mirror of
https://github.com/torvalds/linux.git
synced 2025-04-11 04:53:02 +00:00

Introduce device wedged event, which notifies userspace of 'wedged' (hanged/unusable) state of the DRM device through a uevent. This is useful especially in cases where the device is no longer operating as expected and has become unrecoverable from driver context. Purpose of this implementation is to provide drivers a generic way to recover the device with the help of userspace intervention without taking any drastic measures (like resetting or re-enumerating the full bus, on which the underlying physical device is sitting) in the driver. A 'wedged' device is basically a device that is declared dead by the driver after exhausting all possible attempts to recover it from driver context. The uevent is the notification that is sent to userspace along with a hint about what could possibly be attempted to recover the device from userspace and bring it back to usable state. Different drivers may have different ideas of a 'wedged' device depending on hardware implementation of the underlying physical device, and hence the vendor agnostic nature of the event. It is up to the drivers to decide when they see the need for device recovery and how they want to recover from the available methods. Driver prerequisites -------------------- The driver, before opting for recovery, needs to make sure that the 'wedged' device doesn't harm the system as a whole by taking care of the prerequisites. Necessary actions must include disabling DMA to system memory as well as any communication channels with other devices. Further, the driver must ensure that all dma_fences are signalled and any device state that the core kernel might depend on is cleaned up. All existing mmaps should be invalidated and page faults should be redirected to a dummy page. Once the event is sent, the device must be kept in 'wedged' state until the recovery is performed. New accesses to the device (IOCTLs) should be rejected, preferably with an error code that resembles the type of failure the device has encountered. This will signify the reason for wedging, which can be reported to the application if needed. Recovery -------- Current implementation defines three recovery methods, out of which, drivers can use any one, multiple or none. Method(s) of choice will be sent in the uevent environment as ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects. If driver is unsure about recovery or method is unknown (like soft/hard system reboot, firmware flashing, physical device replacement or any other procedure which can't be attempted on the fly), ``WEDGED=unknown`` will be sent instead. Userspace consumers can parse this event and attempt recovery as per the following expectations. =============== ======================================== Recovery method Consumer expectations =============== ======================================== none optional telemetry collection rebind unbind + bind driver bus-reset unbind + bus reset/re-enumeration + bind unknown consumer policy =============== ======================================== The only exception to this is ``WEDGED=none``, which signifies that the device was temporarily 'wedged' at some point but was recovered from driver context using device specific methods like reset. No explicit recovery is expected from the consumer in this case, but it can still take additional steps like gathering telemetry information (devcoredump, syslog). This is useful because the first hang is usually the most critical one which can result in consequential hangs or complete wedging. Consumer prerequisites ---------------------- It is the responsibility of the consumer to make sure that the device or its resources are not in use by any process before attempting recovery. With IOCTLs erroring out, all device memory should be unmapped and file descriptors should be closed to prevent leaks or undefined behaviour. The idea here is to clear the device of all user context beforehand and set the stage for a clean recovery. Example ------- Udev rule:: SUBSYSTEM=="drm", ENV{WEDGED}=="rebind", DEVPATH=="*/drm/card[0-9]", RUN+="/path/to/rebind.sh $env{DEVPATH}" Recovery script:: #!/bin/sh DEVPATH=$(readlink -f /sys/$1/device) DEVICE=$(basename $DEVPATH) DRIVER=$(readlink -f $DEVPATH/driver) echo -n $DEVICE > $DRIVER/unbind echo -n $DEVICE > $DRIVER/bind Customization ------------- Although basic recovery is possible with a simple script, consumers can define custom policies around recovery. For example, if the driver supports multiple recovery methods, consumers can opt for the suitable one depending on scenarios like repeat offences or vendor specific failures. Consumers can also choose to have the device available for debugging or telemetry collection and base their recovery decision on the findings. This is useful especially when the driver is unsure about recovery or method is unknown. v4: s/drm_dev_wedged/drm_dev_wedged_event Use drm_info() (Jani) Kernel doc adjustment (Aravind) v5: Send recovery method with uevent (Lina) v6: Access wedge_recovery_opts[] using helper function (Jani) Use snprintf() (Jani) v7: Convert recovery helpers into regular functions (Andy, Jani) Aesthetic adjustments (Andy) Handle invalid recovery method v8: Allow sending multiple methods with uevent (Lucas, Michal) static_assert() globally (Andy) v9: Provide 'none' method for device reset (Christian) Provide recovery opts using switch cases v11: Log device reset (André) Signed-off-by: Raag Jadav <raag.jadav@intel.com> Reviewed-by: André Almeida <andrealmeid@igalia.com> Reviewed-by: Christian König <christian.koenig@amd.com> Link: https://patchwork.freedesktop.org/patch/msgid/20250204070528.1919158-2-raag.jadav@intel.com Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
1216 lines
33 KiB
C
1216 lines
33 KiB
C
/*
|
|
* Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
|
|
*
|
|
* Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
|
|
* All Rights Reserved.
