mirror of
https://github.com/torvalds/linux.git
synced 2025-04-09 14:45:27 +00:00

In anticipation of aging SPTEs outside of mmu_lock, force A/D-disabled SPTEs to be updated atomically, as aging A/D-disabled SPTEs will mark them for access-tracking outside of mmu_lock. Coupled with restoring access- tracked SPTEs in the fast page fault handler, the end result is that A/D-disable SPTEs will be volatile at all times. Reviewed-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/all/Z60bhK96JnKIgqZQ@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
551 lines
17 KiB
C
551 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* Macros and functions to access KVM PTEs (also known as SPTEs)
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2020 Red Hat, Inc. and/or its affiliates.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "mmu.h"
|
|
#include "mmu_internal.h"
|
|
#include "x86.h"
|
|
#include "spte.h"
|
|
|
|
#include <asm/e820/api.h>
|
|
#include <asm/memtype.h>
|
|
#include <asm/vmx.h>
|
|
|
|
bool __read_mostly enable_mmio_caching = true;
|
|
static bool __ro_after_init allow_mmio_caching;
|
|
module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
|
|
EXPORT_SYMBOL_GPL(enable_mmio_caching);
|
|
|
|
bool __read_mostly kvm_ad_enabled;
|
|
|
|
u64 __read_mostly shadow_host_writable_mask;
|
|
u64 __read_mostly shadow_mmu_writable_mask;
|
|
u64 __read_mostly shadow_nx_mask;
|
|
u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
|
|
u64 __read_mostly shadow_user_mask;
|
|
u64 __read_mostly shadow_accessed_mask;
|
|
u64 __read_mostly shadow_dirty_mask;
|
|
u64 __read_mostly shadow_mmio_value;
|
|
u64 __read_mostly shadow_mmio_mask;
|
|
u64 __read_mostly shadow_mmio_access_mask;
|
|
u64 __read_mostly shadow_present_mask;
|
|
u64 __read_mostly shadow_memtype_mask;
|
|
u64 __read_mostly shadow_me_value;
|
|
u64 __read_mostly shadow_me_mask;
|
|
u64 __read_mostly shadow_acc_track_mask;
|
|
|
|
u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
|
|
u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
|
|
|
|
static u8 __init kvm_get_host_maxphyaddr(void)
|
|
{
|
|
/*
|
|
* boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
|
|
* in CPU detection code, but the processor treats those reduced bits as
|
|
* 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
|
|
* the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR,
|
|
* when reasoning about CPU behavior with respect to MAXPHYADDR.
|
|
*/
|
|
if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
|
|
return cpuid_eax(0x80000008) & 0xff;
|
|
|
|
/*
|
|
* Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
|
|
* custom CPUID. Proceed with whatever the kernel found since these features
|
|
* aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
|
|
*/
|
|
return boot_cpu_data.x86_phys_bits;
|
|
}
|
|
|
|
void __init kvm_mmu_spte_module_init(void)
|
|
{
|
|
/*
|
|
* Snapshot userspace's desire to allow MMIO caching. Whether or not
|
|
* KVM can actually enable MMIO caching depends on vendor-specific
|
|
* hardware capabilities and other module params that can't be resolved
|
|
* until the vendor module is loaded, i.e. enable_mmio_caching can and
|
|
* will change when the vendor module is (re)loaded.
|
|
*/
|
|
allow_mmio_caching = enable_mmio_caching;
|
|
|
|
kvm_host.maxphyaddr = kvm_get_host_maxphyaddr();
|
|
}
|
|
|
|
static u64 generation_mmio_spte_mask(u64 gen)
|
|
{
|
|
u64 mask;
|
|
|
|
WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
|
|
|
|
mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
|
|
mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
|
|
return mask;
|
|
}
|
|
|
|
u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
|
|
{
|
|
u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
|
|
u64 spte = generation_mmio_spte_mask(gen);
|
|
u64 gpa = gfn << PAGE_SHIFT;
|
|
|
|
WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value);
|
|
|
|
access &= shadow_mmio_access_mask;
|
|
spte |= vcpu->kvm->arch.shadow_mmio_value | access;
|
|
spte |= gpa | shadow_nonpresent_or_rsvd_mask;
|
|
spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
|
|
<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
|
|
|
|
return spte;
|
|
}
|
|
|
|
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
|
|
{
|
|
if (pfn_valid(pfn))
|
|
return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
|
|
/*
|
|
* Some reserved pages, such as those from NVDIMM
|
|
* DAX devices, are not for MMIO, and can be mapped
|
|
* with cached memory type for better performance.
