linux/crypto/krb5/rfc8009_aes2.c
David Howells 6c3c0e86c2 crypto/krb5: Implement the AES enctypes from rfc8009
Implement the aes128-cts-hmac-sha256-128 and aes256-cts-hmac-sha384-192
enctypes from rfc8009, overriding the rfc3961 kerberos 5 simplified crypto
scheme.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: "David S. Miller" <davem@davemloft.net>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: Simon Horman <horms@kernel.org>
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-crypto@vger.kernel.org
cc: netdev@vger.kernel.org
2025-03-02 21:53:55 +00:00

363 lines
9.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* rfc8009 AES Encryption with HMAC-SHA2 for Kerberos 5
*
* Copyright (C) 2025 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <crypto/authenc.h>
#include "internal.h"
static const struct krb5_buffer rfc8009_no_context = { .len = 0, .data = "" };
/*
* Calculate the key derivation function KDF-HMAC-SHA2(key, label, [context,] k)
*
* KDF-HMAC-SHA2(key, label, [context,] k) = k-truncate(K1)
*
* Using the appropriate one of:
* K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | k)
* K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | k)
* K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | context | k)
* K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | context | k)
* [rfc8009 sec 3]
*/
static int rfc8009_calc_KDF_HMAC_SHA2(const struct krb5_enctype *krb5,
const struct krb5_buffer *key,
const struct krb5_buffer *label,
const struct krb5_buffer *context,
unsigned int k,
struct krb5_buffer *result,
gfp_t gfp)
{
struct crypto_shash *shash;
struct krb5_buffer K1, data;
struct shash_desc *desc;
__be32 tmp;
size_t bsize;
void *buffer;
u8 *p;
int ret = -ENOMEM;
if (WARN_ON(result->len != k / 8))
return -EINVAL;
shash = crypto_alloc_shash(krb5->cksum_name, 0, 0);
if (IS_ERR(shash))
return (PTR_ERR(shash) == -ENOENT) ? -ENOPKG : PTR_ERR(shash);
ret = crypto_shash_setkey(shash, key->data, key->len);
if (ret < 0)
goto error_shash;
ret = -EINVAL;
if (WARN_ON(crypto_shash_digestsize(shash) * 8 < k))
goto error_shash;
ret = -ENOMEM;
data.len = 4 + label->len + 1 + context->len + 4;
bsize = krb5_shash_size(shash) +
krb5_digest_size(shash) +
crypto_roundup(data.len);
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
goto error_shash;
desc = buffer;
desc->tfm = shash;
ret = crypto_shash_init(desc);
if (ret < 0)
goto error;
p = data.data = buffer +
krb5_shash_size(shash) +
krb5_digest_size(shash);
*(__be32 *)p = htonl(0x00000001);
p += 4;
memcpy(p, label->data, label->len);
p += label->len;
*p++ = 0;
memcpy(p, context->data, context->len);
p += context->len;
tmp = htonl(k);
memcpy(p, &tmp, 4);
p += 4;
ret = -EINVAL;
if (WARN_ON(p - (u8 *)data.data != data.len))
goto error;
K1.len = crypto_shash_digestsize(shash);
K1.data = buffer +
krb5_shash_size(shash);
ret = crypto_shash_finup(desc, data.data, data.len, K1.data);
if (ret < 0)
goto error;
memcpy(result->data, K1.data, result->len);
error:
kfree_sensitive(buffer);
error_shash:
crypto_free_shash(shash);
return ret;
}
/*
* Calculate the pseudo-random function, PRF().
*
* PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 256)
* PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 384)
*
* The "prfconstant" used in the PRF operation is the three-octet string
* "prf".