|
|
*
|
|
* Author Rickard E. (Rik) Faith <faith@valinux.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/cgroup_dmem.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pseudo_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sprintf.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/xarray.h>
|
|
|
|
#include <drm/drm_accel.h>
|
|
#include <drm/drm_cache.h>
|
|
#include <drm/drm_client_event.h>
|
|
#include <drm/drm_color_mgmt.h>
|
|
#include <drm/drm_drv.h>
|
|
#include <drm/drm_file.h>
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/drm_mode_object.h>
|
|
#include <drm/drm_panic.h>
|
|
#include <drm/drm_print.h>
|
|
#include <drm/drm_privacy_screen_machine.h>
|
|
|
|
#include "drm_crtc_internal.h"
|
|
#include "drm_internal.h"
|
|
|
|
MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
|
|
MODULE_DESCRIPTION("DRM shared core routines");
|
|
MODULE_LICENSE("GPL and additional rights");
|
|
|
|
DEFINE_XARRAY_ALLOC(drm_minors_xa);
|
|
|
|
/*
|
|
* If the drm core fails to init for whatever reason,
|
|
* we should prevent any drivers from registering with it.
|
|
* It's best to check this at drm_dev_init(), as some drivers
|
|
* prefer to embed struct drm_device into their own device
|
|
* structure and call drm_dev_init() themselves.
|
|
*/
|
|
static bool drm_core_init_complete;
|
|
|
|
static struct dentry *drm_debugfs_root;
|
|
|
|
DEFINE_STATIC_SRCU(drm_unplug_srcu);
|
|
|
|
/*
|
|
* DRM Minors
|
|
* A DRM device can provide several char-dev interfaces on the DRM-Major. Each
|
|
* of them is represented by a drm_minor object. Depending on the capabilities
|
|
* of the device-driver, different interfaces are registered.
|
|
*
|
|
* Minors can be accessed via dev->$minor_name. This pointer is either
|
|
* NULL or a valid drm_minor pointer and stays valid as long as the device is
|
|
* valid. This means, DRM minors have the same life-time as the underlying
|
|
* device. However, this doesn't mean that the minor is active. Minors are
|
|
* registered and unregistered dynamically according to device-state.
|
|
*/
|
|
|
|
static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
|
|
{
|
|
if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
|
|
return &drm_minors_xa;
|
|
#if IS_ENABLED(CONFIG_DRM_ACCEL)
|
|
else if (type == DRM_MINOR_ACCEL)
|
|
return &accel_minors_xa;
|
|
#endif
|
|
else
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
|
|
static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
|
|
enum drm_minor_type type)
|
|
{
|
|
switch (type) {
|
|
case DRM_MINOR_PRIMARY:
|
|
return &dev->primary;
|
|
case DRM_MINOR_RENDER:
|
|
return &dev->render;
|
|
case DRM_MINOR_ACCEL:
|
|
return &dev->accel;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void drm_minor_alloc_release(struct drm_device *dev, void *data)
|
|
{
|
|
struct drm_minor *minor = data;
|
|
|
|
WARN_ON(dev != minor->dev);
|
|
|
|
put_device(minor->kdev);
|
|
|
|
xa_erase(drm_minor_get_xa(minor->type), minor->index);
|
|
}
|
|
|
|
/*
|
|
* DRM used to support 64 devices, for backwards compatibility we need to maintain the
|
|
* minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
|
|
* and 128-191 are render nodes.
|
|
* After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
|
|
* Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
|
|
* range.
|
|
*/
|
|
#define DRM_MINOR_LIMIT(t) ({ \
|
|
typeof(t) _t = (t); \
|
|
_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
|
|
})
|
|
#define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
|
|
|
|
static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
|
|
{
|
|
struct drm_minor *minor;
|
|
int r;
|
|
|
|
minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
|
|
if (!minor)
|
|
return -ENOMEM;
|
|
|
|
minor->type = type;
|
|
minor->dev = dev;
|
|
|
|
r = xa_alloc(drm_minor_get_xa(type), &minor->index,
|
|
NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
|
|
if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
|
|
r = xa_alloc(&drm_minors_xa, &minor->index,
|
|
NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
|
|
if (r)
|
|
return r;
|
|
|
|
minor->kdev = drm_sysfs_minor_alloc(minor);
|
|
if (IS_ERR(minor->kdev))
|
|
return PTR_ERR(minor->kdev);
|
|
|
|
*drm_minor_get_slot(dev, type) = minor;
|
|
return 0;
|
|
}
|
|
|
|
static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
|
|
{
|
|
struct drm_minor *minor;
|
|
void *entry;
|
|
int ret;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
minor = *drm_minor_get_slot(dev, type);
|
|
if (!minor)
|
|
return 0;
|
|
|
|
if (minor->type != DRM_MINOR_ACCEL) {
|
|
ret = drm_debugfs_register(minor, minor->index,
|
|
drm_debugfs_root);
|
|
if (ret) {
|
|
DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
|
|
goto err_debugfs;
|
|
}
|
|
}
|
|
|
|
ret = device_add(minor->kdev);
|
|
if (ret)
|
|
goto err_debugfs;
|
|
|
|
/* replace NULL with @minor so lookups will succeed from now on */
|
|
entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
|
|
if (xa_is_err(entry)) {
|
|
ret = xa_err(entry);
|
|
goto err_debugfs;
|
|
}
|
|
WARN_ON(entry);
|
|
|
|
DRM_DEBUG("new minor registered %d\n", minor->index);
|
|
return 0;
|
|
|
|
err_debugfs:
|
|
drm_debugfs_unregister(minor);
|
|
return ret;
|
|
}
|
|
|
|
static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
|
|
{
|
|
struct drm_minor *minor;
|
|
|
|
minor = *drm_minor_get_slot(dev, type);
|
|
if (!minor || !device_is_registered(minor->kdev))
|
|
return;
|
|
|
|
/* replace @minor with NULL so lookups will fail from now on */
|
|
xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
|
|
|
|
device_del(minor->kdev);
|
|
dev_set_drvdata(minor->kdev, NULL); /* safety belt */
|
|
drm_debugfs_unregister(minor);
|
|
}
|
|
|
|
/*
|
|
* Looks up the given minor-ID and returns the respective DRM-minor object. The
|
|
* refence-count of the underlying device is increased so you must release this
|
|
* object with drm_minor_release().
