linux/drivers/hv/mshv_synic.c
Nuno Das Neves 621191d709 Drivers: hv: Introduce mshv_root module to expose /dev/mshv to VMMs
Provide a set of IOCTLs for creating and managing child partitions when
running as root partition on Hyper-V. The new driver is enabled via
CONFIG_MSHV_ROOT.

A brief overview of the interface:

MSHV_CREATE_PARTITION is the entry point, returning a file descriptor
representing a child partition. IOCTLs on this fd can be used to map
memory, create VPs, etc.

Creating a VP returns another file descriptor representing that VP which
in turn has another set of corresponding IOCTLs for running the VP,
getting/setting state, etc.

MSHV_ROOT_HVCALL is a generic "passthrough" hypercall IOCTL which can be
used for a number of partition or VP hypercalls. This is for hypercalls
that do not affect any state in the kernel driver, such as getting and
setting VP registers and partition properties, translating addresses,
etc. It is "passthrough" because the binary input and output for the
hypercall is only interpreted by the VMM - the kernel driver does
nothing but insert the VP and partition id where necessary (which are
always in the same place), and execute the hypercall.

Co-developed-by: Anirudh Rayabharam <anrayabh@linux.microsoft.com>
Signed-off-by: Anirudh Rayabharam <anrayabh@linux.microsoft.com>
Co-developed-by: Jinank Jain <jinankjain@microsoft.com>
Signed-off-by: Jinank Jain <jinankjain@microsoft.com>
Co-developed-by: Mukesh Rathor <mrathor@linux.microsoft.com>
Signed-off-by: Mukesh Rathor <mrathor@linux.microsoft.com>
Co-developed-by: Muminul Islam <muislam@microsoft.com>
Signed-off-by: Muminul Islam <muislam@microsoft.com>
Co-developed-by: Praveen K Paladugu <prapal@linux.microsoft.com>
Signed-off-by: Praveen K Paladugu <prapal@linux.microsoft.com>
Co-developed-by: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Signed-off-by: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Co-developed-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Reviewed-by: Roman Kisel <romank@linux.microsoft.com>
Link: https://lore.kernel.org/r/1741980536-3865-11-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1741980536-3865-11-git-send-email-nunodasneves@linux.microsoft.com>
2025-03-21 18:24:22 +00:00

666 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2023, Microsoft Corporation.
*
* mshv_root module's main interrupt handler and associated functionality.
*
* Authors: Microsoft Linux virtualization team
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/random.h>
#include <asm/mshyperv.h>
#include "mshv_eventfd.h"
#include "mshv.h"
static u32 synic_event_ring_get_queued_port(u32 sint_index)
{
struct hv_synic_event_ring_page **event_ring_page;
volatile struct hv_synic_event_ring *ring;
struct hv_synic_pages *spages;
u8 **synic_eventring_tail;
u32 message;
u8 tail;
spages = this_cpu_ptr(mshv_root.synic_pages);
event_ring_page = &spages->synic_event_ring_page;
synic_eventring_tail = (u8 **)this_cpu_ptr(hv_synic_eventring_tail);
if (unlikely(!*synic_eventring_tail)) {
pr_debug("Missing synic event ring tail!\n");
return 0;
}
tail = (*synic_eventring_tail)[sint_index];
if (unlikely(!*event_ring_page)) {
pr_debug("Missing synic event ring page!\n");
return 0;
}
ring = &(*event_ring_page)->sint_event_ring[sint_index];
/*
* Get the message.
*/
message = ring->data[tail];
if (!message) {
if (ring->ring_full) {
/*
* Ring is marked full, but we would have consumed all
* the messages. Notify the hypervisor that ring is now
* empty and check again.
*/
ring->ring_full = 0;
hv_call_notify_port_ring_empty(sint_index);
message = ring->data[tail];
}
if (!message) {
ring->signal_masked = 0;
/*
* Unmask the signal and sync with hypervisor
* before one last check for any message.
*/
mb();
message = ring->data[tail];
/*
* Ok, lets bail out.
*/
if (!message)
return 0;
}
ring->signal_masked = 1;
}
/*
* Clear the message in the ring buffer.