* [rfc8009 sec 5]
*/
static int rfc8009_calc_PRF(const struct krb5_enctype *krb5,
const struct krb5_buffer *input_key,
const struct krb5_buffer *octet_string,
struct krb5_buffer *result,
gfp_t gfp)
{
static const struct krb5_buffer prfconstant = { 3, "prf" };
return rfc8009_calc_KDF_HMAC_SHA2(krb5, input_key, &prfconstant,
octet_string, krb5->prf_len * 8,
result, gfp);
}
/*
* Derive Ke.
* Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 128)
* Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 256)
* [rfc8009 sec 5]
*/
static int rfc8009_calc_Ke(const struct krb5_enctype *krb5,
const struct krb5_buffer *base_key,
const struct krb5_buffer *usage_constant,
struct krb5_buffer *result,
gfp_t gfp)
{
return rfc8009_calc_KDF_HMAC_SHA2(krb5, base_key, usage_constant,
&rfc8009_no_context, krb5->key_bytes * 8,
result, gfp);
}
/*
* Derive Kc/Ki
* Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 128)
* Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 128)
* Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 192)
* Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 192)
* [rfc8009 sec 5]
*/
static int rfc8009_calc_Ki(const struct krb5_enctype *krb5,
const struct krb5_buffer *base_key,
const struct krb5_buffer *usage_constant,
struct krb5_buffer *result,
gfp_t gfp)
{
return rfc8009_calc_KDF_HMAC_SHA2(krb5, base_key, usage_constant,
&rfc8009_no_context, krb5->cksum_len * 8,
result, gfp);
}
/*
* Apply encryption and checksumming functions to a message. Unlike for
* RFC3961, for RFC8009, we have to chuck the starting IV into the hash first.
*/
static ssize_t rfc8009_encrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
size_t data_offset, size_t data_len,
bool preconfounded)
{
struct aead_request *req;
struct scatterlist bsg[2];
ssize_t ret, done;
size_t bsize, base_len, secure_offset, secure_len, pad_len, cksum_offset;
void *buffer;
u8 *iv, *ad;
if (WARN_ON(data_offset != krb5->conf_len))
return -EINVAL; /* Data is in wrong place */
secure_offset = 0;
base_len = krb5->conf_len + data_len;
pad_len = 0;
secure_len = base_len + pad_len;
cksum_offset = secure_len;
if (WARN_ON(cksum_offset + krb5->cksum_len > sg_len))
return -EFAULT;
bsize = krb5_aead_size(aead) +
krb5_aead_ivsize(aead) * 2;
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
req = buffer;
iv = buffer + krb5_aead_size(aead);
ad = buffer + krb5_aead_size(aead) + krb5_aead_ivsize(aead);
/* Insert the confounder into the buffer */
ret = -EFAULT;
if (!preconfounded) {
get_random_bytes(buffer, krb5->conf_len);
done = sg_pcopy_from_buffer(sg, nr_sg, buffer, krb5->conf_len,
secure_offset);
if (done != krb5->conf_len)
goto error;
}
/* We may need to pad out to the crypto blocksize. */
if (pad_len) {
done = sg_zero_buffer(sg, nr_sg, pad_len, data_offset + data_len);
if (done != pad_len)
goto error;
}
/* We need to include the starting IV in the hash. */
sg_init_table(bsg, 2);
sg_set_buf(&bsg[0], ad, krb5_aead_ivsize(aead));
sg_chain(bsg, 2, sg);
/* Hash and encrypt the message. */
aead_request_set_tfm(req, aead);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, krb5_aead_ivsize(aead));
aead_request_set_crypt(req, bsg, bsg, secure_len, iv);
ret = crypto_aead_encrypt(req);
if (ret < 0)
goto error;
ret = secure_len + krb5->cksum_len;
error:
kfree_sensitive(buffer);
return ret;
}
/*
* Apply decryption and checksumming functions to a message. Unlike for
* RFC3961, for RFC8009, we have to chuck the starting IV into the hash first.
*
* The offset and length are updated to reflect the actual content of the
* encrypted region.