|
|
*
|
|
* As long as you hold this minor, it is guaranteed that the object and the
|
|
* minor->dev pointer will stay valid! However, the device may get unplugged and
|
|
* unregistered while you hold the minor.
|
|
*/
|
|
struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
|
|
{
|
|
struct drm_minor *minor;
|
|
|
|
xa_lock(minor_xa);
|
|
minor = xa_load(minor_xa, minor_id);
|
|
if (minor)
|
|
drm_dev_get(minor->dev);
|
|
xa_unlock(minor_xa);
|
|
|
|
if (!minor) {
|
|
return ERR_PTR(-ENODEV);
|
|
} else if (drm_dev_is_unplugged(minor->dev)) {
|
|
drm_dev_put(minor->dev);
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
return minor;
|
|
}
|
|
|
|
void drm_minor_release(struct drm_minor *minor)
|
|
{
|
|
drm_dev_put(minor->dev);
|
|
}
|
|
|
|
/**
|
|
* DOC: driver instance overview
|
|
*
|
|
* A device instance for a drm driver is represented by &struct drm_device. This
|
|
* is allocated and initialized with devm_drm_dev_alloc(), usually from
|
|
* bus-specific ->probe() callbacks implemented by the driver. The driver then
|
|
* needs to initialize all the various subsystems for the drm device like memory
|
|
* management, vblank handling, modesetting support and initial output
|
|
* configuration plus obviously initialize all the corresponding hardware bits.
|
|
* Finally when everything is up and running and ready for userspace the device
|
|
* instance can be published using drm_dev_register().
|
|
*
|
|
* There is also deprecated support for initializing device instances using
|
|
* bus-specific helpers and the &drm_driver.load callback. But due to
|
|
* backwards-compatibility needs the device instance have to be published too
|
|
* early, which requires unpretty global locking to make safe and is therefore
|
|
* only support for existing drivers not yet converted to the new scheme.
|
|
*
|
|
* When cleaning up a device instance everything needs to be done in reverse:
|
|
* First unpublish the device instance with drm_dev_unregister(). Then clean up
|
|
* any other resources allocated at device initialization and drop the driver's
|
|
* reference to &drm_device using drm_dev_put().
|
|
*
|
|
* Note that any allocation or resource which is visible to userspace must be
|
|
* released only when the final drm_dev_put() is called, and not when the
|
|
* driver is unbound from the underlying physical struct &device. Best to use
|
|
* &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
|
|
* related functions.
|
|
*
|
|
* devres managed resources like devm_kmalloc() can only be used for resources
|
|
* directly related to the underlying hardware device, and only used in code
|
|
* paths fully protected by drm_dev_enter() and drm_dev_exit().
|
|
*
|
|
* Display driver example
|
|
* ~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* The following example shows a typical structure of a DRM display driver.
|
|
* The example focus on the probe() function and the other functions that is
|
|
* almost always present and serves as a demonstration of devm_drm_dev_alloc().
|
|
*
|
|
* .. code-block:: c
|
|
*
|
|
* struct driver_device {
|
|
* struct drm_device drm;
|
|
* void *userspace_facing;
|
|
* struct clk *pclk;
|
|
* };
|
|
*
|
|
* static const struct drm_driver driver_drm_driver = {
|
|
* [...]
|
|
* };
|
|
*
|
|
* static int driver_probe(struct platform_device *pdev)
|
|
* {
|
|
* struct driver_device *priv;
|
|
* struct drm_device *drm;
|
|
* int ret;
|
|
*
|
|
* priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
|
|
* struct driver_device, drm);
|
|
* if (IS_ERR(priv))
|
|
* return PTR_ERR(priv);
|
|
* drm = &priv->drm;
|
|
*
|
|
* ret = drmm_mode_config_init(drm);
|
|
* if (ret)
|
|
* return ret;
|
|
*
|
|
* priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
|
|
* if (!priv->userspace_facing)
|
|
* return -ENOMEM;
|
|
*
|
|
* priv->pclk = devm_clk_get(dev, "PCLK");
|
|
* if (IS_ERR(priv->pclk))
|
|
* return PTR_ERR(priv->pclk);
|
|
*
|
|
* // Further setup, display pipeline etc
|
|
*
|
|
* platform_set_drvdata(pdev, drm);
|
|
*
|
|
* drm_mode_config_reset(drm);
|
|
*
|
|
* ret = drm_dev_register(drm);
|
|
* if (ret)
|
|
* return ret;
|
|
*
|
|
* drm_fbdev_{...}_setup(drm, 32);
|
|
*
|
|
* return 0;
|
|
* }
|
|
*
|
|
* // This function is called before the devm_ resources are released
|
|
* static int driver_remove(struct platform_device *pdev)
|
|
* {
|
|
* struct drm_device *drm = platform_get_drvdata(pdev);
|
|
*
|
|
* drm_dev_unregister(drm);
|
|
* drm_atomic_helper_shutdown(drm)
|
|
*
|
|
* return 0;
|
|
* }
|
|
*
|
|
* // This function is called on kernel restart and shutdown
|
|
* static void driver_shutdown(struct platform_device *pdev)
|
|
* {
|
|
* drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
|
|
* }
|
|
*
|
|
* static int __maybe_unused driver_pm_suspend(struct device *dev)
|
|
* {
|
|
* return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
|
|
* }
|
|
*
|
|
* static int __maybe_unused driver_pm_resume(struct device *dev)
|
|
* {
|
|
* drm_mode_config_helper_resume(dev_get_drvdata(dev));
|
|
*
|
|
* return 0;
|
|
* }
|
|
*
|
|
* static const struct dev_pm_ops driver_pm_ops = {
|
|
* SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
|
|
* };
|
|
*
|
|
* static struct platform_driver driver_driver = {
|
|
* .driver = {
|
|
* [...]
