mirror of
https://github.com/torvalds/linux.git
synced 2025-04-06 00:16:18 +00:00

The function crypto_shash_update_sg iterates through an SG by hand. It fails to handle corner cases such as SG entries longer than a page. Fix this by using the SG iterator. Fixes: 348f5669d1f6 ("crypto/krb5: Implement the Kerberos5 rfc3961 get_mic and verify_mic") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
793 lines
21 KiB
C
793 lines
21 KiB
C
// SPDX-License-Identifier: BSD-3-Clause
|
|
/* rfc3961 Kerberos 5 simplified crypto profile.
|
|
*
|
|
* Parts borrowed from net/sunrpc/auth_gss/.
|
|
*/
|
|
/*
|
|
* COPYRIGHT (c) 2008
|
|
* The Regents of the University of Michigan
|
|
* ALL RIGHTS RESERVED
|
|
*
|
|
* Permission is granted to use, copy, create derivative works
|
|
* and redistribute this software and such derivative works
|
|
* for any purpose, so long as the name of The University of
|
|
* Michigan is not used in any advertising or publicity
|
|
* pertaining to the use of distribution of this software
|
|
* without specific, written prior authorization. If the
|
|
* above copyright notice or any other identification of the
|
|
* University of Michigan is included in any copy of any
|
|
* portion of this software, then the disclaimer below must
|
|
* also be included.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
|
|
* FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
|
|
* PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
|
|
* MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
|
|
* WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
|
|
* REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
|
|
* FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
|
|
* CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
|
|
* OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
|
|
* IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGES.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1998 by the FundsXpress, INC.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Export of this software from the United States of America may require
|
|
* a specific license from the United States Government. It is the
|
|
* responsibility of any person or organization contemplating export to
|
|
* obtain such a license before exporting.
|
|
*
|
|
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
|
|
* distribute this software and its documentation for any purpose and
|
|
* without fee is hereby granted, provided that the above copyright
|
|
* notice appear in all copies and that both that copyright notice and
|
|
* this permission notice appear in supporting documentation, and that
|
|
* the name of FundsXpress. not be used in advertising or publicity pertaining
|
|
* to distribution of the software without specific, written prior
|
|
* permission. FundsXpress makes no representations about the suitability of
|
|
* this software for any purpose. It is provided "as is" without express
|
|
* or implied warranty.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 2025 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/random.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/lcm.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <crypto/hash.h>
|
|
#include "internal.h"
|
|
|
|
/* Maximum blocksize for the supported crypto algorithms */
|
|
#define KRB5_MAX_BLOCKSIZE (16)
|
|
|
|
int crypto_shash_update_sg(struct shash_desc *desc, struct scatterlist *sg,
|
|
size_t offset, size_t len)
|
|
{
|
|
struct sg_mapping_iter miter;
|
|
size_t i, n;
|
|
int ret = 0;
|
|
|
|
sg_miter_start(&miter, sg, sg_nents(sg),
|
|
SG_MITER_FROM_SG | SG_MITER_LOCAL);
|
|
for (i = 0; i < len; i += n) {
|
|
sg_miter_next(&miter);
|
|
n = min(miter.length, len - i);
|
|
ret = crypto_shash_update(desc, miter.addr, n);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
sg_miter_stop(&miter);
|
|
return ret;
|
|
}
|
|
|
|
static int rfc3961_do_encrypt(struct crypto_sync_skcipher *tfm, void *iv,
|
|
const struct krb5_buffer *in, struct krb5_buffer *out)
|
|
{
|
|
struct scatterlist sg[1];
|
|
u8 local_iv[KRB5_MAX_BLOCKSIZE] __aligned(KRB5_MAX_BLOCKSIZE) = {0};
|
|
SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
|
|
int ret;
|
|
|
|
if (WARN_ON(in->len != out->len))
|
|
return -EINVAL;
|
|
if (out->len % crypto_sync_skcipher_blocksize(tfm) != 0)
|
|
return -EINVAL;
|
|
|
|
if (crypto_sync_skcipher_ivsize(tfm) > KRB5_MAX_BLOCKSIZE)
|
|
return -EINVAL;
|
|
|
|
if (iv)
|
|
memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
|
|
|
|
memcpy(out->data, in->data, out->len);
|
|
sg_init_one(sg, out->data, out->len);
|
|
|
|
skcipher_request_set_sync_tfm(req, tfm);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
skcipher_request_set_crypt(req, sg, sg, out->len, local_iv);
|
|
|
|
ret = crypto_skcipher_encrypt(req);
|
|
skcipher_request_zero(req);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate an unkeyed basic hash.
