous maze of twisty little passages, all different, is
  replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
  non-__ versions of these two, and kvm_prefetch_pages) saving almost
  200 lines of code.

  ARM:

   - Support for stage-1 permission indirection (FEAT_S1PIE) and
     permission overlays (FEAT_S1POE), including nested virt + the
     emulated page table walker

   - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
     call was introduced in PSCIv1.3 as a mechanism to request
     hibernation, similar to the S4 state in ACPI

   - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
     part of it, introduce trivial initialization of the host's MPAM
     context so KVM can use the corresponding traps

   - PMU support under nested virtualization, honoring the guest
     hypervisor's trap configuration and event filtering when running a
     nested guest

   - Fixes to vgic ITS serialization where stale device/interrupt table
     entries are not zeroed when the mapping is invalidated by the VM

   - Avoid emulated MMIO completion if userspace has requested
     synchronous external abort injection

   - Various fixes and cleanups affecting pKVM, vCPU initialization, and
     selftests

  LoongArch:

   - Add iocsr and mmio bus simulation in kernel.

   - Add in-kernel interrupt controller emulation.

   - Add support for virtualization extensions to the eiointc irqchip.

  PPC:

   - Drop lingering and utterly obsolete references to PPC970 KVM, which
     was removed 10 years ago.

   - Fix incorrect documentation references to non-existing ioctls

  RISC-V:

   - Accelerate KVM RISC-V when running as a guest

   - Perf support to collect KVM guest statistics from host side

  s390:

   - New selftests: more ucontrol selftests and CPU model sanity checks

   - Support for the gen17 CPU model

   - List registers supported by KVM_GET/SET_ONE_REG in the
     documentation

  x86:

   - Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
     improve documentation, harden against unexpected changes.

     Even if the hardware A/D tracking is disabled, it is possible to
     use the hardware-defined A/D bits to track if a PFN is Accessed
     and/or Dirty, and that removes a lot of special cases.

   - Elide TLB flushes when aging secondary PTEs, as has been done in
     x86's primary MMU for over 10 years.

   - Recover huge pages in-place in the TDP MMU when dirty page logging
     is toggled off, instead of zapping them and waiting until the page
     is re-accessed to create a huge mapping. This reduces vCPU jitter.

   - Batch TLB flushes when dirty page logging is toggled off. This
     reduces the time it takes to disable dirty logging by ~3x.

   - Remove the shrinker that was (poorly) attempting to reclaim shadow
     page tables in low-memory situations.

   - Clean up and optimize KVM's handling of writes to
     MSR_IA32_APICBASE.

   - Advertise CPUIDs for new instructions in Clearwater Forest

   - Quirk KVM's misguided behavior of initialized certain feature MSRs
     to their maximum supported feature set, which can result in KVM
     creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
     a non-zero value results in the vCPU having invalid state if
     userspace hides PDCM from the guest, which in turn can lead to
     save/restore failures.

   - Fix KVM's handling of non-canonical checks for vCPUs that support
     LA57 to better follow the "architecture", in quotes because the
     actual behavior is poorly documented. E.g. most MSR writes and
     descriptor table loads ignore CR4.LA57 and operate purely on
     whether the CPU supports LA57.

   - Bypass the register cache when querying CPL from kvm_sched_out(),
     as filling the cache from IRQ context is generally unsafe; harden
     the cache accessors to try to prevent similar issues from occuring
     in the future. The issue that triggered this change was already
     fixed in 6.12, but was still kinda latent.

   - Advertise AMD_IBPB_RET to userspace, and fix a related bug where
     KVM over-advertises SPEC_CTRL when trying to support cross-vendor
     VMs.

   - Minor cleanups

   - Switch hugepage recovery thread to use vhost_task.

     These kthreads can consume significant amounts of CPU time on
     behalf of a VM or in response to how the VM behaves (for example
     how it accesses its memory); therefore KVM tried to place the
     thread in the VM's cgroups and charge the CPU time consumed by that
     work to the VM's container.

     However the kthreads did not process SIGSTOP/SIGCONT, and therefore
     cgroups which had KVM instances inside could not complete freezing.

     Fix this by replacing the kthread with a PF_USER_WORKER thread, via
     the vhost_task abstraction. Another 100+ lines removed, with
     generally better behavior too like having these threads properly
     parented in the process tree.

   - Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
     didn't really work; there was really nothing to work around anyway:
     the broken patch was meant to fix nested virtualization, but the
     PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
     erratum.

   - Fix 6.12 regression where CONFIG_KVM will be built as a module even
     if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
     'y'.

  x86 selftests:

   - x86 selftests can now use AVX.

  Documentation:

   - Use rST internal links

   - Reorganize the introduction to the API document

  Generic:

   - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
     instead of RCU, so that running a vCPU on a different task doesn't
     encounter long due to having to wait for all CPUs become quiescent.

     In general both reads and writes are rare, but userspace that
     supports confidential computing is introducing the use of "helper"
     vCPUs that may jump from one host processor to another. Those will
     be very happy to trigger a synchronize_rcu(), and the effect on
     performance is quite the disaster"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
  KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
  KVM: x86: add back X86_LOCAL_APIC dependency
  Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
  KVM: x86: switch hugepage recovery thread to vhost_task
  KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
  x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
  Documentation: KVM: fix malformed table
  irqchip/loongson-eiointc: Add virt extension support
  LoongArch: KVM: Add irqfd support
  LoongArch: KVM: Add PCHPIC user mode read and write functions
  LoongArch: KVM: Add PCHPIC read and write functions
  LoongArch: KVM: Add PCHPIC device support
  LoongArch: KVM: Add EIOINTC user mode read and write functions
  LoongArch: KVM: Add EIOINTC read and write functions
  LoongArch: KVM: Add EIOINTC device support
  LoongArch: KVM: Add IPI user mode read and write function
  LoongArch: KVM: Add IPI read and write function
  LoongArch: KVM: Add IPI device support
  LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
  KVM: arm64: Pass on SVE mapping failures
  ...
2024-11-23 16:00:50 -08:00
Linus Torvalds
0f25f0e4ef the bulk of struct fd memory safety stuff
Making sure that struct fd instances are destroyed in the same
 scope where they'd been created, getting rid of reassignments
 and passing them by reference, converting to CLASS(fd{,_pos,_raw}).
 
 We are getting very close to having the memory safety of that stuff
 trivial to verify.
 
 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZzdikAAKCRBZ7Krx/gZQ
 69nJAQCmbQHK3TGUbQhOw6MJXOK9ezpyEDN3FZb4jsu38vTIdgEA6OxAYDO2m2g9
 CN18glYmD3wRyU6Bwl4vGODouSJvDgA=
 =gVH3
 -----END PGP SIGNATURE-----

Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs

Pull 'struct fd' class updates from Al Viro:
 "The bulk of struct fd memory safety stuff

  Making sure that struct fd instances are destroyed in the same scope
  where they'd been created, getting rid of reassignments and passing
  them by reference, converting to CLASS(fd{,_pos,_raw}).

  We are getting very close to having the memory safety of that stuff
  trivial to verify"

* tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits)
  deal with the last remaing boolean uses of fd_file()
  css_set_fork(): switch to CLASS(fd_raw, ...)
  memcg_write_event_control(): switch to CLASS(fd)
  assorted variants of irqfd setup: convert to CLASS(fd)
  do_pollfd(): convert to CLASS(fd)
  convert do_select()
  convert vfs_dedupe_file_range().
  convert cifs_ioctl_copychunk()
  convert media_request_get_by_fd()
  convert spu_run(2)
  switch spufs_calls_{get,put}() to CLASS() use
  convert cachestat(2)
  convert do_preadv()/do_pwritev()
  fdget(), more trivial conversions
  fdget(), trivial conversions
  privcmd_ioeventfd_assign(): don't open-code eventfd_ctx_fdget()
  o2hb_region_dev_store(): avoid goto around fdget()/fdput()
  introduce "fd_pos" class, convert fdget_pos() users to it.
  fdget_raw() users: switch to CLASS(fd_raw)
  convert vmsplice() to CLASS(fd)
  ...
2024-11-18 12:24:06 -08:00
Paolo Bonzini
d96c77bd4e KVM: x86: switch hugepage recovery thread to vhost_task
kvm_vm_create_worker_thread() is meant to be used for kthreads that
can consume significant amounts of CPU time on behalf of a VM or in
response to how the VM behaves (for example how it accesses its memory).
Therefore it wants to charge the CPU time consumed by that work to
the VM's container.

