linux/crypto/krb5/krb5_api.c
David Howells fc0cf10c04 crypto/krb5: Implement crypto self-testing
Implement self-testing infrastructure to test the pseudo-random function,
key derivation, encryption and checksumming.

Add the testing data from rfc8009 to test AES + HMAC-SHA2.

Add the testing data from rfc6803 to test Camellia.  Note some encryption
test vectors here are incomplete, lacking the key usage number needed to
derive Ke and Ki, and there are errata for this:

	https://www.rfc-editor.org/errata_search.php?rfc=6803

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: "David S. Miller" <davem@davemloft.net>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: Simon Horman <horms@kernel.org>
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-crypto@vger.kernel.org
cc: netdev@vger.kernel.org
2025-03-02 21:56:47 +00:00

453 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Kerberos 5 crypto library.
*
* Copyright (C) 2025 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include "internal.h"
MODULE_DESCRIPTION("Kerberos 5 crypto");
MODULE_AUTHOR("Red Hat, Inc.");
MODULE_LICENSE("GPL");
static const struct krb5_enctype *const krb5_supported_enctypes[] = {
&krb5_aes128_cts_hmac_sha1_96,
&krb5_aes256_cts_hmac_sha1_96,
&krb5_aes128_cts_hmac_sha256_128,
&krb5_aes256_cts_hmac_sha384_192,
&krb5_camellia128_cts_cmac,
&krb5_camellia256_cts_cmac,
};
/**
* crypto_krb5_find_enctype - Find the handler for a Kerberos5 encryption type
* @enctype: The standard Kerberos encryption type number
*
* Look up a Kerberos encryption type by number. If successful, returns a
* pointer to the type tables; returns NULL otherwise.
*/
const struct krb5_enctype *crypto_krb5_find_enctype(u32 enctype)
{
const struct krb5_enctype *krb5;
size_t i;
for (i = 0; i < ARRAY_SIZE(krb5_supported_enctypes); i++) {
krb5 = krb5_supported_enctypes[i];
if (krb5->etype == enctype)
return krb5;
}
return NULL;
}
EXPORT_SYMBOL(crypto_krb5_find_enctype);
/**
* crypto_krb5_how_much_buffer - Work out how much buffer is required for an amount of data
* @krb5: The encoding to use.
* @mode: The mode in which to operated (checksum/encrypt)
* @data_size: How much data we want to allow for
* @_offset: Where to place the offset into the buffer
*
* Calculate how much buffer space is required to wrap a given amount of data.
* This allows for a confounder, padding and checksum as appropriate. The
* amount of buffer required is returned and the offset into the buffer at
* which the data will start is placed in *_offset.
*/
size_t crypto_krb5_how_much_buffer(const struct krb5_enctype *krb5,
enum krb5_crypto_mode mode,
size_t data_size, size_t *_offset)
{
switch (mode) {
case KRB5_CHECKSUM_MODE:
*_offset = krb5->cksum_len;
return krb5->cksum_len + data_size;
case KRB5_ENCRYPT_MODE:
*_offset = krb5->conf_len;
return krb5->conf_len + data_size + krb5->cksum_len;
default:
WARN_ON(1);
*_offset = 0;
return 0;
}
}
EXPORT_SYMBOL(crypto_krb5_how_much_buffer);
/**
* crypto_krb5_how_much_data - Work out how much data can fit in an amount of buffer
* @krb5: The encoding to use.
* @mode: The mode in which to operated (checksum/encrypt)
* @_buffer_size: How much buffer we want to allow for (may be reduced)
* @_offset: Where to place the offset into the buffer
*
* Calculate how much data can be fitted into given amount of buffer. This
* allows for a confounder, padding and checksum as appropriate. The amount of
* data that will fit is returned, the amount of buffer required is shrunk to
* allow for alignment and the offset into the buffer at which the data will
* start is placed in *_offset.