|
|
*/
|
|
static int rfc3961_calc_H(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *data,
|
|
struct krb5_buffer *digest,
|
|
gfp_t gfp)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
struct shash_desc *desc;
|
|
size_t desc_size;
|
|
int ret = -ENOMEM;
|
|
|
|
tfm = crypto_alloc_shash(krb5->hash_name, 0, 0);
|
|
if (IS_ERR(tfm))
|
|
return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
|
|
|
|
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
|
|
|
|
desc = kzalloc(desc_size, gfp);
|
|
if (!desc)
|
|
goto error_tfm;
|
|
|
|
digest->len = crypto_shash_digestsize(tfm);
|
|
digest->data = kzalloc(digest->len, gfp);
|
|
if (!digest->data)
|
|
goto error_desc;
|
|
|
|
desc->tfm = tfm;
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto error_digest;
|
|
|
|
ret = crypto_shash_finup(desc, data->data, data->len, digest->data);
|
|
if (ret < 0)
|
|
goto error_digest;
|
|
|
|
goto error_desc;
|
|
|
|
error_digest:
|
|
kfree_sensitive(digest->data);
|
|
error_desc:
|
|
kfree_sensitive(desc);
|
|
error_tfm:
|
|
crypto_free_shash(tfm);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the n-fold function as described in rfc3961, sec 5.1
|
|
* Taken from MIT Kerberos and modified.
|
|
*/
|
|
static void rfc3961_nfold(const struct krb5_buffer *source, struct krb5_buffer *result)
|
|
{
|
|
const u8 *in = source->data;
|
|
u8 *out = result->data;
|
|
unsigned long ulcm;
|
|
unsigned int inbits, outbits;
|
|
int byte, i, msbit;
|
|
|
|
/* the code below is more readable if I make these bytes instead of bits */
|
|
inbits = source->len;
|
|
outbits = result->len;
|
|
|
|
/* first compute lcm(n,k) */
|
|
ulcm = lcm(inbits, outbits);
|
|
|
|
/* now do the real work */
|
|
memset(out, 0, outbits);
|
|
byte = 0;
|
|
|
|
/* this will end up cycling through k lcm(k,n)/k times, which
|
|
* is correct.
|
|
*/
|
|
for (i = ulcm-1; i >= 0; i--) {
|
|
/* compute the msbit in k which gets added into this byte */
|
|
msbit = (
|
|
/* first, start with the msbit in the first,
|
|
* unrotated byte
|
|
*/
|
|
((inbits << 3) - 1) +
|
|
/* then, for each byte, shift to the right
|
|
* for each repetition
|
|
*/
|
|
(((inbits << 3) + 13) * (i/inbits)) +
|
|
/* last, pick out the correct byte within
|
|
* that shifted repetition
|
|
*/
|
|
((inbits - (i % inbits)) << 3)
|
|
) % (inbits << 3);
|
|
|
|
/* pull out the byte value itself */
|
|
byte += (((in[((inbits - 1) - (msbit >> 3)) % inbits] << 8) |
|
|
(in[((inbits) - (msbit >> 3)) % inbits]))
|
|
>> ((msbit & 7) + 1)) & 0xff;
|
|
|
|
/* do the addition */
|
|
byte += out[i % outbits];
|
|
out[i % outbits] = byte & 0xff;
|
|
|
|
/* keep around the carry bit, if any */
|
|
byte >>= 8;
|
|
}
|
|
|
|
/* if there's a carry bit left over, add it back in */
|
|
if (byte) {
|
|
for (i = outbits - 1; i >= 0; i--) {
|
|
/* do the addition */
|
|
byte += out[i];
|
|
out[i] = byte & 0xff;
|
|
|
|
/* keep around the carry bit, if any */
|
|
byte >>= 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate a derived key, DK(Base Key, Well-Known Constant)
|
|
*
|
|
* DK(Key, Constant) = random-to-key(DR(Key, Constant))
|
|
* DR(Key, Constant) = k-truncate(E(Key, Constant, initial-cipher-state))
|
|
* K1 = E(Key, n-fold(Constant), initial-cipher-state)
|
|
* K2 = E(Key, K1, initial-cipher-state)
|
|
* K3 = E(Key, K2, initial-cipher-state)
|
|
* K4 = ...
