linux/arch/arm64/kvm/vgic/vgic-v3-nested.c
Marc Zyngier 89896cc159 KVM: arm64: nv: Fold GICv3 host trapping requirements into guest setup
Popular HW that is able to use NV also has a broken vgic implementation
that requires trapping.

On such HW, propagate the host trap bits into the guest's shadow
ICH_HCR_EL2 register, making sure we don't allow an L2 guest to bring
the system down.

This involves a bit of tweaking so that the emulation code correctly
poicks up the shadow state as needed, and to only partially sync
ICH_HCR_EL2 back with the guest state to capture EOIcount.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250225172930.1850838-15-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-03-03 14:57:10 -08:00

410 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_nested.h>
#include "vgic.h"
#define ICH_LRN(n) (ICH_LR0_EL2 + (n))
#define ICH_AP0RN(n) (ICH_AP0R0_EL2 + (n))
#define ICH_AP1RN(n) (ICH_AP1R0_EL2 + (n))
struct mi_state {
u16 eisr;
u16 elrsr;
bool pend;
};
/*
* The shadow registers loaded to the hardware when running a L2 guest
* with the virtual IMO/FMO bits set.
*/
struct shadow_if {
struct vgic_v3_cpu_if cpuif;
unsigned long lr_map;
};
static DEFINE_PER_CPU(struct shadow_if, shadow_if);
/*
* Nesting GICv3 support
*
* On a non-nesting VM (only running at EL0/EL1), the host hypervisor
* completely controls the interrupts injected via the list registers.
* Consequently, most of the state that is modified by the guest (by ACK-ing
* and EOI-ing interrupts) is synced by KVM on each entry/exit, so that we
* keep a semi-consistent view of the interrupts.
*
* This still applies for a NV guest, but only while "InHost" (either
* running at EL2, or at EL0 with HCR_EL2.{E2H.TGE}=={1,1}.
*
* When running a L2 guest ("not InHost"), things are radically different,
* as the L1 guest is in charge of provisioning the interrupts via its own
* view of the ICH_LR*_EL2 registers, which conveniently live in the VNCR
* page. This means that the flow described above does work (there is no
* state to rebuild in the L0 hypervisor), and that most things happed on L2
* load/put:
*
* - on L2 load: move the in-memory L1 vGIC configuration into a shadow,
* per-CPU data structure that is used to populate the actual LRs. This is
* an extra copy that we could avoid, but life is short. In the process,
* we remap any interrupt that has the HW bit set to the mapped interrupt
* on the host, should the host consider it a HW one. This allows the HW
* deactivation to take its course, such as for the timer.
*
* - on L2 put: perform the inverse transformation, so that the result of L2
* running becomes visible to L1 in the VNCR-accessible registers.
*
* - there is nothing to do on L2 entry, as everything will have happened
* on load. However, this is the point where we detect that an interrupt
* targeting L1 and prepare the grand switcheroo.
*
* - on L2 exit: emulate the HW bit, and deactivate corresponding the L1
* interrupt. The L0 active state will be cleared by the HW if the L1
* interrupt was itself backed by a HW interrupt.
*
* Maintenance Interrupt (MI) management:
*
* Since the L2 guest runs the vgic in its full glory, MIs get delivered and
* used as a handover point between L2 and L1.
*
* - on delivery of a MI to L0 while L2 is running: make the L1 MI pending,
* and let it rip. This will initiate a vcpu_put() on L2, and allow L1 to
* run and process the MI.
*
* - L1 MI is a fully virtual interrupt, not linked to the host's MI. Its
* state must be computed at each entry/exit of the guest, much like we do
* it for the PMU interrupt.
*
* - because most of the ICH_*_EL2 registers live in the VNCR page, the
* quality of emulation is poor: L1 can setup the vgic so that an MI would
* immediately fire, and not observe anything until the next exit. Trying
* to read ICH_MISR_EL2 would do the trick, for example.
*
* System register emulation:
*
* We get two classes of registers:
*
* - those backed by memory (LRs, APRs, HCR, VMCR): L1 can freely access
* them, and L0 doesn't see a thing.
*
* - those that always trap (ELRSR, EISR, MISR): these are status registers
* that are built on the fly based on the in-memory state.
*
* Only L1 can access the ICH_*_EL2 registers. A non-NV L2 obviously cannot,
* and a NV L2 would either access the VNCR page provided by L1 (memory
* based registers), or see the access redirected to L1 (registers that
* trap) thanks to NV being set by L1.