*/
size_t crypto_krb5_how_much_data(const struct krb5_enctype *krb5,
enum krb5_crypto_mode mode,
size_t *_buffer_size, size_t *_offset)
{
size_t buffer_size = *_buffer_size, data_size;
switch (mode) {
case KRB5_CHECKSUM_MODE:
if (WARN_ON(buffer_size < krb5->cksum_len + 1))
goto bad;
*_offset = krb5->cksum_len;
return buffer_size - krb5->cksum_len;
case KRB5_ENCRYPT_MODE:
if (WARN_ON(buffer_size < krb5->conf_len + 1 + krb5->cksum_len))
goto bad;
data_size = buffer_size - krb5->cksum_len;
*_offset = krb5->conf_len;
return data_size - krb5->conf_len;
default:
WARN_ON(1);
goto bad;
}
bad:
*_offset = 0;
return 0;
}
EXPORT_SYMBOL(crypto_krb5_how_much_data);
/**
* crypto_krb5_where_is_the_data - Find the data in a decrypted message
* @krb5: The encoding to use.
* @mode: Mode of operation
* @_offset: Offset of the secure blob in the buffer; updated to data offset.
* @_len: The length of the secure blob; updated to data length.
*
* Find the offset and size of the data in a secure message so that this
* information can be used in the metadata buffer which will get added to the
* digest by crypto_krb5_verify_mic().
*/
void crypto_krb5_where_is_the_data(const struct krb5_enctype *krb5,
enum krb5_crypto_mode mode,
size_t *_offset, size_t *_len)
{
switch (mode) {
case KRB5_CHECKSUM_MODE:
*_offset += krb5->cksum_len;
*_len -= krb5->cksum_len;
return;
case KRB5_ENCRYPT_MODE:
*_offset += krb5->conf_len;
*_len -= krb5->conf_len + krb5->cksum_len;
return;
default:
WARN_ON_ONCE(1);
return;
}
}
EXPORT_SYMBOL(crypto_krb5_where_is_the_data);
/*
* Prepare the encryption with derived key data.
*/
struct crypto_aead *krb5_prepare_encryption(const struct krb5_enctype *krb5,
const struct krb5_buffer *keys,
gfp_t gfp)
{
struct crypto_aead *ci = NULL;
int ret = -ENOMEM;
ci = crypto_alloc_aead(krb5->encrypt_name, 0, 0);
if (IS_ERR(ci)) {
ret = PTR_ERR(ci);
if (ret == -ENOENT)
ret = -ENOPKG;
goto err;
}
ret = crypto_aead_setkey(ci, keys->data, keys->len);
if (ret < 0) {
pr_err("Couldn't set AEAD key %s: %d\n", krb5->encrypt_name, ret);
goto err_ci;
}
ret = crypto_aead_setauthsize(ci, krb5->cksum_len);
if (ret < 0) {
pr_err("Couldn't set AEAD authsize %s: %d\n", krb5->encrypt_name, ret);
goto err_ci;
}
return ci;
err_ci:
crypto_free_aead(ci);
err:
return ERR_PTR(ret);
}
/**
* crypto_krb5_prepare_encryption - Prepare AEAD crypto object for encryption-mode
* @krb5: The encoding to use.
* @TK: The transport key to use.
* @usage: The usage constant for key derivation.
* @gfp: Allocation flags.
*
* Allocate a crypto object that does all the necessary crypto, key it and set
* its parameters and return the crypto handle to it. This can then be used to
* dispatch encrypt and decrypt operations.
*/
struct crypto_aead *crypto_krb5_prepare_encryption(const struct krb5_enctype *krb5,
const struct krb5_buffer *TK,
u32 usage, gfp_t gfp)
{
struct crypto_aead *ci = NULL;
struct krb5_buffer keys = {};
int ret;
ret = krb5->profile->derive_encrypt_keys(krb5, TK, usage, &keys, gfp);
if (ret < 0)
goto err;
ci = krb5_prepare_encryption(krb5, &keys, gfp);
if (IS_ERR(ci)) {
ret = PTR_ERR(ci);
goto err;
}
kfree(keys.data);
return ci;
err:
kfree(keys.data);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(crypto_krb5_prepare_encryption);
/*
* Prepare the checksum with derived key data.