However, because of these threads, cgroups which have kvm instances
inside never complete freezing.  This can be trivially reproduced:

  root@test ~# mkdir /sys/fs/cgroup/test
  root@test ~# echo $$ > /sys/fs/cgroup/test/cgroup.procs
  root@test ~# qemu-system-x86_64 -nographic -enable-kvm

and in another terminal:

  root@test ~# echo 1 > /sys/fs/cgroup/test/cgroup.freeze
  root@test ~# cat /sys/fs/cgroup/test/cgroup.events
  populated 1
  frozen 0

The cgroup freezing happens in the signal delivery path but
kvm_nx_huge_page_recovery_worker, while joining non-root cgroups, never
calls into the signal delivery path and thus never gets frozen. Because
the cgroup freezer determines whether a given cgroup is frozen by
comparing the number of frozen threads to the total number of threads
in the cgroup, the cgroup never becomes frozen and users waiting for
the state transition may hang indefinitely.

Since the worker kthread is tied to a user process, it's better if
it behaves similarly to user tasks as much as possible, including
being able to send SIGSTOP and SIGCONT.  In fact, vhost_task is all
that kvm_vm_create_worker_thread() wanted to be and more: not only it
inherits the userspace process's cgroups, it has other niceties like
being parented properly in the process tree.  Use it instead of the
homegrown alternative.

Incidentally, the new code is also better behaved when you flip recovery
back and forth to disabled and back to enabled.  If your recovery period
is 1 minute, it will run the next recovery after 1 minute independent
of how many times you flipped the parameter.

(Commit message based on emails from Tejun).

Reported-by: Tejun Heo <tj@kernel.org>
Reported-by: Luca Boccassi <bluca@debian.org>
Acked-by: Tejun Heo <tj@kernel.org>
Tested-by: Luca Boccassi <bluca@debian.org>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-11-14 13:20:04 -05:00
Paolo Bonzini
c59de14133 KVM x86 MMU changes for 6.13
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
    documentation, harden against unexpected changes, and to simplify
    A/D-disabled MMUs by using the hardware-defined A/D bits to track if a
    PFN is Accessed and/or Dirty.
 
  - Elide TLB flushes when aging SPTEs, as has been done in x86's primary
    MMU for over 10 years.
 
  - Batch TLB flushes when zapping collapsible TDP MMU SPTEs, i.e. when
    dirty logging is toggled off, which reduces the time it takes to disable
    dirty logging by ~3x.
 
  - Recover huge pages in-place in the TDP MMU instead of zapping the SP
    and waiting until the page is re-accessed to create a huge mapping.
    Proactively installing huge pages can reduce vCPU jitter in extreme
    scenarios.
 
  - Remove support for (poorly) reclaiming page tables in shadow MMUs via
    the primary MMU's shrinker interface.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmczpgQACgkQOlYIJqCj
 N/0qTg//WMEFjC05VrtfwnI8+aCN3au1ALh1Lh1AQzgpVtJfINAmOBAVcIA8JEm9
 kX+kApVW0y5y88VgHEb3J43Rbk0LuLQTePQhsfZ8vVJNhNjnxeraOR8wyLsjOjVS
 Dpb7AtMxKM/9GqrP5YBFaPPf5YKu/FZFpZfNdKu4esf+Re+usWYpJcTOJOAkQeCL
 v9grKLdVZCWEydO9QXrO6EnOW+EWc5Rmrx4521OBggqbeslAjbD6mAhE32T5Eg2C
 fdwVAN/XcVv5g1lIof/fHyiXviiztSV+FJCxipxJYsn3HWPgSxBcRvrydsOLY5lT
 ghvHn0YptZaxND9oyksP63lrF7LuAb8FI44kr9OOZIZeT0QFVNGBWOn2jv6k1xkr
 hLJ1zqKgIwXMgSALlfk2VoywUDLRwv4OAoL31j7m+/nGMlFDtFfY3oARfpZ4kI7K
 Taop67iQkHFIh8eX0t3HCPbIop/0oMKINKHC0VmVDgml5l+vIUApRvD6gsXYpnTD
 Q+AdQgwYU0lM7J6U9GjebisSanim3zKpUggrG5FdAwGGNjns5HLtzLLyBu+KNHic
 aTPs8HCu0jK51Re3fS7Q5IZBzsec15uv1tyCIDVhNuqtocgzXER6Y4YojC8qNPla
 XR8H2d/SskJBNkdfbvWsAp+sd/nvtEgv8deEvTmO2SEg5pxhnN8=
 =xTZ8
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-mmu-6.13' of https://github.com/kvm-x86/linux into HEAD

KVM x86 MMU changes for 6.13

 - Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
   documentation, harden against unexpected changes, and to simplify
   A/D-disabled MMUs by using the hardware-defined A/D bits to track if a
   PFN is Accessed and/or Dirty.