*/
bool vgic_state_is_nested(struct kvm_vcpu *vcpu)
{
u64 xmo;
if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
xmo = __vcpu_sys_reg(vcpu, HCR_EL2) & (HCR_IMO | HCR_FMO);
WARN_ONCE(xmo && xmo != (HCR_IMO | HCR_FMO),
"Separate virtual IRQ/FIQ settings not supported\n");
return !!xmo;
}
return false;
}
static struct shadow_if *get_shadow_if(void)
{
return this_cpu_ptr(&shadow_if);
}
static bool lr_triggers_eoi(u64 lr)
{
return !(lr & (ICH_LR_STATE | ICH_LR_HW)) && (lr & ICH_LR_EOI);
}
static void vgic_compute_mi_state(struct kvm_vcpu *vcpu, struct mi_state *mi_state)
{
u16 eisr = 0, elrsr = 0;
bool pend = false;
for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) {
u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
if (lr_triggers_eoi(lr))
eisr |= BIT(i);
if (!(lr & ICH_LR_STATE))
elrsr |= BIT(i);
pend |= (lr & ICH_LR_PENDING_BIT);
}
mi_state->eisr = eisr;
mi_state->elrsr = elrsr;
mi_state->pend = pend;
}
u16 vgic_v3_get_eisr(struct kvm_vcpu *vcpu)
{
struct mi_state mi_state;
vgic_compute_mi_state(vcpu, &mi_state);
return mi_state.eisr;
}
u16 vgic_v3_get_elrsr(struct kvm_vcpu *vcpu)
{
struct mi_state mi_state;
vgic_compute_mi_state(vcpu, &mi_state);
return mi_state.elrsr;
}
u64 vgic_v3_get_misr(struct kvm_vcpu *vcpu)
{
struct mi_state mi_state;
u64 reg = 0, hcr, vmcr;
hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2);
vgic_compute_mi_state(vcpu, &mi_state);
if (mi_state.eisr)
reg |= ICH_MISR_EL2_EOI;
if (__vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_UIE) {
int used_lrs = kvm_vgic_global_state.nr_lr;
used_lrs -= hweight16(mi_state.elrsr);
reg |= (used_lrs <= 1) ? ICH_MISR_EL2_U : 0;
}
if ((hcr & ICH_HCR_EL2_LRENPIE) && FIELD_GET(ICH_HCR_EL2_EOIcount_MASK, hcr))
reg |= ICH_MISR_EL2_LRENP;
if ((hcr & ICH_HCR_EL2_NPIE) && !mi_state.pend)
reg |= ICH_MISR_EL2_NP;
if ((hcr & ICH_HCR_EL2_VGrp0EIE) && (vmcr & ICH_VMCR_ENG0_MASK))
reg |= ICH_MISR_EL2_VGrp0E;
if ((hcr & ICH_HCR_EL2_VGrp0DIE) && !(vmcr & ICH_VMCR_ENG0_MASK))
reg |= ICH_MISR_EL2_VGrp0D;
if ((hcr & ICH_HCR_EL2_VGrp1EIE) && (vmcr & ICH_VMCR_ENG1_MASK))
reg |= ICH_MISR_EL2_VGrp1E;
if ((hcr & ICH_HCR_EL2_VGrp1DIE) && !(vmcr & ICH_VMCR_ENG1_MASK))
reg |= ICH_MISR_EL2_VGrp1D;
return reg;
}
/*
* For LRs which have HW bit set such as timer interrupts, we modify them to
* have the host hardware interrupt number instead of the virtual one programmed
* by the guest hypervisor.
*/
static void vgic_v3_create_shadow_lr(struct kvm_vcpu *vcpu,
struct vgic_v3_cpu_if *s_cpu_if)
{
unsigned long lr_map = 0;
int index = 0;
for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) {
u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
struct vgic_irq *irq;
if (!(lr & ICH_LR_STATE))
lr = 0;
if (!(lr & ICH_LR_HW))
goto next;
/* We have the HW bit set, check for validity of pINTID */
irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
if (!irq || !irq->hw || irq->intid > VGIC_MAX_SPI ) {
/* There was no real mapping, so nuke the HW bit */
lr &= ~ICH_LR_HW;
if (irq)
vgic_put_irq(vcpu->kvm, irq);
goto next;
}
/* It is illegal to have the EOI bit set with HW */
lr &= ~ICH_LR_EOI;
/* Translate the virtual mapping to the real one */
lr &= ~ICH_LR_PHYS_ID_MASK;
lr |= FIELD_PREP(ICH_LR_PHYS_ID_MASK, (u64)irq->hwintid);
vgic_put_irq(vcpu->kvm, irq);
next:
s_cpu_if->vgic_lr[index] = lr;
if (lr) {
lr_map |= BIT(i);
index++;
}
}
container_of(s_cpu_if, struct shadow_if, cpuif)->lr_map = lr_map;
s_cpu_if->used_lrs = index;
}
void vgic_v3_sync_nested(struct kvm_vcpu *vcpu)
{
struct shadow_if *shadow_if = get_shadow_if();
int i, index = 0;
for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
struct vgic_irq *irq;
if (!(lr & ICH_LR_HW) || !(lr & ICH_LR_STATE))
goto next;
/*
* If we had a HW lr programmed by the guest hypervisor, we
* need to emulate the HW effect between the guest hypervisor
* and the nested guest.
