linux/crypto/krb5/rfc3961_simplified.c
Herbert Xu da6f9bf40a crypto: krb5 - Use SG miter instead of doing it by hand
The function crypto_shash_update_sg iterates through an SG by
hand.  It fails to handle corner cases such as SG entries longer
than a page.  Fix this by using the SG iterator.

Fixes: 348f5669d1f6 ("crypto/krb5: Implement the Kerberos5 rfc3961 get_mic and verify_mic")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2025-03-21 17:33:38 +08:00

793 lines
21 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
/* rfc3961 Kerberos 5 simplified crypto profile.
*
* Parts borrowed from net/sunrpc/auth_gss/.
*/
/*
* COPYRIGHT (c) 2008
* The Regents of the University of Michigan
* ALL RIGHTS RESERVED
*
* Permission is granted to use, copy, create derivative works
* and redistribute this software and such derivative works
* for any purpose, so long as the name of The University of
* Michigan is not used in any advertising or publicity
* pertaining to the use of distribution of this software
* without specific, written prior authorization. If the
* above copyright notice or any other identification of the
* University of Michigan is included in any copy of any
* portion of this software, then the disclaimer below must
* also be included.
*
* THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
* FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
* PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
* MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
* WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
* REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
* FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
* OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
* IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGES.
*/
/*
* Copyright (C) 1998 by the FundsXpress, INC.
*
* All rights reserved.
*
* Export of this software from the United States of America may require
* a specific license from the United States Government. It is the
* responsibility of any person or organization contemplating export to
* obtain such a license before exporting.
*
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
* distribute this software and its documentation for any purpose and
* without fee is hereby granted, provided that the above copyright
* notice appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation, and that
* the name of FundsXpress. not be used in advertising or publicity pertaining
* to distribution of the software without specific, written prior
* permission. FundsXpress makes no representations about the suitability of
* this software for any purpose. It is provided "as is" without express
* or implied warranty.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/*
* Copyright (C) 2025 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/lcm.h>
#include <linux/rtnetlink.h>
#include <crypto/authenc.h>
#include <crypto/skcipher.h>
#include <crypto/hash.h>
#include "internal.h"
/* Maximum blocksize for the supported crypto algorithms */
#define KRB5_MAX_BLOCKSIZE (16)
int crypto_shash_update_sg(struct shash_desc *desc, struct scatterlist *sg,
size_t offset, size_t len)
{
struct sg_mapping_iter miter;
size_t i, n;
int ret = 0;
sg_miter_start(&miter, sg, sg_nents(sg),
SG_MITER_FROM_SG | SG_MITER_LOCAL);
for (i = 0; i < len; i += n) {
sg_miter_next(&miter);
n = min(miter.length, len - i);
ret = crypto_shash_update(desc, miter.addr, n);
if (ret < 0)
break;
}
sg_miter_stop(&miter);
return ret;
}
static int rfc3961_do_encrypt(struct crypto_sync_skcipher *tfm, void *iv,
const struct krb5_buffer *in, struct krb5_buffer *out)
{
struct scatterlist sg[1];
u8 local_iv[KRB5_MAX_BLOCKSIZE] __aligned(KRB5_MAX_BLOCKSIZE) = {0};
SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
int ret;
if (WARN_ON(in->len != out->len))
return -EINVAL;
if (out->len % crypto_sync_skcipher_blocksize(tfm) != 0)
return -EINVAL;
if (crypto_sync_skcipher_ivsize(tfm) > KRB5_MAX_BLOCKSIZE)
return -EINVAL;
if (iv)
memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
memcpy(out->data, in->data, out->len);
sg_init_one(sg, out->data, out->len);
skcipher_request_set_sync_tfm(req, tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg, sg, out->len, local_iv);
ret = crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
return ret;
}
/*
* Calculate an unkeyed basic hash.
*/
static int rfc3961_calc_H(const struct krb5_enctype *krb5,
const struct krb5_buffer *data,
struct krb5_buffer *digest,
gfp_t gfp)
{
struct crypto_shash *tfm;
struct shash_desc *desc;
size_t desc_size;
int ret = -ENOMEM;
tfm = crypto_alloc_shash(krb5->hash_name, 0, 0);
if (IS_ERR(tfm))
return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
desc = kzalloc(desc_size, gfp);
if (!desc)
goto error_tfm;
digest->len = crypto_shash_digestsize(tfm);
digest->data = kzalloc(digest->len, gfp);
if (!digest->data)
goto error_desc;
desc->tfm = tfm;
ret = crypto_shash_init(desc);
if (ret < 0)
goto error_digest;
ret = crypto_shash_finup(desc, data->data, data->len, digest->data);
if (ret < 0)
goto error_digest;
goto error_desc;
error_digest:
kfree_sensitive(digest->data);
error_desc:
kfree_sensitive(desc);
error_tfm:
crypto_free_shash(tfm);
return ret;
}
/*
* This is the n-fold function as described in rfc3961, sec 5.1
* Taken from MIT Kerberos and modified.