|
|
* However, the above check misconceives those pages
|
|
* as MMIO, and results in KVM mapping them with UC
|
|
* memory type, which would hurt the performance.
|
|
* Therefore, we check the host memory type in addition
|
|
* and only treat UC/UC-/WC pages as MMIO.
|
|
*/
|
|
(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
|
|
|
|
return !e820__mapped_raw_any(pfn_to_hpa(pfn),
|
|
pfn_to_hpa(pfn + 1) - 1,
|
|
E820_TYPE_RAM);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the SPTE needs to be updated atomically due to having bits
|
|
* that may be changed without holding mmu_lock, and for which KVM must not
|
|
* lose information. E.g. KVM must not drop Dirty bit information. The caller
|
|
* is responsible for checking if the SPTE is shadow-present, and for
|
|
* determining whether or not the caller cares about non-leaf SPTEs.
|
|
*/
|
|
bool spte_needs_atomic_update(u64 spte)
|
|
{
|
|
/* SPTEs can be made Writable bit by KVM's fast page fault handler. */
|
|
if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
|
|
return true;
|
|
|
|
/*
|
|
* A/D-disabled SPTEs can be access-tracked by aging, and access-tracked
|
|
* SPTEs can be restored by KVM's fast page fault handler.
|
|
*/
|
|
if (!spte_ad_enabled(spte))
|
|
return true;
|
|
|
|
/*
|
|
* Dirty and Accessed bits can be set by the CPU. Ignore the Accessed
|
|
* bit, as KVM tolerates false negatives/positives, e.g. KVM doesn't
|
|
* invalidate TLBs when aging SPTEs, and so it's safe to clobber the
|
|
* Accessed bit (and rare in practice).
|
|
*/
|
|
return is_writable_pte(spte) && !(spte & shadow_dirty_mask);
|
|
}
|
|
|
|
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
|
|
const struct kvm_memory_slot *slot,
|
|
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
|
|
u64 old_spte, bool prefetch, bool synchronizing,
|
|
bool host_writable, u64 *new_spte)
|
|
{
|
|
int level = sp->role.level;
|
|
u64 spte = SPTE_MMU_PRESENT_MASK;
|
|
bool wrprot = false;
|
|
|
|
/*
|
|
* For the EPT case, shadow_present_mask has no RWX bits set if
|
|
* exec-only page table entries are supported. In that case,
|
|
* ACC_USER_MASK and shadow_user_mask are used to represent
|
|
* read access. See FNAME(gpte_access) in paging_tmpl.h.
|
|
*/
|
|
WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE);
|
|
|
|
if (sp->role.ad_disabled)
|
|
spte |= SPTE_TDP_AD_DISABLED;
|
|
else if (kvm_mmu_page_ad_need_write_protect(sp))
|
|
spte |= SPTE_TDP_AD_WRPROT_ONLY;
|
|
|
|
spte |= shadow_present_mask;
|
|
if (!prefetch || synchronizing)
|
|
spte |= shadow_accessed_mask;
|
|
|
|
/*
|
|
* For simplicity, enforce the NX huge page mitigation even if not
|
|
* strictly necessary. KVM could ignore the mitigation if paging is
|
|
* disabled in the guest, as the guest doesn't have any page tables to
|
|
* abuse. But to safely ignore the mitigation, KVM would have to
|
|
* ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
|
|
* is toggled on, and that's a net negative for performance when TDP is
|
|
* enabled. When TDP is disabled, KVM will always switch to a new MMU
|
|
* when CR0.PG is toggled, but leveraging that to ignore the mitigation
|
|
* would tie make_spte() further to vCPU/MMU state, and add complexity
|
|
* just to optimize a mode that is anything but performance critical.