 - Elide TLB flushes when aging SPTEs, as has been done in x86's primary
   MMU for over 10 years.

 - Batch TLB flushes when zapping collapsible TDP MMU SPTEs, i.e. when
   dirty logging is toggled off, which reduces the time it takes to disable
   dirty logging by ~3x.

 - Recover huge pages in-place in the TDP MMU instead of zapping the SP
   and waiting until the page is re-accessed to create a huge mapping.
   Proactively installing huge pages can reduce vCPU jitter in extreme
   scenarios.

 - Remove support for (poorly) reclaiming page tables in shadow MMUs via
   the primary MMU's shrinker interface.
2024-11-13 06:31:54 -05:00
Paolo Bonzini
b39d1578d5 KVM generic changes for 6.13
- Rework kvm_vcpu_on_spin() to use a single for-loop instead of making two
    partial poasses over "all" vCPUs.  Opportunistically expand the comment
    to better explain the motivation and logic.
 
  - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
    of RCU, so that running a vCPU on a different task doesn't encounter
    long stalls due to having to wait for all CPUs become quiescent.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmczn8AACgkQOlYIJqCj
 N/39KA/8CKNrGLbbRSn0jaOLW2Xq8mA2ce1CgzTGScIcL6R+bLHSTRPeeUXMPuC7
 CbaRCrBtkP+qn0GJPp+Jo0luH5fxSQL16/iXC+rB8//Lw0ttEygWO3oY8MsV1YjF
 opRhHjqHNIzT1gLEXRSzwm/lBv3jjZG8+5hjaz/LKKIABuzS4bsmacNvHFpIXqhx
 tJDoZydiTFNGFA9+GD5telD/CxK43U5VIbwwnisFtSvNE+PMm1vT3cHIT8lUvuxB
 eoeAyS78SuWnJn4KhYSjByleBYAeqgxaGNHZVow0B6CMKRLocZdppRQklXE3ap/2
 3+V3LNdFl5LBjAP/FHWuMUoovGANUyVQumCHaflz9d8a4acMQInWJtirg/iqGLDN
 JXAXJZBh+JybEBVsPbGvxotTaXPRuMYzKCF512dRcmSzNk73yUSDg8XfOI45rJ9k
 sxFTAGk4blFhE7Htos5rQ/NmvY1K62va1TAdFXqThdx+b6Y5TjWmRE8dCIMouLoJ
 UpEiL0CmbS1yAFXReeyIV/EcBI4Q8C3KXP13n9zyNUCnEQK7CQgc+OmakFL6d5MX
 p8Dq98NBZ0GN+Ay1x9WjfpQCvaH8/7Hf9mltbkTzQ8Zrz/4nmuZ5YuRsIunLL/uO
 dyAs72I9lw7tHAoHJtBd9W7ShKJwYHLtQl9i9umKPOnsc03iwN8=
 =/hvr
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-generic-6.13' of https://github.com/kvm-x86/linux into HEAD

KVM generic changes for 6.13

 - Rework kvm_vcpu_on_spin() to use a single for-loop instead of making two
   partial poasses over "all" vCPUs.  Opportunistically expand the comment
   to better explain the motivation and logic.

 - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
   of RCU, so that running a vCPU on a different task doesn't encounter
   long stalls due to having to wait for all CPUs become quiescent.
2024-11-13 06:24:19 -05:00
Paolo Bonzini
e3e0f9b7ae KVM/riscv changes for 6.13
- Accelerate KVM RISC-V when running as a guest
 - Perf support to collect KVM guest statistics from host side
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEZdn75s5e6LHDQ+f/rUjsVaLHLAcFAmct20AACgkQrUjsVaLH
 LAdyWw/+Os6fIFhThsur7z26E/+7Edxk/QEfUMEEvQPwKfwiRdHYLU1dWGTCw2nA
 xr8yR9MQFkUMTHZBPi+zki47uE6gW1qMb1tl8AuZ4cjZCMSg0pBObdB/axT5+517
 boC74A1r04dlvW3sEvcMaHen0B75Hwm703jjOIiThiZFlB519HcattTPAJo8nTRD
 D4hhpTY/v8QyFlMg0m7KnOOa3MtmR0Q704LaAdEQ5S9kdMlUtMzljHvWIzYdTfjJ
 C7v7EAo+iRi7ecBdg9ZxhOkcKUB2xF+lmLYBRoiOeaECJ4RIaseY63SqLyzlGeNZ
 Dx7DuF0mljC3nmHPH/60pOxDKYWGxjx5IQF1ORBvcsux4uhwH8KkyjcxYody/m82
 HXalAwmN4mA2asrt0xTpIoOUkwOGy7LEKx6083hbrSgzk9E/bnoi+YDe+Gm4z+YR
 ofqsj4G6x0fS85RCKB4iQGRcHgW2IPHYeKWXYYP0m1COe9kj9E3POBpAjj3qMxZr
 R+eveYhLZ7A3B/DAVYQQVoCcQWECXC0M4FOOVh4vEV2JeEB55dlI77/p6X5y7RGj
 YA7njv9eC5hrxOgUMOLFIvMqFKe7dcuYmE3V11+TD5lHBfqWfKE7vA1V1rOA8e8R
 Qf5DXLVBbsNj2yirbj1LI3x7jg5aXw5IhylJNn/c1vezqw8RUfg=
 =sI+4
 -----END PGP SIGNATURE-----

Merge tag 'kvm-riscv-6.13-1' of https://github.com/kvm-riscv/linux into HEAD

KVM/riscv changes for 6.13

- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
2024-11-08 12:13:48 -05:00
Al Viro
66635b0776 assorted variants of irqfd setup: convert to CLASS(fd)
in all of those failure exits prior to fdget() are plain returns and
the only thing done after fdput() is (on failure exits) a kfree(),
which can be done before fdput() just fine.

NOTE: in acrn_irqfd_assign() 'fail:' failure exit is wrong for
eventfd_ctx_fileget() failure (we only want fdput() there) and once
we stop doing that, it doesn't need to check if eventfd is NULL or
ERR_PTR(...) there.

NOTE: in privcmd we move fdget() up before the allocation - more
to the point, before the copy_from_user() attempt.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-11-03 01:28:07 -05:00
Al Viro
8152f82010 fdget(), more trivial conversions
all failure exits prior to fdget() leave the scope, all matching fdput()
are immediately followed by leaving the scope.

[xfs_ioc_commit_range() chunk moved here as well]

Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-11-03 01:28:06 -05:00
Al Viro
6348be02ee fdget(), trivial conversions
fdget() is the first thing done in scope, all matching fdput() are
immediately followed by leaving the scope.

Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-11-03 01:28:06 -05:00
Sean Christopherson
2ebbe0308c KVM: Allow arch code to elide TLB flushes when aging a young page
Add a Kconfig to allow architectures to opt-out of a TLB flush when a
young page is aged, as invalidating TLB entries is not functionally
required on most KVM-supported architectures.  Stale TLB entries can
result in false negatives and theoretically lead to suboptimal reclaim,
but in practice all observations have been that the performance gained by
skipping TLB flushes outweighs any performance lost by reclaiming hot
pages.

E.g. the primary MMUs for x86 RISC-V, s390, and PPC Book3S elide the TLB
flush for ptep_clear_flush_young(), and arm64's MMU skips the trailing DSB
that's required for ordering (presumably because there are optimizations
related to eliding other TLB flushes when doing make-before-break).

Link: https://lore.kernel.org/r/20241011021051.1557902-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30 15:25:40 -07:00
Sean Christopherson
3e7f43188e KVM: Protect vCPU's "last run PID" with rwlock, not RCU
To avoid jitter on KVM_RUN due to synchronize_rcu(), use a rwlock instead
of RCU to protect vcpu->pid, a.k.a. the pid of the task last used to a
vCPU.  When userspace is doing M:N scheduling of tasks to vCPUs, e.g. to
run SEV migration helper vCPUs during post-copy, the synchronize_rcu()
needed to change the PID associated with the vCPU can stall for hundreds
of milliseconds, which is problematic for latency sensitive post-copy
operations.