*/
ring->data[tail] = 0;
if (++tail == HV_SYNIC_EVENT_RING_MESSAGE_COUNT)
tail = 0;
(*synic_eventring_tail)[sint_index] = tail;
return message;
}
static bool
mshv_doorbell_isr(struct hv_message *msg)
{
struct hv_notification_message_payload *notification;
u32 port;
if (msg->header.message_type != HVMSG_SYNIC_SINT_INTERCEPT)
return false;
notification = (struct hv_notification_message_payload *)msg->u.payload;
if (notification->sint_index != HV_SYNIC_DOORBELL_SINT_INDEX)
return false;
while ((port = synic_event_ring_get_queued_port(HV_SYNIC_DOORBELL_SINT_INDEX))) {
struct port_table_info ptinfo = { 0 };
if (mshv_portid_lookup(port, &ptinfo)) {
pr_debug("Failed to get port info from port_table!\n");
continue;
}
if (ptinfo.hv_port_type != HV_PORT_TYPE_DOORBELL) {
pr_debug("Not a doorbell port!, port: %d, port_type: %d\n",
port, ptinfo.hv_port_type);
continue;
}
/* Invoke the callback */
ptinfo.hv_port_doorbell.doorbell_cb(port,
ptinfo.hv_port_doorbell.data);
}
return true;
}
static bool mshv_async_call_completion_isr(struct hv_message *msg)
{
bool handled = false;
struct hv_async_completion_message_payload *async_msg;
struct mshv_partition *partition;
u64 partition_id;
if (msg->header.message_type != HVMSG_ASYNC_CALL_COMPLETION)
goto out;
async_msg =
(struct hv_async_completion_message_payload *)msg->u.payload;
partition_id = async_msg->partition_id;
/*
* Hold this lock for the rest of the isr, because the partition could
* be released anytime.
* e.g. the MSHV_RUN_VP thread could wake on another cpu; it could
* release the partition unless we hold this!
*/
rcu_read_lock();
partition = mshv_partition_find(partition_id);
if (unlikely(!partition)) {
pr_debug("failed to find partition %llu\n", partition_id);
goto unlock_out;
}
partition->async_hypercall_status = async_msg->status;
complete(&partition->async_hypercall);
handled = true;
unlock_out:
rcu_read_unlock();
out:
return handled;
}
static void kick_vp(struct mshv_vp *vp)
{
atomic64_inc(&vp->run.vp_signaled_count);
vp->run.kicked_by_hv = 1;
wake_up(&vp->run.vp_suspend_queue);
}
static void
handle_bitset_message(const struct hv_vp_signal_bitset_scheduler_message *msg)
{
int bank_idx, vps_signaled = 0, bank_mask_size;
struct mshv_partition *partition;
const struct hv_vpset *vpset;
const u64 *bank_contents;
u64 partition_id = msg->partition_id;
if (msg->vp_bitset.bitset.format != HV_GENERIC_SET_SPARSE_4K) {
pr_debug("scheduler message format is not HV_GENERIC_SET_SPARSE_4K");
return;
}
if (msg->vp_count == 0) {
pr_debug("scheduler message with no VP specified");
return;
}
rcu_read_lock();
partition = mshv_partition_find(partition_id);
if (unlikely(!partition)) {
pr_debug("failed to find partition %llu\n", partition_id);
goto unlock_out;
}
vpset = &msg->vp_bitset.bitset;
bank_idx = -1;
bank_contents = vpset->bank_contents;
bank_mask_size = sizeof(vpset->valid_bank_mask) * BITS_PER_BYTE;
while (true) {
int vp_bank_idx = -1;
int vp_bank_size = sizeof(*bank_contents) * BITS_PER_BYTE;
int vp_index;
bank_idx = find_next_bit((unsigned long *)&vpset->valid_bank_mask,
bank_mask_size, bank_idx + 1);
if (bank_idx == bank_mask_size)
break;
while (true) {
struct mshv_vp *vp;
vp_bank_idx = find_next_bit((unsigned long *)bank_contents,
vp_bank_size, vp_bank_idx + 1);
if (vp_bank_idx == vp_bank_size)
break;
vp_index = (bank_idx * vp_bank_size) + vp_bank_idx;
/* This shouldn't happen, but just in case. */
if (unlikely(vp_index >= MSHV_MAX_VPS)) {
pr_debug("VP index %u out of bounds\n",
vp_index);
goto unlock_out;
}
vp = partition->pt_vp_array[vp_index];
if (unlikely(!vp)) {
pr_debug("failed to find VP %u\n", vp_index);
goto unlock_out;
}
kick_vp(vp);
vps_signaled++;
}
bank_contents++;
}
unlock_out:
rcu_read_unlock();
if (vps_signaled != msg->vp_count)
pr_debug("asked to signal %u VPs but only did %u\n",