|
|
* DR(Key, Constant) = k-truncate(K1 | K2 | K3 | K4 ...)
|
|
* [rfc3961 sec 5.1]
|
|
*/
|
|
static int rfc3961_calc_DK(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *inkey,
|
|
const struct krb5_buffer *in_constant,
|
|
struct krb5_buffer *result,
|
|
gfp_t gfp)
|
|
{
|
|
unsigned int blocksize, keybytes, keylength, n;
|
|
struct krb5_buffer inblock, outblock, rawkey;
|
|
struct crypto_sync_skcipher *cipher;
|
|
int ret = -EINVAL;
|
|
|
|
blocksize = krb5->block_len;
|
|
keybytes = krb5->key_bytes;
|
|
keylength = krb5->key_len;
|
|
|
|
if (inkey->len != keylength || result->len != keylength)
|
|
return -EINVAL;
|
|
if (!krb5->random_to_key && result->len != keybytes)
|
|
return -EINVAL;
|
|
|
|
cipher = crypto_alloc_sync_skcipher(krb5->derivation_enc, 0, 0);
|
|
if (IS_ERR(cipher)) {
|
|
ret = (PTR_ERR(cipher) == -ENOENT) ? -ENOPKG : PTR_ERR(cipher);
|
|
goto err_return;
|
|
}
|
|
ret = crypto_sync_skcipher_setkey(cipher, inkey->data, inkey->len);
|
|
if (ret < 0)
|
|
goto err_free_cipher;
|
|
|
|
ret = -ENOMEM;
|
|
inblock.data = kzalloc(blocksize * 2 + keybytes, gfp);
|
|
if (!inblock.data)
|
|
goto err_free_cipher;
|
|
|
|
inblock.len = blocksize;
|
|
outblock.data = inblock.data + blocksize;
|
|
outblock.len = blocksize;
|
|
rawkey.data = outblock.data + blocksize;
|
|
rawkey.len = keybytes;
|
|
|
|
/* initialize the input block */
|
|
|
|
if (in_constant->len == inblock.len)
|
|
memcpy(inblock.data, in_constant->data, inblock.len);
|
|
else
|
|
rfc3961_nfold(in_constant, &inblock);
|
|
|
|
/* loop encrypting the blocks until enough key bytes are generated */
|
|
n = 0;
|
|
while (n < rawkey.len) {
|
|
rfc3961_do_encrypt(cipher, NULL, &inblock, &outblock);
|
|
|
|
if (keybytes - n <= outblock.len) {
|
|
memcpy(rawkey.data + n, outblock.data, keybytes - n);
|
|
break;
|
|
}
|
|
|
|
memcpy(rawkey.data + n, outblock.data, outblock.len);
|
|
memcpy(inblock.data, outblock.data, outblock.len);
|
|
n += outblock.len;
|
|
}
|
|
|
|
/* postprocess the key */
|
|
if (!krb5->random_to_key) {
|
|
/* Identity random-to-key function. */
|
|
memcpy(result->data, rawkey.data, rawkey.len);
|
|
ret = 0;
|
|
} else {
|
|
ret = krb5->random_to_key(krb5, &rawkey, result);
|
|
}
|
|
|
|
kfree_sensitive(inblock.data);
|
|
err_free_cipher:
|
|
crypto_free_sync_skcipher(cipher);
|
|
err_return:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate single encryption, E()
|
|
*
|
|
* E(Key, octets)
|
|
*/
|
|
static int rfc3961_calc_E(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *key,
|
|
const struct krb5_buffer *in_data,
|
|
struct krb5_buffer *result,
|
|
gfp_t gfp)
|
|
{
|
|
struct crypto_sync_skcipher *cipher;
|
|
int ret;
|
|
|
|
cipher = crypto_alloc_sync_skcipher(krb5->derivation_enc, 0, 0);
|
|
if (IS_ERR(cipher)) {
|
|
ret = (PTR_ERR(cipher) == -ENOENT) ? -ENOPKG : PTR_ERR(cipher);
|
|
goto err;
|
|
}
|
|
|
|
ret = crypto_sync_skcipher_setkey(cipher, key->data, key->len);
|
|
if (ret < 0)
|
|
goto err_free;
|
|
|
|
ret = rfc3961_do_encrypt(cipher, NULL, in_data, result);
|
|
|
|
err_free:
|
|
crypto_free_sync_skcipher(cipher);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate the pseudo-random function, PRF().