|
|
*/
|
|
if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
|
|
is_nx_huge_page_enabled(vcpu->kvm)) {
|
|
pte_access &= ~ACC_EXEC_MASK;
|
|
}
|
|
|
|
if (pte_access & ACC_EXEC_MASK)
|
|
spte |= shadow_x_mask;
|
|
else
|
|
spte |= shadow_nx_mask;
|
|
|
|
if (pte_access & ACC_USER_MASK)
|
|
spte |= shadow_user_mask;
|
|
|
|
if (level > PG_LEVEL_4K)
|
|
spte |= PT_PAGE_SIZE_MASK;
|
|
|
|
if (shadow_memtype_mask)
|
|
spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn,
|
|
kvm_is_mmio_pfn(pfn));
|
|
if (host_writable)
|
|
spte |= shadow_host_writable_mask;
|
|
else
|
|
pte_access &= ~ACC_WRITE_MASK;
|
|
|
|
if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
|
|
spte |= shadow_me_value;
|
|
|
|
spte |= (u64)pfn << PAGE_SHIFT;
|
|
|
|
if (pte_access & ACC_WRITE_MASK) {
|
|
/*
|
|
* Unsync shadow pages that are reachable by the new, writable
|
|
* SPTE. Write-protect the SPTE if the page can't be unsync'd,
|
|
* e.g. it's write-tracked (upper-level SPs) or has one or more
|
|
* shadow pages and unsync'ing pages is not allowed.
|
|
*
|
|
* When overwriting an existing leaf SPTE, and the old SPTE was
|
|
* writable, skip trying to unsync shadow pages as any relevant
|
|
* shadow pages must already be unsync, i.e. the hash lookup is
|
|
* unnecessary (and expensive). Note, this relies on KVM not
|
|
* changing PFNs without first zapping the old SPTE, which is
|
|
* guaranteed by both the shadow MMU and the TDP MMU.
|
|
*/
|
|
if ((!is_last_spte(old_spte, level) || !is_writable_pte(old_spte)) &&
|
|
mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, synchronizing, prefetch))
|
|
wrprot = true;
|
|
else
|
|
spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask |
|
|
shadow_dirty_mask;
|
|
}
|
|
|
|
if (prefetch && !synchronizing)
|
|
spte = mark_spte_for_access_track(spte);
|
|
|
|
WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
|
|
"spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
|
|
get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
|
|
|
|
/*
|
|
* Mark the memslot dirty *after* modifying it for access tracking.
|
|
* Unlike folios, memslots can be safely marked dirty out of mmu_lock,
|
|
* i.e. in the fast page fault handler.
|
|
*/
|
|
if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
|
|
/* Enforced by kvm_mmu_hugepage_adjust. */
|
|
WARN_ON_ONCE(level > PG_LEVEL_4K);
|
|
mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
|
|
}
|
|
|
|
*new_spte = spte;
|
|
return wrprot;
|
|
}
|
|
|
|
static u64 modify_spte_protections(u64 spte, u64 set, u64 clear)
|
|
{
|
|
bool is_access_track = is_access_track_spte(spte);
|
|
|
|
if (is_access_track)
|
|
spte = restore_acc_track_spte(spte);
|
|
|
|
KVM_MMU_WARN_ON(set & clear);
|
|
spte = (spte | set) & ~clear;
|
|
|
|
if (is_access_track)
|
|
spte = mark_spte_for_access_track(spte);
|
|
|
|
return spte;
|
|
}
|
|
|
|
static u64 make_spte_executable(u64 spte)
|
|
{
|
|
return modify_spte_protections(spte, shadow_x_mask, shadow_nx_mask);
|
|
}
|
|
|
|
static u64 make_spte_nonexecutable(u64 spte)
|
|
{
|
|
return modify_spte_protections(spte, shadow_nx_mask, shadow_x_mask);
|
|
}
|
|
|
|
/*
|
|
* Construct an SPTE that maps a sub-page of the given huge page SPTE where
|
|
* `index` identifies which sub-page.
|
|
*
|
|
* This is used during huge page splitting to build the SPTEs that make up the
|
|
* new page table.
|
|
*/
|
|
u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
|
|
union kvm_mmu_page_role role, int index)
|
|
{
|
|
u64 child_spte = huge_spte;
|
|
|
|
KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm);
|
|
|
|
/*
|
|
* The child_spte already has the base address of the huge page being
|
|
* split. So we just have to OR in the offset to the page at the next
|
|
* lower level for the given index.