msg->vp_count, vps_signaled);
}
static void
handle_pair_message(const struct hv_vp_signal_pair_scheduler_message *msg)
{
struct mshv_partition *partition = NULL;
struct mshv_vp *vp;
int idx;
rcu_read_lock();
for (idx = 0; idx < msg->vp_count; idx++) {
u64 partition_id = msg->partition_ids[idx];
u32 vp_index = msg->vp_indexes[idx];
if (idx == 0 || partition->pt_id != partition_id) {
partition = mshv_partition_find(partition_id);
if (unlikely(!partition)) {
pr_debug("failed to find partition %llu\n",
partition_id);
break;
}
}
/* This shouldn't happen, but just in case. */
if (unlikely(vp_index >= MSHV_MAX_VPS)) {
pr_debug("VP index %u out of bounds\n", vp_index);
break;
}
vp = partition->pt_vp_array[vp_index];
if (!vp) {
pr_debug("failed to find VP %u\n", vp_index);
break;
}
kick_vp(vp);
}
rcu_read_unlock();
}
static bool
mshv_scheduler_isr(struct hv_message *msg)
{
if (msg->header.message_type != HVMSG_SCHEDULER_VP_SIGNAL_BITSET &&
msg->header.message_type != HVMSG_SCHEDULER_VP_SIGNAL_PAIR)
return false;
if (msg->header.message_type == HVMSG_SCHEDULER_VP_SIGNAL_BITSET)
handle_bitset_message((struct hv_vp_signal_bitset_scheduler_message *)
msg->u.payload);
else
handle_pair_message((struct hv_vp_signal_pair_scheduler_message *)
msg->u.payload);
return true;
}
static bool
mshv_intercept_isr(struct hv_message *msg)
{
struct mshv_partition *partition;
bool handled = false;
struct mshv_vp *vp;
u64 partition_id;
u32 vp_index;
partition_id = msg->header.sender;
rcu_read_lock();
partition = mshv_partition_find(partition_id);
if (unlikely(!partition)) {
pr_debug("failed to find partition %llu\n",
partition_id);
goto unlock_out;
}
if (msg->header.message_type == HVMSG_X64_APIC_EOI) {
/*
* Check if this gsi is registered in the
* ack_notifier list and invoke the callback
* if registered.
*/
/*
* If there is a notifier, the ack callback is supposed
* to handle the VMEXIT. So we need not pass this message
* to vcpu thread.
*/
struct hv_x64_apic_eoi_message *eoi_msg =
(struct hv_x64_apic_eoi_message *)&msg->u.payload[0];
if (mshv_notify_acked_gsi(partition, eoi_msg->interrupt_vector)) {
handled = true;
goto unlock_out;
}
}
/*
* We should get an opaque intercept message here for all intercept
* messages, since we're using the mapped VP intercept message page.
*
* The intercept message will have been placed in intercept message
* page at this point.
*
* Make sure the message type matches our expectation.
*/
if (msg->header.message_type != HVMSG_OPAQUE_INTERCEPT) {
pr_debug("wrong message type %d", msg->header.message_type);
goto unlock_out;
}
/*
* Since we directly index the vp, and it has to exist for us to be here
* (because the vp is only deleted when the partition is), no additional
* locking is needed here
*/
vp_index =
((struct hv_opaque_intercept_message *)msg->u.payload)->vp_index;
vp = partition->pt_vp_array[vp_index];
if (unlikely(!vp)) {
pr_debug("failed to find VP %u\n", vp_index);
goto unlock_out;
}
kick_vp(vp);
handled = true;
unlock_out:
rcu_read_unlock();
return handled;
}
void mshv_isr(void)
{
struct hv_synic_pages *spages = this_cpu_ptr(mshv_root.synic_pages);
struct hv_message_page **msg_page = &spages->synic_message_page;
struct hv_message *msg;
bool handled;
if (unlikely(!(*msg_page))) {
pr_debug("Missing synic page!\n");
return;
}
msg = &((*msg_page)->sint_message[HV_SYNIC_INTERCEPTION_SINT_INDEX]);
/*
* If the type isn't set, there isn't really a message;
* it may be some other hyperv interrupt
*/
if (msg->header.message_type == HVMSG_NONE)
return;
handled = mshv_doorbell_isr(msg);
if (!handled)
handled = mshv_scheduler_isr(msg);
if (!handled)
handled = mshv_async_call_completion_isr(msg);
if (!handled)
handled = mshv_intercept_isr(msg);
if (handled) {
/*
* Acknowledge message with hypervisor if another message is
* pending.