In the directed yield path, do not acquire the lock if it's contended,
i.e. if the associated PID is changing, as that means the vCPU's task is
already running.

Reported-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240802200136.329973-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30 14:41:22 -07:00
Sean Christopherson
6cf9ef23d9 KVM: Return '0' directly when there's no task to yield to
Do "return 0" instead of initializing and returning a local variable in
kvm_vcpu_yield_to(), e.g. so that it's more obvious what the function
returns if there is no task.

No functional change intended.

Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240802200136.329973-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30 14:29:31 -07:00
Sean Christopherson
7e513617da KVM: Rework core loop of kvm_vcpu_on_spin() to use a single for-loop
Rework kvm_vcpu_on_spin() to use a single for-loop instead of making "two"
passes over all vCPUs.  Given N=kvm->last_boosted_vcpu, the logic is to
iterate from vCPU[N+1]..vcpu[N-1], i.e. using two loops is just a kludgy
way of handling the wrap from the last vCPU to vCPU0 when a boostable vCPU
isn't found in vcpu[N+1]..vcpu[MAX].

Open code the xa_load() instead of using kvm_get_vcpu() to avoid reading
online_vcpus in every loop, as well as the accompanying smp_rmb(), i.e.
make it a custom kvm_for_each_vcpu(), for all intents and purposes.

Oppurtunistically clean up the comment explaining the logic.

Link: https://lore.kernel.org/r/20240802202121.341348-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30 14:27:51 -07:00
Christophe JAILLET
bbee049d8e kvm/vfio: Constify struct kvm_device_ops
'struct kvm_device_ops' is not modified in this driver.

Constifying this structure moves some data to a read-only section, so
increases overall security, especially when the structure holds some
function pointers.

On a x86_64, with allmodconfig:
Before:
======
   text	   data	    bss	    dec	    hex	filename
   2605	    169	     16	   2790	    ae6	virt/kvm/vfio.o

After:
=====
   text	   data	    bss	    dec	    hex	filename
   2685	     89	     16	   2790	    ae6	virt/kvm/vfio.o

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/e7361a1bb7defbb0f7056b884e83f8d75ac9fe21.1727517084.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2024-10-30 13:31:26 -06:00
Sean Christopherson
8b15c3764c KVM: Don't grab reference on VM_MIXEDMAP pfns that have a "struct page"
Now that KVM no longer relies on an ugly heuristic to find its struct page
references, i.e. now that KVM can't get false positives on VM_MIXEDMAP
pfns, remove KVM's hack to elevate the refcount for pfns that happen to
have a valid struct page.  In addition to removing a long-standing wart
in KVM, this allows KVM to map non-refcounted struct page memory into the
guest, e.g. for exposing GPU TTM buffers to KVM guests.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-86-seanjc@google.com>
2024-10-25 13:01:35 -04:00
Sean Christopherson
93b7da404f KVM: Drop APIs that manipulate "struct page" via pfns
Remove all kvm_{release,set}_pfn_*() APIs now that all users are gone.

No functional change intended.

Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-85-seanjc@google.com>
2024-10-25 13:01:35 -04:00
Sean Christopherson
31fccdd212 KVM: Make kvm_follow_pfn.refcounted_page a required field
Now that the legacy gfn_to_pfn() APIs are gone, and all callers of
hva_to_pfn() pass in a refcounted_page pointer, make it a required field
to ensure all future usage in KVM plays nice.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-82-seanjc@google.com>
2024-10-25 13:01:35 -04:00
Sean Christopherson
06cdaff80e KVM: Drop gfn_to_pfn() APIs now that all users are gone
Drop gfn_to_pfn() and all its variants now that all users are gone.

No functional change intended.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-80-seanjc@google.com>
2024-10-25 13:01:35 -04:00
Sean Christopherson
f42e289a20 KVM: Add support for read-only usage of gfn_to_page()
Rework gfn_to_page() to support read-only accesses so that it can be used
by arm64 to get MTE tags out of guest memory.

Opportunistically rewrite the comment to be even more stern about using
gfn_to_page(), as there are very few scenarios where requiring a struct
page is actually the right thing to do (though there are such scenarios).
Add a FIXME to call out that KVM probably should be pinning pages, not
just getting pages.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-77-seanjc@google.com>
2024-10-25 13:00:50 -04:00
Sean Christopherson
ce6bf70346 KVM: Convert gfn_to_page() to use kvm_follow_pfn()
Convert gfn_to_page() to the new kvm_follow_pfn() internal API, which will
eventually allow removing gfn_to_pfn() and kvm_pfn_to_refcounted_page().