*/
static void rfc3961_nfold(const struct krb5_buffer *source, struct krb5_buffer *result)
{
const u8 *in = source->data;
u8 *out = result->data;
unsigned long ulcm;
unsigned int inbits, outbits;
int byte, i, msbit;
/* the code below is more readable if I make these bytes instead of bits */
inbits = source->len;
outbits = result->len;
/* first compute lcm(n,k) */
ulcm = lcm(inbits, outbits);
/* now do the real work */
memset(out, 0, outbits);
byte = 0;
/* this will end up cycling through k lcm(k,n)/k times, which
* is correct.
*/
for (i = ulcm-1; i >= 0; i--) {
/* compute the msbit in k which gets added into this byte */
msbit = (
/* first, start with the msbit in the first,
* unrotated byte
*/
((inbits << 3) - 1) +
/* then, for each byte, shift to the right
* for each repetition
*/
(((inbits << 3) + 13) * (i/inbits)) +
/* last, pick out the correct byte within
* that shifted repetition
*/
((inbits - (i % inbits)) << 3)
) % (inbits << 3);
/* pull out the byte value itself */
byte += (((in[((inbits - 1) - (msbit >> 3)) % inbits] << 8) |
(in[((inbits) - (msbit >> 3)) % inbits]))
>> ((msbit & 7) + 1)) & 0xff;
/* do the addition */
byte += out[i % outbits];
out[i % outbits] = byte & 0xff;
/* keep around the carry bit, if any */
byte >>= 8;
}
/* if there's a carry bit left over, add it back in */
if (byte) {
for (i = outbits - 1; i >= 0; i--) {
/* do the addition */
byte += out[i];
out[i] = byte & 0xff;
/* keep around the carry bit, if any */
byte >>= 8;
}
}
}
/*
* Calculate a derived key, DK(Base Key, Well-Known Constant)
*
* DK(Key, Constant) = random-to-key(DR(Key, Constant))
* DR(Key, Constant) = k-truncate(E(Key, Constant, initial-cipher-state))
* K1 = E(Key, n-fold(Constant), initial-cipher-state)
* K2 = E(Key, K1, initial-cipher-state)
* K3 = E(Key, K2, initial-cipher-state)
* K4 = ...
* DR(Key, Constant) = k-truncate(K1 | K2 | K3 | K4 ...)
* [rfc3961 sec 5.1]
*/
static int rfc3961_calc_DK(const struct krb5_enctype *krb5,
const struct krb5_buffer *inkey,
const struct krb5_buffer *in_constant,
struct krb5_buffer *result,
gfp_t gfp)
{
unsigned int blocksize, keybytes, keylength, n;
struct krb5_buffer inblock, outblock, rawkey;
struct crypto_sync_skcipher *cipher;
int ret = -EINVAL;
blocksize = krb5->block_len;
keybytes = krb5->key_bytes;
keylength = krb5->key_len;
if (inkey->len != keylength || result->len != keylength)
return -EINVAL;
if (!krb5->random_to_key && result->len != keybytes)
return -EINVAL;
cipher = crypto_alloc_sync_skcipher(krb5->derivation_enc, 0, 0);
if (IS_ERR(cipher)) {
ret = (PTR_ERR(cipher) == -ENOENT) ? -ENOPKG : PTR_ERR(cipher);
goto err_return;
}
ret = crypto_sync_skcipher_setkey(cipher, inkey->data, inkey->len);
if (ret < 0)
goto err_free_cipher;
ret = -ENOMEM;
inblock.data = kzalloc(blocksize * 2 + keybytes, gfp);
if (!inblock.data)
goto err_free_cipher;
inblock.len = blocksize;
outblock.data = inblock.data + blocksize;
outblock.len = blocksize;
rawkey.data = outblock.data + blocksize;
rawkey.len = keybytes;
/* initialize the input block */
if (in_constant->len == inblock.len)
memcpy(inblock.data, in_constant->data, inblock.len);
else
rfc3961_nfold(in_constant, &inblock);
/* loop encrypting the blocks until enough key bytes are generated */
n = 0;
while (n < rawkey.len) {
rfc3961_do_encrypt(cipher, NULL, &inblock, &outblock);
if (keybytes - n <= outblock.len) {
memcpy(rawkey.data + n, outblock.data, keybytes - n);
break;
}
memcpy(rawkey.data + n, outblock.data, outblock.len);