*/
struct crypto_shash *krb5_prepare_checksum(const struct krb5_enctype *krb5,
const struct krb5_buffer *Kc,
gfp_t gfp)
{
struct crypto_shash *ci = NULL;
int ret = -ENOMEM;
ci = crypto_alloc_shash(krb5->cksum_name, 0, 0);
if (IS_ERR(ci)) {
ret = PTR_ERR(ci);
if (ret == -ENOENT)
ret = -ENOPKG;
goto err;
}
ret = crypto_shash_setkey(ci, Kc->data, Kc->len);
if (ret < 0) {
pr_err("Couldn't set shash key %s: %d\n", krb5->cksum_name, ret);
goto err_ci;
}
return ci;
err_ci:
crypto_free_shash(ci);
err:
return ERR_PTR(ret);
}
/**
* crypto_krb5_prepare_checksum - Prepare AEAD crypto object for checksum-mode
* @krb5: The encoding to use.
* @TK: The transport key to use.
* @usage: The usage constant for key derivation.
* @gfp: Allocation flags.
*
* Allocate a crypto object that does all the necessary crypto, key it and set
* its parameters and return the crypto handle to it. This can then be used to
* dispatch get_mic and verify_mic operations.
*/
struct crypto_shash *crypto_krb5_prepare_checksum(const struct krb5_enctype *krb5,
const struct krb5_buffer *TK,
u32 usage, gfp_t gfp)
{
struct crypto_shash *ci = NULL;
struct krb5_buffer keys = {};
int ret;
ret = krb5->profile->derive_checksum_key(krb5, TK, usage, &keys, gfp);
if (ret < 0) {
pr_err("get_Kc failed %d\n", ret);
goto err;
}
ci = krb5_prepare_checksum(krb5, &keys, gfp);
if (IS_ERR(ci)) {
ret = PTR_ERR(ci);
goto err;
}
kfree(keys.data);
return ci;
err:
kfree(keys.data);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(crypto_krb5_prepare_checksum);
/**
* crypto_krb5_encrypt - Apply Kerberos encryption and integrity.
* @krb5: The encoding to use.
* @aead: The keyed crypto object to use.
* @sg: Scatterlist defining the crypto buffer.
* @nr_sg: The number of elements in @sg.
* @sg_len: The size of the buffer.
* @data_offset: The offset of the data in the @sg buffer.
* @data_len: The length of the data.
* @preconfounded: True if the confounder is already inserted.
*
* Using the specified Kerberos encoding, insert a confounder and padding as
* needed, encrypt this and the data in place and insert an integrity checksum
* into the buffer.
*
* The buffer must include space for the confounder, the checksum and any
* padding required. The caller can preinsert the confounder into the buffer
* (for testing, for example).
*
* The resulting secured blob may be less than the size of the buffer.
*
* Returns the size of the secure blob if successful, -ENOMEM on an allocation
* failure, -EFAULT if there is insufficient space, -EMSGSIZE if the confounder
* is too short or the data is misaligned. Other errors may also be returned
* from the crypto layer.
*/
ssize_t crypto_krb5_encrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg,
size_t sg_len,
size_t data_offset, size_t data_len,
bool preconfounded)
{
if (WARN_ON(data_offset > sg_len ||
data_len > sg_len ||
data_offset > sg_len - data_len))
return -EMSGSIZE;
return krb5->profile->encrypt(krb5, aead, sg, nr_sg, sg_len,
data_offset, data_len, preconfounded);
}
EXPORT_SYMBOL(crypto_krb5_encrypt);
/**
* crypto_krb5_decrypt - Validate and remove Kerberos encryption and integrity.
* @krb5: The encoding to use.
* @aead: The keyed crypto object to use.
* @sg: Scatterlist defining the crypto buffer.