|
|
*
|
|
* tmp1 = H(octet-string)
|
|
* tmp2 = truncate tmp1 to multiple of m
|
|
* PRF = E(DK(protocol-key, prfconstant), tmp2, initial-cipher-state)
|
|
*
|
|
* The "prfconstant" used in the PRF operation is the three-octet string
|
|
* "prf".
|
|
* [rfc3961 sec 5.3]
|
|
*/
|
|
static int rfc3961_calc_PRF(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *protocol_key,
|
|
const struct krb5_buffer *octet_string,
|
|
struct krb5_buffer *result,
|
|
gfp_t gfp)
|
|
{
|
|
static const struct krb5_buffer prfconstant = { 3, "prf" };
|
|
struct krb5_buffer derived_key;
|
|
struct krb5_buffer tmp1, tmp2;
|
|
unsigned int m = krb5->block_len;
|
|
void *buffer;
|
|
int ret;
|
|
|
|
if (result->len != krb5->prf_len)
|
|
return -EINVAL;
|
|
|
|
tmp1.len = krb5->hash_len;
|
|
derived_key.len = krb5->key_bytes;
|
|
buffer = kzalloc(round16(tmp1.len) + round16(derived_key.len), gfp);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
tmp1.data = buffer;
|
|
derived_key.data = buffer + round16(tmp1.len);
|
|
|
|
ret = rfc3961_calc_H(krb5, octet_string, &tmp1, gfp);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
tmp2.len = tmp1.len & ~(m - 1);
|
|
tmp2.data = tmp1.data;
|
|
|
|
ret = rfc3961_calc_DK(krb5, protocol_key, &prfconstant, &derived_key, gfp);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
ret = rfc3961_calc_E(krb5, &derived_key, &tmp2, result, gfp);
|
|
|
|
err:
|
|
kfree_sensitive(buffer);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Derive the Ke and Ki keys and package them into a key parameter that can be
|
|
* given to the setkey of a authenc AEAD crypto object.
|
|
*/
|
|
int authenc_derive_encrypt_keys(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *TK,
|
|
unsigned int usage,
|
|
struct krb5_buffer *setkey,
|
|
gfp_t gfp)
|
|
{
|
|
struct crypto_authenc_key_param *param;
|
|
struct krb5_buffer Ke, Ki;
|
|
struct rtattr *rta;
|
|
int ret;
|
|
|
|
Ke.len = krb5->Ke_len;
|
|
Ki.len = krb5->Ki_len;
|
|
setkey->len = RTA_LENGTH(sizeof(*param)) + Ke.len + Ki.len;
|
|
setkey->data = kzalloc(setkey->len, GFP_KERNEL);
|
|
if (!setkey->data)
|
|
return -ENOMEM;
|
|
|
|
rta = setkey->data;
|
|
rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
|
|
rta->rta_len = RTA_LENGTH(sizeof(*param));
|
|
param = RTA_DATA(rta);
|
|
param->enckeylen = htonl(Ke.len);
|
|
|
|
Ki.data = (void *)(param + 1);
|
|
Ke.data = Ki.data + Ki.len;
|
|
|
|
ret = krb5_derive_Ke(krb5, TK, usage, &Ke, gfp);
|
|
if (ret < 0) {
|
|
pr_err("get_Ke failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
ret = krb5_derive_Ki(krb5, TK, usage, &Ki, gfp);
|
|
if (ret < 0)
|
|
pr_err("get_Ki failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Package predefined Ke and Ki keys and into a key parameter that can be given
|
|
* to the setkey of an authenc AEAD crypto object.