|
|
*/
|
|
child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
|
|
|
|
if (role.level == PG_LEVEL_4K) {
|
|
child_spte &= ~PT_PAGE_SIZE_MASK;
|
|
|
|
/*
|
|
* When splitting to a 4K page where execution is allowed, mark
|
|
* the page executable as the NX hugepage mitigation no longer
|
|
* applies.
|
|
*/
|
|
if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
|
|
child_spte = make_spte_executable(child_spte);
|
|
}
|
|
|
|
return child_spte;
|
|
}
|
|
|
|
u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level)
|
|
{
|
|
u64 huge_spte;
|
|
|
|
KVM_BUG_ON(!is_shadow_present_pte(small_spte) || level == PG_LEVEL_4K, kvm);
|
|
|
|
huge_spte = small_spte | PT_PAGE_SIZE_MASK;
|
|
|
|
/*
|
|
* huge_spte already has the address of the sub-page being collapsed
|
|
* from small_spte, so just clear the lower address bits to create the
|
|
* huge page address.
|
|
*/
|
|
huge_spte &= KVM_HPAGE_MASK(level) | ~PAGE_MASK;
|
|
|
|
if (is_nx_huge_page_enabled(kvm))
|
|
huge_spte = make_spte_nonexecutable(huge_spte);
|
|
|
|
return huge_spte;
|
|
}
|
|
|
|
u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
|
|
{
|
|
u64 spte = SPTE_MMU_PRESENT_MASK;
|
|
|
|
spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
|
|
shadow_user_mask | shadow_x_mask | shadow_me_value;
|
|
|
|
if (ad_disabled)
|
|
spte |= SPTE_TDP_AD_DISABLED;
|
|
else
|
|
spte |= shadow_accessed_mask;
|
|
|
|
return spte;
|
|
}
|
|
|
|
u64 mark_spte_for_access_track(u64 spte)
|
|
{
|
|
if (spte_ad_enabled(spte))
|
|
return spte & ~shadow_accessed_mask;
|
|
|
|
if (is_access_track_spte(spte))
|
|
return spte;
|
|
|
|
check_spte_writable_invariants(spte);
|
|
|
|
WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
|
|
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
|
|
"Access Tracking saved bit locations are not zero\n");
|
|
|
|
spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
|
|
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
|
|
spte &= ~(shadow_acc_track_mask | shadow_accessed_mask);
|
|
|
|
return spte;
|
|
}
|
|
|
|
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
|
|
{
|
|
BUG_ON((u64)(unsigned)access_mask != access_mask);
|
|
WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
|
|
|
|
/*
|
|
* Reset to the original module param value to honor userspace's desire
|
|
* to (dis)allow MMIO caching. Update the param itself so that
|
|
* userspace can see whether or not KVM is actually using MMIO caching.
|
|
*/
|
|
enable_mmio_caching = allow_mmio_caching;
|
|
if (!enable_mmio_caching)
|
|
mmio_value = 0;
|
|
|
|
/*
|
|
* The mask must contain only bits that are carved out specifically for
|
|
* the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
|
|
* generation.
|
|
*/
|
|
if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
|
|
mmio_value = 0;
|
|
|
|
/*
|
|
* Disable MMIO caching if the MMIO value collides with the bits that
|
|
* are used to hold the relocated GFN when the L1TF mitigation is
|
|
* enabled. This should never fire as there is no known hardware that
|
|
* can trigger this condition, e.g. SME/SEV CPUs that require a custom
|
|
* MMIO value are not susceptible to L1TF.
|
|
*/
|
|
if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
|
|
SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
|
|
mmio_value = 0;
|
|
|
|
/*
|
|
* The masked MMIO value must obviously match itself and a frozen SPTE
|
|
* must not get a false positive. Frozen SPTEs and MMIO SPTEs should
|
|
* never collide as MMIO must set some RWX bits, and frozen SPTEs must
|
|
* not set any RWX bits.