|
|
* .pm = &driver_pm_ops,
|
|
* },
|
|
* .probe = driver_probe,
|
|
* .remove = driver_remove,
|
|
* .shutdown = driver_shutdown,
|
|
* };
|
|
* module_platform_driver(driver_driver);
|
|
*
|
|
* Drivers that want to support device unplugging (USB, DT overlay unload) should
|
|
* use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
|
|
* regions that is accessing device resources to prevent use after they're
|
|
* released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
|
|
* shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
|
|
* drm_atomic_helper_shutdown() is called. This means that if the disable code
|
|
* paths are protected, they will not run on regular driver module unload,
|
|
* possibly leaving the hardware enabled.
|
|
*/
|
|
|
|
/**
|
|
* drm_put_dev - Unregister and release a DRM device
|
|
* @dev: DRM device
|
|
*
|
|
* Called at module unload time or when a PCI device is unplugged.
|
|
*
|
|
* Cleans up all DRM device, calling drm_lastclose().
|
|
*
|
|
* Note: Use of this function is deprecated. It will eventually go away
|
|
* completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
|
|
* instead to make sure that the device isn't userspace accessible any more
|
|
* while teardown is in progress, ensuring that userspace can't access an
|
|
* inconsistent state.
|
|
*/
|
|
void drm_put_dev(struct drm_device *dev)
|
|
{
|
|
DRM_DEBUG("\n");
|
|
|
|
if (!dev) {
|
|
DRM_ERROR("cleanup called no dev\n");
|
|
return;
|
|
}
|
|
|
|
drm_dev_unregister(dev);
|
|
drm_dev_put(dev);
|
|
}
|
|
EXPORT_SYMBOL(drm_put_dev);
|
|
|
|
/**
|
|
* drm_dev_enter - Enter device critical section
|
|
* @dev: DRM device
|
|
* @idx: Pointer to index that will be passed to the matching drm_dev_exit()
|
|
*
|
|
* This function marks and protects the beginning of a section that should not
|
|
* be entered after the device has been unplugged. The section end is marked
|
|
* with drm_dev_exit(). Calls to this function can be nested.
|
|
*
|
|
* Returns:
|
|
* True if it is OK to enter the section, false otherwise.
|
|
*/
|
|
bool drm_dev_enter(struct drm_device *dev, int *idx)
|
|
{
|
|
*idx = srcu_read_lock(&drm_unplug_srcu);
|
|
|
|
if (dev->unplugged) {
|
|
srcu_read_unlock(&drm_unplug_srcu, *idx);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_enter);
|
|
|
|
/**
|
|
* drm_dev_exit - Exit device critical section
|
|
* @idx: index returned from drm_dev_enter()
|
|
*
|
|
* This function marks the end of a section that should not be entered after
|
|
* the device has been unplugged.
|
|
*/
|
|
void drm_dev_exit(int idx)
|
|
{
|
|
srcu_read_unlock(&drm_unplug_srcu, idx);
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_exit);
|
|
|
|
/**
|
|
* drm_dev_unplug - unplug a DRM device
|
|
* @dev: DRM device
|
|
*
|
|
* This unplugs a hotpluggable DRM device, which makes it inaccessible to
|
|
* userspace operations. Entry-points can use drm_dev_enter() and
|
|
* drm_dev_exit() to protect device resources in a race free manner. This
|
|
* essentially unregisters the device like drm_dev_unregister(), but can be
|
|
* called while there are still open users of @dev.
|
|
*/
|
|
void drm_dev_unplug(struct drm_device *dev)
|
|
{
|
|
/*
|
|
* After synchronizing any critical read section is guaranteed to see
|
|
* the new value of ->unplugged, and any critical section which might
|
|
* still have seen the old value of ->unplugged is guaranteed to have
|
|
* finished.
|
|
*/
|
|
dev->unplugged = true;
|
|
synchronize_srcu(&drm_unplug_srcu);
|
|
|
|
drm_dev_unregister(dev);
|
|
|
|
/* Clear all CPU mappings pointing to this device */
|
|
unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_unplug);
|
|
|
|
/*
|
|
* Available recovery methods for wedged device. To be sent along with device
|
|
* wedged uevent.