* @nr_sg: The number of elements in @sg.
* @_offset: Offset of the secure blob in the buffer; updated to data offset.
* @_len: The length of the secure blob; updated to data length.
*
* Using the specified Kerberos encoding, check and remove the integrity
* checksum and decrypt the secure region, stripping off the confounder.
*
* If successful, @_offset and @_len are updated to outline the region in which
* the data plus the trailing padding are stored. The caller is responsible
* for working out how much padding there is and removing it.
*
* Returns the 0 if successful, -ENOMEM on an allocation failure; sets
* *_error_code and returns -EPROTO if the data cannot be parsed, or -EBADMSG
* if the integrity checksum doesn't match). Other errors may also be returned
* from the crypto layer.
*/
int crypto_krb5_decrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg,
size_t *_offset, size_t *_len)
{
return krb5->profile->decrypt(krb5, aead, sg, nr_sg, _offset, _len);
}
EXPORT_SYMBOL(crypto_krb5_decrypt);
/**
* crypto_krb5_get_mic - Apply Kerberos integrity checksum.
* @krb5: The encoding to use.
* @shash: The keyed hash to use.
* @metadata: Metadata to add into the hash before adding the data.
* @sg: Scatterlist defining the crypto buffer.
* @nr_sg: The number of elements in @sg.
* @sg_len: The size of the buffer.
* @data_offset: The offset of the data in the @sg buffer.
* @data_len: The length of the data.
*
* Using the specified Kerberos encoding, calculate and insert an integrity
* checksum into the buffer.
*
* The buffer must include space for the checksum at the front.
*
* Returns the size of the secure blob if successful, -ENOMEM on an allocation
* failure, -EFAULT if there is insufficient space, -EMSGSIZE if the gap for
* the checksum is too short. Other errors may also be returned from the
* crypto layer.
*/
ssize_t crypto_krb5_get_mic(const struct krb5_enctype *krb5,
struct crypto_shash *shash,
const struct krb5_buffer *metadata,
struct scatterlist *sg, unsigned int nr_sg,
size_t sg_len,
size_t data_offset, size_t data_len)
{
if (WARN_ON(data_offset > sg_len ||
data_len > sg_len ||
data_offset > sg_len - data_len))
return -EMSGSIZE;
return krb5->profile->get_mic(krb5, shash, metadata, sg, nr_sg, sg_len,
data_offset, data_len);
}
EXPORT_SYMBOL(crypto_krb5_get_mic);
/**
* crypto_krb5_verify_mic - Validate and remove Kerberos integrity checksum.
* @krb5: The encoding to use.
* @shash: The keyed hash to use.
* @metadata: Metadata to add into the hash before adding the data.
* @sg: Scatterlist defining the crypto buffer.
* @nr_sg: The number of elements in @sg.
* @_offset: Offset of the secure blob in the buffer; updated to data offset.
* @_len: The length of the secure blob; updated to data length.
*
* Using the specified Kerberos encoding, check and remove the integrity
* checksum.
*
* If successful, @_offset and @_len are updated to outline the region in which
* the data is stored.
*
* Returns the 0 if successful, -ENOMEM on an allocation failure; sets
* *_error_code and returns -EPROTO if the data cannot be parsed, or -EBADMSG
* if the checksum doesn't match). Other errors may also be returned from the
* crypto layer.
*/
int crypto_krb5_verify_mic(const struct krb5_enctype *krb5,
struct crypto_shash *shash,
const struct krb5_buffer *metadata,
struct scatterlist *sg, unsigned int nr_sg,
size_t *_offset, size_t *_len)
{
return krb5->profile->verify_mic(krb5, shash, metadata, sg, nr_sg,
_offset, _len);
}
EXPORT_SYMBOL(crypto_krb5_verify_mic);
static int __init crypto_krb5_init(void)
{
return krb5_selftest();
}
module_init(crypto_krb5_init);
static void __exit crypto_krb5_exit(void)
{
}
module_exit(crypto_krb5_exit);