|
|
*/
|
|
int authenc_load_encrypt_keys(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *Ke,
|
|
const struct krb5_buffer *Ki,
|
|
struct krb5_buffer *setkey,
|
|
gfp_t gfp)
|
|
{
|
|
struct crypto_authenc_key_param *param;
|
|
struct rtattr *rta;
|
|
|
|
setkey->len = RTA_LENGTH(sizeof(*param)) + Ke->len + Ki->len;
|
|
setkey->data = kzalloc(setkey->len, GFP_KERNEL);
|
|
if (!setkey->data)
|
|
return -ENOMEM;
|
|
|
|
rta = setkey->data;
|
|
rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
|
|
rta->rta_len = RTA_LENGTH(sizeof(*param));
|
|
param = RTA_DATA(rta);
|
|
param->enckeylen = htonl(Ke->len);
|
|
memcpy((void *)(param + 1), Ki->data, Ki->len);
|
|
memcpy((void *)(param + 1) + Ki->len, Ke->data, Ke->len);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Derive the Kc key for checksum-only mode and package it into a key parameter
|
|
* that can be given to the setkey of a hash crypto object.
|
|
*/
|
|
int rfc3961_derive_checksum_key(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *TK,
|
|
unsigned int usage,
|
|
struct krb5_buffer *setkey,
|
|
gfp_t gfp)
|
|
{
|
|
int ret;
|
|
|
|
setkey->len = krb5->Kc_len;
|
|
setkey->data = kzalloc(setkey->len, GFP_KERNEL);
|
|
if (!setkey->data)
|
|
return -ENOMEM;
|
|
|
|
ret = krb5_derive_Kc(krb5, TK, usage, setkey, gfp);
|
|
if (ret < 0)
|
|
pr_err("get_Kc failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Package a predefined Kc key for checksum-only mode into a key parameter that
|
|
* can be given to the setkey of a hash crypto object.
|
|
*/
|
|
int rfc3961_load_checksum_key(const struct krb5_enctype *krb5,
|
|
const struct krb5_buffer *Kc,
|
|
struct krb5_buffer *setkey,
|
|
gfp_t gfp)
|
|
{
|
|
setkey->len = krb5->Kc_len;
|
|
setkey->data = kmemdup(Kc->data, Kc->len, GFP_KERNEL);
|
|
if (!setkey->data)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Apply encryption and checksumming functions to part of a scatterlist.