|
|
*/
|
|
static const char *drm_get_wedge_recovery(unsigned int opt)
|
|
{
|
|
switch (BIT(opt)) {
|
|
case DRM_WEDGE_RECOVERY_NONE:
|
|
return "none";
|
|
case DRM_WEDGE_RECOVERY_REBIND:
|
|
return "rebind";
|
|
case DRM_WEDGE_RECOVERY_BUS_RESET:
|
|
return "bus-reset";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* drm_dev_wedged_event - generate a device wedged uevent
|
|
* @dev: DRM device
|
|
* @method: method(s) to be used for recovery
|
|
*
|
|
* This generates a device wedged uevent for the DRM device specified by @dev.
|
|
* Recovery @method\(s) of choice will be sent in the uevent environment as
|
|
* ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects.
|
|
* If caller is unsure about recovery or @method is unknown (0),
|
|
* ``WEDGED=unknown`` will be sent instead.
|
|
*
|
|
* Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more
|
|
* details.
|
|
*
|
|
* Returns: 0 on success, negative error code otherwise.
|
|
*/
|
|
int drm_dev_wedged_event(struct drm_device *dev, unsigned long method)
|
|
{
|
|
const char *recovery = NULL;
|
|
unsigned int len, opt;
|
|
/* Event string length up to 28+ characters with available methods */
|
|
char event_string[32];
|
|
char *envp[] = { event_string, NULL };
|
|
|
|
len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED=");
|
|
|
|
for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) {
|
|
recovery = drm_get_wedge_recovery(opt);
|
|
if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt))
|
|
break;
|
|
|
|
len += scnprintf(event_string + len, sizeof(event_string), "%s,", recovery);
|
|
}
|
|
|
|
if (recovery)
|
|
/* Get rid of trailing comma */
|
|
event_string[len - 1] = '\0';
|
|
else
|
|
/* Caller is unsure about recovery, do the best we can at this point. */
|
|
snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown");
|
|
|
|
drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ?
|
|
"but recovered through reset" : "needs recovery");
|
|
|
|
return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp);
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_wedged_event);
|
|
|
|
/*
|
|
* DRM internal mount
|
|
* We want to be able to allocate our own "struct address_space" to control
|
|
* memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
|
|
* stand-alone address_space objects, so we need an underlying inode. As there
|
|
* is no way to allocate an independent inode easily, we need a fake internal
|
|
* VFS mount-point.
|
|
*
|
|
* The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
|
|
* frees it again. You are allowed to use iget() and iput() to get references to
|
|
* the inode. But each drm_fs_inode_new() call must be paired with exactly one
|
|
* drm_fs_inode_free() call (which does not have to be the last iput()).
|
|
* We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
|
|
* between multiple inode-users. You could, technically, call
|
|
* iget() + drm_fs_inode_free() directly after alloc and sometime later do an
|
|
* iput(), but this way you'd end up with a new vfsmount for each inode.
|
|
*/
|
|
|
|
static int drm_fs_cnt;
|
|
static struct vfsmount *drm_fs_mnt;
|
|
|
|
static int drm_fs_init_fs_context(struct fs_context *fc)
|
|
{
|
|
return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static struct file_system_type drm_fs_type = {
|
|
.name = "drm",
|
|
.owner = THIS_MODULE,
|
|
.init_fs_context = drm_fs_init_fs_context,
|
|
.kill_sb = kill_anon_super,
|
|
};
|
|
|
|
static struct inode *drm_fs_inode_new(void)
|
|
{
|
|
struct inode *inode;
|
|
int r;
|
|
|
|
r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
|
|
if (r < 0) {
|
|
DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
|
|
if (IS_ERR(inode))
|
|
simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
|
|
|
|
return inode;
|
|
}
|
|
|
|
static void drm_fs_inode_free(struct inode *inode)
|
|
{
|
|
if (inode) {
|
|
iput(inode);
|
|
simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* DOC: component helper usage recommendations
|
|
*
|
|
* DRM drivers that drive hardware where a logical device consists of a pile of
|
|
* independent hardware blocks are recommended to use the :ref:`component helper
|
|
* library<component>`. For consistency and better options for code reuse the
|
|
* following guidelines apply:
|
|
*
|
|
* - The entire device initialization procedure should be run from the
|
|
* &component_master_ops.master_bind callback, starting with
|
|
* devm_drm_dev_alloc(), then binding all components with
|
|
* component_bind_all() and finishing with drm_dev_register().
|
|
*
|
|
* - The opaque pointer passed to all components through component_bind_all()
|
|
* should point at &struct drm_device of the device instance, not some driver
|
|
* specific private structure.
|
|
*
|
|
* - The component helper fills the niche where further standardization of
|
|
* interfaces is not practical. When there already is, or will be, a
|
|
* standardized interface like &drm_bridge or &drm_panel, providing its own
|
|
* functions to find such components at driver load time, like
|
|
* drm_of_find_panel_or_bridge(), then the component helper should not be
|
|
* used.