|
|
*/
|
|
if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
|
|
WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value))
|
|
mmio_value = 0;
|
|
|
|
if (!mmio_value)
|
|
enable_mmio_caching = false;
|
|
|
|
shadow_mmio_value = mmio_value;
|
|
shadow_mmio_mask = mmio_mask;
|
|
shadow_mmio_access_mask = access_mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
|
|
|
|
void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
|
|
{
|
|
/* shadow_me_value must be a subset of shadow_me_mask */
|
|
if (WARN_ON(me_value & ~me_mask))
|
|
me_value = me_mask = 0;
|
|
|
|
shadow_me_value = me_value;
|
|
shadow_me_mask = me_mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
|
|
|
|
void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
|
|
{
|
|
kvm_ad_enabled = has_ad_bits;
|
|
|
|
shadow_user_mask = VMX_EPT_READABLE_MASK;
|
|
shadow_accessed_mask = VMX_EPT_ACCESS_BIT;
|
|
shadow_dirty_mask = VMX_EPT_DIRTY_BIT;
|
|
shadow_nx_mask = 0ull;
|
|
shadow_x_mask = VMX_EPT_EXECUTABLE_MASK;
|
|
/* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */
|
|
shadow_present_mask =
|
|
(has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT;
|
|
/*
|
|
* EPT overrides the host MTRRs, and so KVM must program the desired
|
|
* memtype directly into the SPTEs. Note, this mask is just the mask
|
|
* of all bits that factor into the memtype, the actual memtype must be
|
|
* dynamically calculated, e.g. to ensure host MMIO is mapped UC.
|
|
*/
|
|
shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
|
|
shadow_acc_track_mask = VMX_EPT_RWX_MASK;
|
|
shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
|
|
shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE;
|
|
|
|
/*
|
|
* EPT Misconfigurations are generated if the value of bits 2:0
|
|
* of an EPT paging-structure entry is 110b (write/execute).
|
|
*/
|
|
kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
|
|
VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
|
|
|
|
void kvm_mmu_reset_all_pte_masks(void)
|
|
{
|
|
u8 low_phys_bits;
|
|
u64 mask;
|
|
|
|
kvm_ad_enabled = true;
|
|
|
|
/*
|
|
* If the CPU has 46 or less physical address bits, then set an
|
|
* appropriate mask to guard against L1TF attacks. Otherwise, it is
|
|
* assumed that the CPU is not vulnerable to L1TF.
|
|
*
|
|
* Some Intel CPUs address the L1 cache using more PA bits than are
|
|
* reported by CPUID. Use the PA width of the L1 cache when possible
|
|
* to achieve more effective mitigation, e.g. if system RAM overlaps
|
|
* the most significant bits of legal physical address space.
|
|
*/
|
|
shadow_nonpresent_or_rsvd_mask = 0;
|
|
low_phys_bits = boot_cpu_data.x86_phys_bits;
|
|
if (boot_cpu_has_bug(X86_BUG_L1TF) &&
|
|
!WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
|
|
52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
|
|
low_phys_bits = boot_cpu_data.x86_cache_bits
|
|
- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
|
|
shadow_nonpresent_or_rsvd_mask =
|
|
rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
|
|
}
|
|
|
|
shadow_nonpresent_or_rsvd_lower_gfn_mask =
|
|
GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
|
|
|
|
shadow_user_mask = PT_USER_MASK;
|
|
shadow_accessed_mask = PT_ACCESSED_MASK;
|
|
shadow_dirty_mask = PT_DIRTY_MASK;
|
|
shadow_nx_mask = PT64_NX_MASK;
|
|
shadow_x_mask = 0;
|
|
shadow_present_mask = PT_PRESENT_MASK;
|
|
|
|
/*
|
|
* For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
|
|
* memtype in the SPTEs, i.e. relies on host MTRRs to provide the
|
|
* correct memtype (WB is the "weakest" memtype).
|
|
*/
|
|
shadow_memtype_mask = 0;
|
|
shadow_acc_track_mask = 0;
|
|
shadow_me_mask = 0;
|
|
shadow_me_value = 0;
|
|
|
|
shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
|
|
shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE;
|
|
|
|
/*
|
|
* Set a reserved PA bit in MMIO SPTEs to generate page faults with
|
|
* PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
|
|
* paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
|
|
* 52-bit physical addresses then there are no reserved PA bits in the
|
|
* PTEs and so the reserved PA approach must be disabled.
|
|
*/
|
|
if (kvm_host.maxphyaddr < 52)
|
|
mask = BIT_ULL(51) | PT_PRESENT_MASK;
|
|
else
|
|
mask = 0;
|
|
|
|
kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
|
|
}
|