*/
irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
if (WARN_ON(!irq)) /* Shouldn't happen as we check on load */
goto next;
lr = __gic_v3_get_lr(index);
if (!(lr & ICH_LR_STATE))
irq->active = false;
vgic_put_irq(vcpu->kvm, irq);
next:
index++;
}
}
static void vgic_v3_create_shadow_state(struct kvm_vcpu *vcpu,
struct vgic_v3_cpu_if *s_cpu_if)
{
struct vgic_v3_cpu_if *host_if = &vcpu->arch.vgic_cpu.vgic_v3;
u64 val = 0;
int i;
/*
* If we're on a system with a broken vgic that requires
* trapping, propagate the trapping requirements.
*
* Ah, the smell of rotten fruits...
*/
if (static_branch_unlikely(&vgic_v3_cpuif_trap))
val = host_if->vgic_hcr & (ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 |
ICH_HCR_EL2_TC | ICH_HCR_EL2_TDIR);
s_cpu_if->vgic_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) | val;
s_cpu_if->vgic_vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2);
s_cpu_if->vgic_sre = host_if->vgic_sre;
for (i = 0; i < 4; i++) {
s_cpu_if->vgic_ap0r[i] = __vcpu_sys_reg(vcpu, ICH_AP0RN(i));
s_cpu_if->vgic_ap1r[i] = __vcpu_sys_reg(vcpu, ICH_AP1RN(i));
}
vgic_v3_create_shadow_lr(vcpu, s_cpu_if);
}
void vgic_v3_load_nested(struct kvm_vcpu *vcpu)
{
struct shadow_if *shadow_if = get_shadow_if();
struct vgic_v3_cpu_if *cpu_if = &shadow_if->cpuif;
BUG_ON(!vgic_state_is_nested(vcpu));
vgic_v3_create_shadow_state(vcpu, cpu_if);
__vgic_v3_restore_vmcr_aprs(cpu_if);
__vgic_v3_activate_traps(cpu_if);
__vgic_v3_restore_state(cpu_if);
/*
* Propagate the number of used LRs for the benefit of the HYP
* GICv3 emulation code. Yes, this is a pretty sorry hack.
*/
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = cpu_if->used_lrs;
}
void vgic_v3_put_nested(struct kvm_vcpu *vcpu)
{
struct shadow_if *shadow_if = get_shadow_if();
struct vgic_v3_cpu_if *s_cpu_if = &shadow_if->cpuif;
u64 val;
int i;
__vgic_v3_save_vmcr_aprs(s_cpu_if);
__vgic_v3_deactivate_traps(s_cpu_if);
__vgic_v3_save_state(s_cpu_if);
/*
* Translate the shadow state HW fields back to the virtual ones
* before copying the shadow struct back to the nested one.
*/
val = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
val &= ~ICH_HCR_EL2_EOIcount_MASK;
val |= (s_cpu_if->vgic_hcr & ICH_HCR_EL2_EOIcount_MASK);
__vcpu_sys_reg(vcpu, ICH_HCR_EL2) = val;
__vcpu_sys_reg(vcpu, ICH_VMCR_EL2) = s_cpu_if->vgic_vmcr;
for (i = 0; i < 4; i++) {
__vcpu_sys_reg(vcpu, ICH_AP0RN(i)) = s_cpu_if->vgic_ap0r[i];
__vcpu_sys_reg(vcpu, ICH_AP1RN(i)) = s_cpu_if->vgic_ap1r[i];
}
for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
val = __vcpu_sys_reg(vcpu, ICH_LRN(i));
val &= ~ICH_LR_STATE;
val |= s_cpu_if->vgic_lr[i] & ICH_LR_STATE;
__vcpu_sys_reg(vcpu, ICH_LRN(i)) = val;
s_cpu_if->vgic_lr[i] = 0;
}
shadow_if->lr_map = 0;
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = 0;
}
/*
* If we exit a L2 VM with a pending maintenance interrupt from the GIC,
* then we need to forward this to L1 so that it can re-sync the appropriate
* LRs and sample level triggered interrupts again.
*/
void vgic_v3_handle_nested_maint_irq(struct kvm_vcpu *vcpu)
{
bool state = read_sysreg_s(SYS_ICH_MISR_EL2);
/* This will force a switch back to L1 if the level is high */
kvm_vgic_inject_irq(vcpu->kvm, vcpu,
vcpu->kvm->arch.vgic.mi_intid, state, vcpu);
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0);
}
void vgic_v3_nested_update_mi(struct kvm_vcpu *vcpu)
{
bool level;
level = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_En;
if (level)
level &= vgic_v3_get_misr(vcpu);
kvm_vgic_inject_irq(vcpu->kvm, vcpu,
vcpu->kvm->arch.vgic.mi_intid, level, vcpu);
}