|
|
*/
|
|
ssize_t krb5_aead_encrypt(const struct krb5_enctype *krb5,
|
|
struct crypto_aead *aead,
|
|
struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
|
|
size_t data_offset, size_t data_len,
|
|
bool preconfounded)
|
|
{
|
|
struct aead_request *req;
|
|
ssize_t ret, done;
|
|
size_t bsize, base_len, secure_offset, secure_len, pad_len, cksum_offset;
|
|
void *buffer;
|
|
u8 *iv;
|
|
|
|
if (WARN_ON(data_offset != krb5->conf_len))
|
|
return -EINVAL; /* Data is in wrong place */
|
|
|
|
secure_offset = 0;
|
|
base_len = krb5->conf_len + data_len;
|
|
pad_len = 0;
|
|
secure_len = base_len + pad_len;
|
|
cksum_offset = secure_len;
|
|
if (WARN_ON(cksum_offset + krb5->cksum_len > sg_len))
|
|
return -EFAULT;
|
|
|
|
bsize = krb5_aead_size(aead) +
|
|
krb5_aead_ivsize(aead);
|
|
buffer = kzalloc(bsize, GFP_NOFS);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
/* Insert the confounder into the buffer */
|
|
ret = -EFAULT;
|
|
if (!preconfounded) {
|
|
get_random_bytes(buffer, krb5->conf_len);
|
|
done = sg_pcopy_from_buffer(sg, nr_sg, buffer, krb5->conf_len,
|
|
secure_offset);
|
|
if (done != krb5->conf_len)
|
|
goto error;
|
|
}
|
|
|
|
/* We may need to pad out to the crypto blocksize. */
|
|
if (pad_len) {
|
|
done = sg_zero_buffer(sg, nr_sg, pad_len, data_offset + data_len);
|
|
if (done != pad_len)
|
|
goto error;
|
|
}
|
|
|
|
/* Hash and encrypt the message. */
|
|
req = buffer;
|
|
iv = buffer + krb5_aead_size(aead);
|
|
|
|
aead_request_set_tfm(req, aead);
|
|
aead_request_set_callback(req, 0, NULL, NULL);
|
|
aead_request_set_crypt(req, sg, sg, secure_len, iv);
|
|
ret = crypto_aead_encrypt(req);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = secure_len + krb5->cksum_len;
|
|
|
|
error:
|
|
kfree_sensitive(buffer);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Apply decryption and checksumming functions to a message. The offset and
|
|
* length are updated to reflect the actual content of the encrypted region.
|
|
*/
|
|
int krb5_aead_decrypt(const struct krb5_enctype *krb5,
|
|
struct crypto_aead *aead,
|
|
struct scatterlist *sg, unsigned int nr_sg,
|
|
size_t *_offset, size_t *_len)
|
|
{
|
|
struct aead_request *req;
|
|
size_t bsize;
|
|
void *buffer;
|
|
int ret;
|
|
u8 *iv;
|
|
|
|
if (WARN_ON(*_offset != 0))
|
|
return -EINVAL; /* Can't set offset on aead */
|
|
|
|
if (*_len < krb5->conf_len + krb5->cksum_len)
|
|
return -EPROTO;
|
|
|
|
bsize = krb5_aead_size(aead) +
|
|
krb5_aead_ivsize(aead);
|
|
buffer = kzalloc(bsize, GFP_NOFS);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
/* Decrypt the message and verify its checksum. */
|
|
req = buffer;
|
|
iv = buffer + krb5_aead_size(aead);
|
|
|
|
aead_request_set_tfm(req, aead);
|
|
aead_request_set_callback(req, 0, NULL, NULL);
|
|
aead_request_set_crypt(req, sg, sg, *_len, iv);
|
|
ret = crypto_aead_decrypt(req);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Adjust the boundaries of the data. */
|
|
*_offset += krb5->conf_len;
|
|
*_len -= krb5->conf_len + krb5->cksum_len;
|
|
ret = 0;
|
|
|
|
error:
|
|
kfree_sensitive(buffer);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Generate a checksum over some metadata and part of an skbuff and insert the
|
|
* MIC into the skbuff immediately prior to the data.
|
|
*/
|
|
ssize_t rfc3961_get_mic(const struct krb5_enctype *krb5,
|
|
struct crypto_shash *shash,
|
|
const struct krb5_buffer *metadata,
|
|
struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
|
|
size_t data_offset, size_t data_len)
|
|
{
|
|
struct shash_desc *desc;
|
|
ssize_t ret, done;
|
|
size_t bsize;
|
|
void *buffer, *digest;
|
|
|
|
if (WARN_ON(data_offset != krb5->cksum_len))
|
|
return -EMSGSIZE;
|
|
|
|
bsize = krb5_shash_size(shash) +
|
|
krb5_digest_size(shash);
|
|
buffer = kzalloc(bsize, GFP_NOFS);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
/* Calculate the MIC with key Kc and store it into the skb */
|
|
desc = buffer;
|
|
desc->tfm = shash;
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
if (metadata) {
|
|
ret = crypto_shash_update(desc, metadata->data, metadata->len);
|
|
if (ret < 0)
|
|
goto error;
|
|
}
|
|
|
|
ret = crypto_shash_update_sg(desc, sg, data_offset, data_len);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
digest = buffer + krb5_shash_size(shash);
|
|
ret = crypto_shash_final(desc, digest);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = -EFAULT;
|
|
done = sg_pcopy_from_buffer(sg, nr_sg, digest, krb5->cksum_len,
|
|
data_offset - krb5->cksum_len);
|
|
if (done != krb5->cksum_len)
|
|
goto error;
|
|
|
|
ret = krb5->cksum_len + data_len;
|
|
|
|
error:
|
|
kfree_sensitive(buffer);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check the MIC on a region of an skbuff. The offset and length are updated
|
|
* to reflect the actual content of the secure region.