|
|
*/
|
|
|
|
static void drm_dev_init_release(struct drm_device *dev, void *res)
|
|
{
|
|
drm_fs_inode_free(dev->anon_inode);
|
|
|
|
put_device(dev->dev);
|
|
/* Prevent use-after-free in drm_managed_release when debugging is
|
|
* enabled. Slightly awkward, but can't really be helped. */
|
|
dev->dev = NULL;
|
|
mutex_destroy(&dev->master_mutex);
|
|
mutex_destroy(&dev->clientlist_mutex);
|
|
mutex_destroy(&dev->filelist_mutex);
|
|
mutex_destroy(&dev->struct_mutex);
|
|
}
|
|
|
|
static int drm_dev_init(struct drm_device *dev,
|
|
const struct drm_driver *driver,
|
|
struct device *parent)
|
|
{
|
|
struct inode *inode;
|
|
int ret;
|
|
|
|
if (!drm_core_init_complete) {
|
|
DRM_ERROR("DRM core is not initialized\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (WARN_ON(!parent))
|
|
return -EINVAL;
|
|
|
|
kref_init(&dev->ref);
|
|
dev->dev = get_device(parent);
|
|
dev->driver = driver;
|
|
|
|
INIT_LIST_HEAD(&dev->managed.resources);
|
|
spin_lock_init(&dev->managed.lock);
|
|
|
|
/* no per-device feature limits by default */
|
|
dev->driver_features = ~0u;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
|
|
(drm_core_check_feature(dev, DRIVER_RENDER) ||
|
|
drm_core_check_feature(dev, DRIVER_MODESET))) {
|
|
DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&dev->filelist);
|
|
INIT_LIST_HEAD(&dev->filelist_internal);
|
|
INIT_LIST_HEAD(&dev->clientlist);
|
|
INIT_LIST_HEAD(&dev->vblank_event_list);
|
|
|
|
spin_lock_init(&dev->event_lock);
|
|
mutex_init(&dev->struct_mutex);
|
|
mutex_init(&dev->filelist_mutex);
|
|
mutex_init(&dev->clientlist_mutex);
|
|
mutex_init(&dev->master_mutex);
|
|
raw_spin_lock_init(&dev->mode_config.panic_lock);
|
|
|
|
ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode = drm_fs_inode_new();
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
dev->anon_inode = inode;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
|
|
ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
|
|
if (ret)
|
|
goto err;
|
|
} else {
|
|
if (drm_core_check_feature(dev, DRIVER_RENDER)) {
|
|
ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_GEM)) {
|
|
ret = drm_gem_init(dev);
|
|
if (ret) {
|
|
DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
|
|
if (!dev->unique) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
|
|
accel_debugfs_init(dev);
|
|
else
|
|
drm_debugfs_dev_init(dev, drm_debugfs_root);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
drm_managed_release(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void devm_drm_dev_init_release(void *data)
|
|
{
|
|
drm_dev_put(data);
|
|
}
|
|
|
|
static int devm_drm_dev_init(struct device *parent,
|
|
struct drm_device *dev,
|
|
const struct drm_driver *driver)
|
|
{
|
|
int ret;
|
|
|
|
ret = drm_dev_init(dev, driver, parent);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return devm_add_action_or_reset(parent,
|
|
devm_drm_dev_init_release, dev);
|
|
}
|
|
|
|
void *__devm_drm_dev_alloc(struct device *parent,
|
|
const struct drm_driver *driver,
|
|
size_t size, size_t offset)
|
|
{
|
|
void *container;
|
|
struct drm_device *drm;
|
|
int ret;
|
|
|
|
container = kzalloc(size, GFP_KERNEL);
|
|
if (!container)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
drm = container + offset;
|
|
ret = devm_drm_dev_init(parent, drm, driver);
|
|
if (ret) {
|
|
kfree(container);
|
|
return ERR_PTR(ret);
|
|
}
|
|
drmm_add_final_kfree(drm, container);
|
|
|
|
return container;
|
|
}
|
|
EXPORT_SYMBOL(__devm_drm_dev_alloc);
|
|
|
|
/**
|
|
* drm_dev_alloc - Allocate new DRM device
|
|
* @driver: DRM driver to allocate device for
|
|
* @parent: Parent device object
|
|
*
|
|
* This is the deprecated version of devm_drm_dev_alloc(), which does not support
|
|
* subclassing through embedding the struct &drm_device in a driver private
|
|
* structure, and which does not support automatic cleanup through devres.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to new DRM device, or ERR_PTR on failure.
|
|
*/
|
|
struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
|
|
struct device *parent)
|
|
{
|
|
struct drm_device *dev;
|
|
int ret;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = drm_dev_init(dev, driver, parent);
|
|
if (ret) {
|
|
kfree(dev);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
drmm_add_final_kfree(dev, dev);
|
|
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_alloc);
|
|
|
|
static void drm_dev_release(struct kref *ref)
|
|
{
|
|
struct drm_device *dev = container_of(ref, struct drm_device, ref);
|
|
|
|
/* Just in case register/unregister was never called */
|
|
drm_debugfs_dev_fini(dev);
|
|
|
|
if (dev->driver->release)
|
|
dev->driver->release(dev);
|
|
|
|
drm_managed_release(dev);
|
|
|
|
kfree(dev->managed.final_kfree);
|
|
}
|
|
|
|
/**
|
|
* drm_dev_get - Take reference of a DRM device
|
|
* @dev: device to take reference of or NULL
|
|
*
|
|
* This increases the ref-count of @dev by one. You *must* already own a
|
|
* reference when calling this. Use drm_dev_put() to drop this reference
|
|
* again.