*/
static int rfc8009_decrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg,
size_t *_offset, size_t *_len)
{
struct aead_request *req;
struct scatterlist bsg[2];
size_t bsize;
void *buffer;
int ret;
u8 *iv, *ad;
if (WARN_ON(*_offset != 0))
return -EINVAL; /* Can't set offset on aead */
if (*_len < krb5->conf_len + krb5->cksum_len)
return -EPROTO;
bsize = krb5_aead_size(aead) +
krb5_aead_ivsize(aead) * 2;
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
req = buffer;
iv = buffer + krb5_aead_size(aead);
ad = buffer + krb5_aead_size(aead) + krb5_aead_ivsize(aead);
/* We need to include the starting IV in the hash. */
sg_init_table(bsg, 2);
sg_set_buf(&bsg[0], ad, krb5_aead_ivsize(aead));
sg_chain(bsg, 2, sg);
/* Decrypt the message and verify its checksum. */
aead_request_set_tfm(req, aead);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, krb5_aead_ivsize(aead));
aead_request_set_crypt(req, bsg, bsg, *_len, iv);
ret = crypto_aead_decrypt(req);
if (ret < 0)
goto error;
/* Adjust the boundaries of the data. */
*_offset += krb5->conf_len;
*_len -= krb5->conf_len + krb5->cksum_len;
ret = 0;
error:
kfree_sensitive(buffer);
return ret;
}
static const struct krb5_crypto_profile rfc8009_crypto_profile = {
.calc_PRF = rfc8009_calc_PRF,
.calc_Kc = rfc8009_calc_Ki,
.calc_Ke = rfc8009_calc_Ke,
.calc_Ki = rfc8009_calc_Ki,
.derive_encrypt_keys = authenc_derive_encrypt_keys,
.load_encrypt_keys = authenc_load_encrypt_keys,
.derive_checksum_key = rfc3961_derive_checksum_key,
.load_checksum_key = rfc3961_load_checksum_key,
.encrypt = rfc8009_encrypt,
.decrypt = rfc8009_decrypt,
.get_mic = rfc3961_get_mic,
.verify_mic = rfc3961_verify_mic,
};
const struct krb5_enctype krb5_aes128_cts_hmac_sha256_128 = {
.etype = KRB5_ENCTYPE_AES128_CTS_HMAC_SHA256_128,
.ctype = KRB5_CKSUMTYPE_HMAC_SHA256_128_AES128,
.name = "aes128-cts-hmac-sha256-128",
.encrypt_name = "authenc(hmac(sha256),cts(cbc(aes)))",
.cksum_name = "hmac(sha256)",
.hash_name = "sha256",
.derivation_enc = "cts(cbc(aes))",
.key_bytes = 16,
.key_len = 16,
.Kc_len = 16,
.Ke_len = 16,
.Ki_len = 16,
.block_len = 16,
.conf_len = 16,
.cksum_len = 16,
.hash_len = 20,
.prf_len = 32,
.keyed_cksum = true,
.random_to_key = NULL, /* Identity */
.profile = &rfc8009_crypto_profile,
};
const struct krb5_enctype krb5_aes256_cts_hmac_sha384_192 = {
.etype = KRB5_ENCTYPE_AES256_CTS_HMAC_SHA384_192,
.ctype = KRB5_CKSUMTYPE_HMAC_SHA384_192_AES256,
.name = "aes256-cts-hmac-sha384-192",
.encrypt_name = "authenc(hmac(sha384),cts(cbc(aes)))",
.cksum_name = "hmac(sha384)",
.hash_name = "sha384",
.derivation_enc = "cts(cbc(aes))",
.key_bytes = 32,
.key_len = 32,
.Kc_len = 24,
.Ke_len = 32,
.Ki_len = 24,
.block_len = 16,
.conf_len = 16,
.cksum_len = 24,
.hash_len = 20,
.prf_len = 48,
.keyed_cksum = true,
.random_to_key = NULL, /* Identity */
.profile = &rfc8009_crypto_profile,
};