memcpy(inblock.data, outblock.data, outblock.len);
n += outblock.len;
}
/* postprocess the key */
if (!krb5->random_to_key) {
/* Identity random-to-key function. */
memcpy(result->data, rawkey.data, rawkey.len);
ret = 0;
} else {
ret = krb5->random_to_key(krb5, &rawkey, result);
}
kfree_sensitive(inblock.data);
err_free_cipher:
crypto_free_sync_skcipher(cipher);
err_return:
return ret;
}
/*
* Calculate single encryption, E()
*
* E(Key, octets)
*/
static int rfc3961_calc_E(const struct krb5_enctype *krb5,
const struct krb5_buffer *key,
const struct krb5_buffer *in_data,
struct krb5_buffer *result,
gfp_t gfp)
{
struct crypto_sync_skcipher *cipher;
int ret;
cipher = crypto_alloc_sync_skcipher(krb5->derivation_enc, 0, 0);
if (IS_ERR(cipher)) {
ret = (PTR_ERR(cipher) == -ENOENT) ? -ENOPKG : PTR_ERR(cipher);
goto err;
}
ret = crypto_sync_skcipher_setkey(cipher, key->data, key->len);
if (ret < 0)
goto err_free;
ret = rfc3961_do_encrypt(cipher, NULL, in_data, result);
err_free:
crypto_free_sync_skcipher(cipher);
err:
return ret;
}
/*
* Calculate the pseudo-random function, PRF().
*
* tmp1 = H(octet-string)
* tmp2 = truncate tmp1 to multiple of m
* PRF = E(DK(protocol-key, prfconstant), tmp2, initial-cipher-state)
*
* The "prfconstant" used in the PRF operation is the three-octet string
* "prf".
* [rfc3961 sec 5.3]
*/
static int rfc3961_calc_PRF(const struct krb5_enctype *krb5,
const struct krb5_buffer *protocol_key,
const struct krb5_buffer *octet_string,
struct krb5_buffer *result,
gfp_t gfp)
{
static const struct krb5_buffer prfconstant = { 3, "prf" };
struct krb5_buffer derived_key;
struct krb5_buffer tmp1, tmp2;
unsigned int m = krb5->block_len;
void *buffer;
int ret;
if (result->len != krb5->prf_len)
return -EINVAL;
tmp1.len = krb5->hash_len;
derived_key.len = krb5->key_bytes;
buffer = kzalloc(round16(tmp1.len) + round16(derived_key.len), gfp);
if (!buffer)
return -ENOMEM;
tmp1.data = buffer;
derived_key.data = buffer + round16(tmp1.len);
ret = rfc3961_calc_H(krb5, octet_string, &tmp1, gfp);
if (ret < 0)
goto err;
tmp2.len = tmp1.len & ~(m - 1);
tmp2.data = tmp1.data;
ret = rfc3961_calc_DK(krb5, protocol_key, &prfconstant, &derived_key, gfp);
if (ret < 0)
goto err;
ret = rfc3961_calc_E(krb5, &derived_key, &tmp2, result, gfp);
err:
kfree_sensitive(buffer);
return ret;
}
/*
* Derive the Ke and Ki keys and package them into a key parameter that can be
* given to the setkey of a authenc AEAD crypto object.
*/
int authenc_derive_encrypt_keys(const struct krb5_enctype *krb5,
const struct krb5_buffer *TK,
unsigned int usage,
struct krb5_buffer *setkey,
gfp_t gfp)
{
struct crypto_authenc_key_param *param;
struct krb5_buffer Ke, Ki;
struct rtattr *rta;
int ret;
Ke.len = krb5->Ke_len;
Ki.len = krb5->Ki_len;
setkey->len = RTA_LENGTH(sizeof(*param)) + Ke.len + Ki.len;
setkey->data = kzalloc(setkey->len, GFP_KERNEL);
if (!setkey->data)
return -ENOMEM;
rta = setkey->data;
rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
rta->rta_len = RTA_LENGTH(sizeof(*param));
param = RTA_DATA(rta);
param->enckeylen = htonl(Ke.len);
Ki.data = (void *)(param + 1);
Ke.data = Ki.data + Ki.len;
ret = krb5_derive_Ke(krb5, TK, usage, &Ke, gfp);
if (ret < 0) {
pr_err("get_Ke failed %d\n", ret);
return ret;
}
ret = krb5_derive_Ki(krb5, TK, usage, &Ki, gfp);
if (ret < 0)
pr_err("get_Ki failed %d\n", ret);
return ret;
}
/*
* Package predefined Ke and Ki keys and into a key parameter that can be given
* to the setkey of an authenc AEAD crypto object.