|
|
*
|
|
* This function never fails. However, this function does not provide *any*
|
|
* guarantee whether the device is alive or running. It only provides a
|
|
* reference to the object and the memory associated with it.
|
|
*/
|
|
void drm_dev_get(struct drm_device *dev)
|
|
{
|
|
if (dev)
|
|
kref_get(&dev->ref);
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_get);
|
|
|
|
/**
|
|
* drm_dev_put - Drop reference of a DRM device
|
|
* @dev: device to drop reference of or NULL
|
|
*
|
|
* This decreases the ref-count of @dev by one. The device is destroyed if the
|
|
* ref-count drops to zero.
|
|
*/
|
|
void drm_dev_put(struct drm_device *dev)
|
|
{
|
|
if (dev)
|
|
kref_put(&dev->ref, drm_dev_release);
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_put);
|
|
|
|
static void drmm_cg_unregister_region(struct drm_device *dev, void *arg)
|
|
{
|
|
dmem_cgroup_unregister_region(arg);
|
|
}
|
|
|
|
/**
|
|
* drmm_cgroup_register_region - Register a region of a DRM device to cgroups
|
|
* @dev: device for region
|
|
* @region_name: Region name for registering
|
|
* @size: Size of region in bytes
|
|
*
|
|
* This decreases the ref-count of @dev by one. The device is destroyed if the
|
|
* ref-count drops to zero.
|
|
*/
|
|
struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size)
|
|
{
|
|
struct dmem_cgroup_region *region;
|
|
int ret;
|
|
|
|
region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name);
|
|
if (IS_ERR_OR_NULL(region))
|
|
return region;
|
|
|
|
ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return region;
|
|
}
|
|
EXPORT_SYMBOL_GPL(drmm_cgroup_register_region);
|
|
|
|
static int create_compat_control_link(struct drm_device *dev)
|
|
{
|
|
struct drm_minor *minor;
|
|
char *name;
|
|
int ret;
|
|
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
|
|
if (!minor)
|
|
return 0;
|
|
|
|
/*
|
|
* Some existing userspace out there uses the existing of the controlD*
|
|
* sysfs files to figure out whether it's a modeset driver. It only does
|
|
* readdir, hence a symlink is sufficient (and the least confusing
|
|
* option). Otherwise controlD* is entirely unused.
|
|
*
|
|
* Old controlD chardev have been allocated in the range
|
|
* 64-127.
|
|
*/
|
|
name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
|
|
ret = sysfs_create_link(minor->kdev->kobj.parent,
|
|
&minor->kdev->kobj,
|
|
name);
|
|
|
|
kfree(name);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void remove_compat_control_link(struct drm_device *dev)
|
|
{
|
|
struct drm_minor *minor;
|
|
char *name;
|
|
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return;
|
|
|
|
minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
|
|
if (!minor)
|
|
return;
|
|
|
|
name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
|
|
if (!name)
|
|
return;
|
|
|
|
sysfs_remove_link(minor->kdev->kobj.parent, name);
|
|
|
|
kfree(name);
|
|
}
|
|
|
|
/**
|
|
* drm_dev_register - Register DRM device
|
|
* @dev: Device to register
|
|
* @flags: Flags passed to the driver's .load() function
|
|
*
|
|
* Register the DRM device @dev with the system, advertise device to user-space
|
|
* and start normal device operation. @dev must be initialized via drm_dev_init()
|
|
* previously.
|
|
*
|
|
* Never call this twice on any device!
|
|
*
|
|
* NOTE: To ensure backward compatibility with existing drivers method this
|
|
* function calls the &drm_driver.load method after registering the device
|
|
* nodes, creating race conditions. Usage of the &drm_driver.load methods is
|
|
* therefore deprecated, drivers must perform all initialization before calling
|
|
* drm_dev_register().
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative error code on failure.
|
|
*/
|
|
int drm_dev_register(struct drm_device *dev, unsigned long flags)
|
|
{
|
|
const struct drm_driver *driver = dev->driver;
|
|
int ret;
|
|
|
|
if (!driver->load)
|
|
drm_mode_config_validate(dev);
|
|
|
|
WARN_ON(!dev->managed.final_kfree);
|
|
|
|
if (drm_dev_needs_global_mutex(dev))
|
|
mutex_lock(&drm_global_mutex);
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
|
|
accel_debugfs_register(dev);
|
|
else
|
|
drm_debugfs_dev_register(dev);
|
|
|
|
ret = drm_minor_register(dev, DRM_MINOR_RENDER);
|
|
if (ret)
|
|
goto err_minors;
|
|
|
|
ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
|
|
if (ret)
|
|
goto err_minors;
|
|
|
|
ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
|
|
if (ret)
|
|
goto err_minors;
|
|
|
|
ret = create_compat_control_link(dev);
|
|
if (ret)
|
|
goto err_minors;
|
|
|
|
dev->registered = true;
|
|
|
|
if (driver->load) {
|
|
ret = driver->load(dev, flags);
|
|
if (ret)
|
|
goto err_minors;
|
|
}
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
|
|
ret = drm_modeset_register_all(dev);
|
|
if (ret)
|
|
goto err_unload;
|
|
}
|
|
drm_panic_register(dev);
|
|
|
|
DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
|
|
driver->name, driver->major, driver->minor,
|
|
driver->patchlevel,
|
|
dev->dev ? dev_name(dev->dev) : "virtual device",
|
|
dev->primary ? dev->primary->index : dev->accel->index);
|
|
|
|
goto out_unlock;
|
|
|
|
err_unload:
|
|
if (dev->driver->unload)
|
|
dev->driver->unload(dev);
|
|
err_minors:
|
|
remove_compat_control_link(dev);
|
|
drm_minor_unregister(dev, DRM_MINOR_ACCEL);
|
|
drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
|
|
drm_minor_unregister(dev, DRM_MINOR_RENDER);
|
|
out_unlock:
|
|
if (drm_dev_needs_global_mutex(dev))
|
|
mutex_unlock(&drm_global_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_register);
|
|
|
|
/**
|
|
* drm_dev_unregister - Unregister DRM device
|
|
* @dev: Device to unregister
|
|
*
|
|
* Unregister the DRM device from the system. This does the reverse of
|
|
* drm_dev_register() but does not deallocate the device. The caller must call
|
|
* drm_dev_put() to drop their final reference, unless it is managed with devres
|
|
* (as devices allocated with devm_drm_dev_alloc() are), in which case there is
|
|
* already an unwind action registered.