|
|
*/
|
|
int rfc3961_verify_mic(const struct krb5_enctype *krb5,
|
|
struct crypto_shash *shash,
|
|
const struct krb5_buffer *metadata,
|
|
struct scatterlist *sg, unsigned int nr_sg,
|
|
size_t *_offset, size_t *_len)
|
|
{
|
|
struct shash_desc *desc;
|
|
ssize_t done;
|
|
size_t bsize, data_offset, data_len, offset = *_offset, len = *_len;
|
|
void *buffer = NULL;
|
|
int ret;
|
|
u8 *cksum, *cksum2;
|
|
|
|
if (len < krb5->cksum_len)
|
|
return -EPROTO;
|
|
data_offset = offset + krb5->cksum_len;
|
|
data_len = len - krb5->cksum_len;
|
|
|
|
bsize = krb5_shash_size(shash) +
|
|
krb5_digest_size(shash) * 2;
|
|
buffer = kzalloc(bsize, GFP_NOFS);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
cksum = buffer +
|
|
krb5_shash_size(shash);
|
|
cksum2 = buffer +
|
|
krb5_shash_size(shash) +
|
|
krb5_digest_size(shash);
|
|
|
|
/* Calculate the MIC */
|
|
desc = buffer;
|
|
desc->tfm = shash;
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
if (metadata) {
|
|
ret = crypto_shash_update(desc, metadata->data, metadata->len);
|
|
if (ret < 0)
|
|
goto error;
|
|
}
|
|
|
|
crypto_shash_update_sg(desc, sg, data_offset, data_len);
|
|
crypto_shash_final(desc, cksum);
|
|
|
|
ret = -EFAULT;
|
|
done = sg_pcopy_to_buffer(sg, nr_sg, cksum2, krb5->cksum_len, offset);
|
|
if (done != krb5->cksum_len)
|
|
goto error;
|
|
|
|
if (memcmp(cksum, cksum2, krb5->cksum_len) != 0) {
|
|
ret = -EBADMSG;
|
|
goto error;
|
|
}
|
|
|
|
*_offset += krb5->cksum_len;
|
|
*_len -= krb5->cksum_len;
|
|
ret = 0;
|
|
|
|
error:
|
|
kfree_sensitive(buffer);
|
|
return ret;
|
|
}
|
|
|
|
const struct krb5_crypto_profile rfc3961_simplified_profile = {
|
|
.calc_PRF = rfc3961_calc_PRF,
|
|
.calc_Kc = rfc3961_calc_DK,
|
|
.calc_Ke = rfc3961_calc_DK,
|
|
.calc_Ki = rfc3961_calc_DK,
|
|
.derive_encrypt_keys = authenc_derive_encrypt_keys,
|
|
.load_encrypt_keys = authenc_load_encrypt_keys,
|
|
.derive_checksum_key = rfc3961_derive_checksum_key,
|
|
.load_checksum_key = rfc3961_load_checksum_key,
|
|
.encrypt = krb5_aead_encrypt,
|
|
.decrypt = krb5_aead_decrypt,
|
|
.get_mic = rfc3961_get_mic,
|
|
.verify_mic = rfc3961_verify_mic,
|
|
};
|