*/
int authenc_load_encrypt_keys(const struct krb5_enctype *krb5,
const struct krb5_buffer *Ke,
const struct krb5_buffer *Ki,
struct krb5_buffer *setkey,
gfp_t gfp)
{
struct crypto_authenc_key_param *param;
struct rtattr *rta;
setkey->len = RTA_LENGTH(sizeof(*param)) + Ke->len + Ki->len;
setkey->data = kzalloc(setkey->len, GFP_KERNEL);
if (!setkey->data)
return -ENOMEM;
rta = setkey->data;
rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
rta->rta_len = RTA_LENGTH(sizeof(*param));
param = RTA_DATA(rta);
param->enckeylen = htonl(Ke->len);
memcpy((void *)(param + 1), Ki->data, Ki->len);
memcpy((void *)(param + 1) + Ki->len, Ke->data, Ke->len);
return 0;
}
/*
* Derive the Kc key for checksum-only mode and package it into a key parameter
* that can be given to the setkey of a hash crypto object.
*/
int rfc3961_derive_checksum_key(const struct krb5_enctype *krb5,
const struct krb5_buffer *TK,
unsigned int usage,
struct krb5_buffer *setkey,
gfp_t gfp)
{
int ret;
setkey->len = krb5->Kc_len;
setkey->data = kzalloc(setkey->len, GFP_KERNEL);
if (!setkey->data)
return -ENOMEM;
ret = krb5_derive_Kc(krb5, TK, usage, setkey, gfp);
if (ret < 0)
pr_err("get_Kc failed %d\n", ret);
return ret;
}
/*
* Package a predefined Kc key for checksum-only mode into a key parameter that
* can be given to the setkey of a hash crypto object.
*/
int rfc3961_load_checksum_key(const struct krb5_enctype *krb5,
const struct krb5_buffer *Kc,
struct krb5_buffer *setkey,
gfp_t gfp)
{
setkey->len = krb5->Kc_len;
setkey->data = kmemdup(Kc->data, Kc->len, GFP_KERNEL);
if (!setkey->data)
return -ENOMEM;
return 0;
}
/*
* Apply encryption and checksumming functions to part of a scatterlist.
*/
ssize_t krb5_aead_encrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
size_t data_offset, size_t data_len,
bool preconfounded)
{
struct aead_request *req;
ssize_t ret, done;
size_t bsize, base_len, secure_offset, secure_len, pad_len, cksum_offset;
void *buffer;
u8 *iv;
if (WARN_ON(data_offset != krb5->conf_len))
return -EINVAL; /* Data is in wrong place */
secure_offset = 0;
base_len = krb5->conf_len + data_len;
pad_len = 0;
secure_len = base_len + pad_len;
cksum_offset = secure_len;
if (WARN_ON(cksum_offset + krb5->cksum_len > sg_len))
return -EFAULT;
bsize = krb5_aead_size(aead) +
krb5_aead_ivsize(aead);
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
/* Insert the confounder into the buffer */
ret = -EFAULT;
if (!preconfounded) {
get_random_bytes(buffer, krb5->conf_len);
done = sg_pcopy_from_buffer(sg, nr_sg, buffer, krb5->conf_len,
secure_offset);
if (done != krb5->conf_len)
goto error;
}
/* We may need to pad out to the crypto blocksize. */
if (pad_len) {
done = sg_zero_buffer(sg, nr_sg, pad_len, data_offset + data_len);
if (done != pad_len)
goto error;
}
/* Hash and encrypt the message. */
req = buffer;
iv = buffer + krb5_aead_size(aead);
aead_request_set_tfm(req, aead);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_crypt(req, sg, sg, secure_len, iv);
ret = crypto_aead_encrypt(req);
if (ret < 0)
goto error;
ret = secure_len + krb5->cksum_len;
error:
kfree_sensitive(buffer);
return ret;
}
/*
* Apply decryption and checksumming functions to a message. The offset and
* length are updated to reflect the actual content of the encrypted region.