|
|
*
|
|
* A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
|
|
* which can be called while there are still open users of @dev.
|
|
*
|
|
* This should be called first in the device teardown code to make sure
|
|
* userspace can't access the device instance any more.
|
|
*/
|
|
void drm_dev_unregister(struct drm_device *dev)
|
|
{
|
|
dev->registered = false;
|
|
|
|
drm_panic_unregister(dev);
|
|
|
|
drm_client_dev_unregister(dev);
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
drm_modeset_unregister_all(dev);
|
|
|
|
if (dev->driver->unload)
|
|
dev->driver->unload(dev);
|
|
|
|
remove_compat_control_link(dev);
|
|
drm_minor_unregister(dev, DRM_MINOR_ACCEL);
|
|
drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
|
|
drm_minor_unregister(dev, DRM_MINOR_RENDER);
|
|
drm_debugfs_dev_fini(dev);
|
|
}
|
|
EXPORT_SYMBOL(drm_dev_unregister);
|
|
|
|
/*
|
|
* DRM Core
|
|
* The DRM core module initializes all global DRM objects and makes them
|
|
* available to drivers. Once setup, drivers can probe their respective
|
|
* devices.
|
|
* Currently, core management includes:
|
|
* - The "DRM-Global" key/value database
|
|
* - Global ID management for connectors
|
|
* - DRM major number allocation
|
|
* - DRM minor management
|
|
* - DRM sysfs class
|
|
* - DRM debugfs root
|
|
*
|
|
* Furthermore, the DRM core provides dynamic char-dev lookups. For each
|
|
* interface registered on a DRM device, you can request minor numbers from DRM
|
|
* core. DRM core takes care of major-number management and char-dev
|
|
* registration. A stub ->open() callback forwards any open() requests to the
|
|
* registered minor.
|
|
*/
|
|
|
|
static int drm_stub_open(struct inode *inode, struct file *filp)
|
|
{
|
|
const struct file_operations *new_fops;
|
|
struct drm_minor *minor;
|
|
int err;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
|
|
if (IS_ERR(minor))
|
|
return PTR_ERR(minor);
|
|
|
|
new_fops = fops_get(minor->dev->driver->fops);
|
|
if (!new_fops) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
replace_fops(filp, new_fops);
|
|
if (filp->f_op->open)
|
|
err = filp->f_op->open(inode, filp);
|
|
else
|
|
err = 0;
|
|
|
|
out:
|
|
drm_minor_release(minor);
|
|
|
|
return err;
|
|
}
|
|
|
|
static const struct file_operations drm_stub_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = drm_stub_open,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static void drm_core_exit(void)
|
|
{
|
|
drm_privacy_screen_lookup_exit();
|
|
drm_panic_exit();
|
|
accel_core_exit();
|
|
unregister_chrdev(DRM_MAJOR, "drm");
|
|
debugfs_remove(drm_debugfs_root);
|
|
drm_sysfs_destroy();
|
|
WARN_ON(!xa_empty(&drm_minors_xa));
|
|
drm_connector_ida_destroy();
|
|
}
|
|
|
|
static int __init drm_core_init(void)
|
|
{
|
|
int ret;
|
|
|
|
drm_connector_ida_init();
|
|
drm_memcpy_init_early();
|
|
|
|
ret = drm_sysfs_init();
|
|
if (ret < 0) {
|
|
DRM_ERROR("Cannot create DRM class: %d\n", ret);
|
|
goto error;
|
|
}
|
|
|
|
drm_debugfs_root = debugfs_create_dir("dri", NULL);
|
|
|
|
ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = accel_core_init();
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
drm_panic_init();
|
|
|
|
drm_privacy_screen_lookup_init();
|
|
|
|
drm_core_init_complete = true;
|
|
|
|
DRM_DEBUG("Initialized\n");
|
|
return 0;
|
|
|
|
error:
|
|
drm_core_exit();
|
|
return ret;
|
|
}
|
|
|
|
module_init(drm_core_init);
|
|
module_exit(drm_core_exit);
|