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-76-seanjc@google.com>
2024-10-25 13:00:49 -04:00
Sean Christopherson
1fbee5b01a KVM: guest_memfd: Provide "struct page" as output from kvm_gmem_get_pfn()
Provide the "struct page" associated with a guest_memfd pfn as an output
from __kvm_gmem_get_pfn() so that KVM guest page fault handlers can
directly put the page instead of having to rely on
kvm_pfn_to_refcounted_page().

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-47-seanjc@google.com>
2024-10-25 13:00:47 -04:00
Sean Christopherson
4af18dc6a9 KVM: guest_memfd: Pass index, not gfn, to __kvm_gmem_get_pfn()
Refactor guest_memfd usage of __kvm_gmem_get_pfn() to pass the index into
the guest_memfd file instead of the gfn, i.e. resolve the index based on
the slot+gfn in the caller instead of in __kvm_gmem_get_pfn().  This will
allow kvm_gmem_get_pfn() to retrieve and return the specific "struct page",
which requires the index into the folio, without a redoing the index
calculation multiple times (which isn't costly, just hard to follow).

Opportunistically add a kvm_gmem_get_index() helper to make the copy+pasted
code easier to understand.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-46-seanjc@google.com>
2024-10-25 13:00:47 -04:00
Sean Christopherson
1c7b627e93 KVM: Add kvm_faultin_pfn() to specifically service guest page faults
Add a new dedicated API, kvm_faultin_pfn(), for servicing guest page
faults, i.e. for getting pages/pfns that will be mapped into the guest via
an mmu_notifier-protected KVM MMU.  Keep struct kvm_follow_pfn buried in
internal code, as having __kvm_faultin_pfn() take "out" params is actually
cleaner for several architectures, e.g. it allows the caller to have its
own "page fault" structure without having to marshal data to/from
kvm_follow_pfn.

Long term, common KVM would ideally provide a kvm_page_fault structure, a
la x86's struct of the same name.  But all architectures need to be
converted to a common API before that can happen.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-44-seanjc@google.com>
2024-10-25 13:00:47 -04:00
Sean Christopherson
68e51d0a43 KVM: Disallow direct access (w/o mmu_notifier) to unpinned pfn by default
Add an off-by-default module param to control whether or not KVM is allowed
to map memory that isn't pinned, i.e. that KVM can't guarantee won't be
freed while it is mapped into KVM and/or the guest.  Don't remove the
functionality entirely, as there are use cases where mapping unpinned
memory is safe (as defined by the platform owner), e.g. when memory is
hidden from the kernel and managed by userspace, in which case userspace
is already fully trusted to not muck with guest memory mappings.

But for more typical setups, mapping unpinned memory is wildly unsafe, and
unnecessary.  The APIs are used exclusively by x86's nested virtualization
support, and there is no known (or sane) use case for mapping PFN-mapped
memory a KVM guest _and_ letting the guest use it for virtualization
structures.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-36-seanjc@google.com>
2024-10-25 12:59:08 -04:00
Sean Christopherson
2e5fdf60a9 KVM: Get writable mapping for __kvm_vcpu_map() only when necessary
When creating a memory map for read, don't request a writable pfn from the
primary MMU.  While creating read-only mappings can be theoretically slower,
as they don't play nice with fast GUP due to the need to break CoW before
mapping the underlying PFN, practically speaking, creating a mapping isn't
a super hot path, and getting a writable mapping for reading is weird and
confusing.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-35-seanjc@google.com>
2024-10-25 12:59:08 -04:00
Sean Christopherson
365e319208 KVM: Pass in write/dirty to kvm_vcpu_map(), not kvm_vcpu_unmap()
Now that all kvm_vcpu_{,un}map() users pass "true" for @dirty, have them
pass "true" as a @writable param to kvm_vcpu_map(), and thus create a
read-only mapping when possible.

Note, creating read-only mappings can be theoretically slower, as they
don't play nice with fast GUP due to the need to break CoW before mapping
the underlying PFN.  But practically speaking, creating a mapping isn't
a super hot path, and getting a writable mapping for reading is weird and
confusing.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-34-seanjc@google.com>
2024-10-25 12:59:07 -04:00