*/
int krb5_aead_decrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg,
size_t *_offset, size_t *_len)
{
struct aead_request *req;
size_t bsize;
void *buffer;
int ret;
u8 *iv;
if (WARN_ON(*_offset != 0))
return -EINVAL; /* Can't set offset on aead */
if (*_len < krb5->conf_len + krb5->cksum_len)
return -EPROTO;
bsize = krb5_aead_size(aead) +
krb5_aead_ivsize(aead);
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
/* Decrypt the message and verify its checksum. */
req = buffer;
iv = buffer + krb5_aead_size(aead);
aead_request_set_tfm(req, aead);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_crypt(req, sg, sg, *_len, iv);
ret = crypto_aead_decrypt(req);
if (ret < 0)
goto error;
/* Adjust the boundaries of the data. */
*_offset += krb5->conf_len;
*_len -= krb5->conf_len + krb5->cksum_len;
ret = 0;
error:
kfree_sensitive(buffer);
return ret;
}
/*
* Generate a checksum over some metadata and part of an skbuff and insert the
* MIC into the skbuff immediately prior to the data.
*/
ssize_t rfc3961_get_mic(const struct krb5_enctype *krb5,
struct crypto_shash *shash,
const struct krb5_buffer *metadata,
struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
size_t data_offset, size_t data_len)
{
struct shash_desc *desc;
ssize_t ret, done;
size_t bsize;
void *buffer, *digest;
if (WARN_ON(data_offset != krb5->cksum_len))
return -EMSGSIZE;
bsize = krb5_shash_size(shash) +
krb5_digest_size(shash);
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
/* Calculate the MIC with key Kc and store it into the skb */
desc = buffer;
desc->tfm = shash;
ret = crypto_shash_init(desc);
if (ret < 0)
goto error;
if (metadata) {
ret = crypto_shash_update(desc, metadata->data, metadata->len);
if (ret < 0)
goto error;
}
ret = crypto_shash_update_sg(desc, sg, data_offset, data_len);
if (ret < 0)
goto error;
digest = buffer + krb5_shash_size(shash);
ret = crypto_shash_final(desc, digest);
if (ret < 0)
goto error;
ret = -EFAULT;
done = sg_pcopy_from_buffer(sg, nr_sg, digest, krb5->cksum_len,
data_offset - krb5->cksum_len);
if (done != krb5->cksum_len)
goto error;
ret = krb5->cksum_len + data_len;
error:
kfree_sensitive(buffer);
return ret;
}
/*
* Check the MIC on a region of an skbuff. The offset and length are updated
* to reflect the actual content of the secure region.
*/
int rfc3961_verify_mic(const struct krb5_enctype *krb5,
struct crypto_shash *shash,
const struct krb5_buffer *metadata,
struct scatterlist *sg, unsigned int nr_sg,
size_t *_offset, size_t *_len)
{
struct shash_desc *desc;
ssize_t done;
size_t bsize, data_offset, data_len, offset = *_offset, len = *_len;
void *buffer = NULL;
int ret;
u8 *cksum, *cksum2;
if (len < krb5->cksum_len)
return -EPROTO;
data_offset = offset + krb5->cksum_len;
data_len = len - krb5->cksum_len;
bsize = krb5_shash_size(shash) +
krb5_digest_size(shash) * 2;
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
cksum = buffer +
krb5_shash_size(shash);
cksum2 = buffer +
krb5_shash_size(shash) +
krb5_digest_size(shash);
/* Calculate the MIC */
desc = buffer;
desc->tfm = shash;
ret = crypto_shash_init(desc);
if (ret < 0)
goto error;
if (metadata) {
ret = crypto_shash_update(desc, metadata->data, metadata->len);
if (ret < 0)
goto error;
}
crypto_shash_update_sg(desc, sg, data_offset, data_len);
crypto_shash_final(desc, cksum);
ret = -EFAULT;
done = sg_pcopy_to_buffer(sg, nr_sg, cksum2, krb5->cksum_len, offset);
if (done != krb5->cksum_len)
goto error;
if (memcmp(cksum, cksum2, krb5->cksum_len) != 0) {
ret = -EBADMSG;
goto error;
}
*_offset += krb5->cksum_len;
*_len -= krb5->cksum_len;
ret = 0;
error:
kfree_sensitive(buffer);
return ret;
}
const struct krb5_crypto_profile rfc3961_simplified_profile = {
.calc_PRF = rfc3961_calc_PRF,
.calc_Kc = rfc3961_calc_DK,
.calc_Ke = rfc3961_calc_DK,
.calc_Ki = rfc3961_calc_DK,
.derive_encrypt_keys = authenc_derive_encrypt_keys,
.load_encrypt_keys = authenc_load_encrypt_keys,
.derive_checksum_key = rfc3961_derive_checksum_key,
.load_checksum_key = rfc3961_load_checksum_key,
.encrypt = krb5_aead_encrypt,
.decrypt = krb5_aead_decrypt,
.get_mic = rfc3961_get_mic,
.verify_mic = rfc3961_verify_mic,
};