*/
msg->header.message_type = HVMSG_NONE;
/*
* Ensure the write is complete so the hypervisor will deliver
* the next message if available.
*/
mb();
if (msg->header.message_flags.msg_pending)
hv_set_non_nested_msr(HV_MSR_EOM, 0);
#ifdef HYPERVISOR_CALLBACK_VECTOR
add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR);
#endif
} else {
pr_warn_once("%s: unknown message type 0x%x\n", __func__,
msg->header.message_type);
}
}
int mshv_synic_init(unsigned int cpu)
{
union hv_synic_simp simp;
union hv_synic_siefp siefp;
union hv_synic_sirbp sirbp;
#ifdef HYPERVISOR_CALLBACK_VECTOR
union hv_synic_sint sint;
#endif
union hv_synic_scontrol sctrl;
struct hv_synic_pages *spages = this_cpu_ptr(mshv_root.synic_pages);
struct hv_message_page **msg_page = &spages->synic_message_page;
struct hv_synic_event_flags_page **event_flags_page =
&spages->synic_event_flags_page;
struct hv_synic_event_ring_page **event_ring_page =
&spages->synic_event_ring_page;
/* Setup the Synic's message page */
simp.as_uint64 = hv_get_non_nested_msr(HV_MSR_SIMP);
simp.simp_enabled = true;
*msg_page = memremap(simp.base_simp_gpa << HV_HYP_PAGE_SHIFT,
HV_HYP_PAGE_SIZE,
MEMREMAP_WB);
if (!(*msg_page))
return -EFAULT;
hv_set_non_nested_msr(HV_MSR_SIMP, simp.as_uint64);
/* Setup the Synic's event flags page */
siefp.as_uint64 = hv_get_non_nested_msr(HV_MSR_SIEFP);
siefp.siefp_enabled = true;
*event_flags_page = memremap(siefp.base_siefp_gpa << PAGE_SHIFT,
PAGE_SIZE, MEMREMAP_WB);
if (!(*event_flags_page))
goto cleanup;
hv_set_non_nested_msr(HV_MSR_SIEFP, siefp.as_uint64);
/* Setup the Synic's event ring page */
sirbp.as_uint64 = hv_get_non_nested_msr(HV_MSR_SIRBP);
sirbp.sirbp_enabled = true;
*event_ring_page = memremap(sirbp.base_sirbp_gpa << PAGE_SHIFT,
PAGE_SIZE, MEMREMAP_WB);
if (!(*event_ring_page))
goto cleanup;
hv_set_non_nested_msr(HV_MSR_SIRBP, sirbp.as_uint64);
#ifdef HYPERVISOR_CALLBACK_VECTOR
/* Enable intercepts */
sint.as_uint64 = 0;
sint.vector = HYPERVISOR_CALLBACK_VECTOR;
sint.masked = false;
sint.auto_eoi = hv_recommend_using_aeoi();
hv_set_non_nested_msr(HV_MSR_SINT0 + HV_SYNIC_INTERCEPTION_SINT_INDEX,
sint.as_uint64);
/* Doorbell SINT */
sint.as_uint64 = 0;
sint.vector = HYPERVISOR_CALLBACK_VECTOR;
sint.masked = false;
sint.as_intercept = 1;
sint.auto_eoi = hv_recommend_using_aeoi();
hv_set_non_nested_msr(HV_MSR_SINT0 + HV_SYNIC_DOORBELL_SINT_INDEX,
sint.as_uint64);
#endif
/* Enable global synic bit */
sctrl.as_uint64 = hv_get_non_nested_msr(HV_MSR_SCONTROL);
sctrl.enable = 1;
hv_set_non_nested_msr(HV_MSR_SCONTROL, sctrl.as_uint64);
return 0;
cleanup:
if (*event_ring_page) {
sirbp.sirbp_enabled = false;
hv_set_non_nested_msr(HV_MSR_SIRBP, sirbp.as_uint64);
memunmap(*event_ring_page);
}
if (*event_flags_page) {
siefp.siefp_enabled = false;
hv_set_non_nested_msr(HV_MSR_SIEFP, siefp.as_uint64);
memunmap(*event_flags_page);
}
if (*msg_page) {
simp.simp_enabled = false;
hv_set_non_nested_msr(HV_MSR_SIMP, simp.as_uint64);
memunmap(*msg_page);
}
return -EFAULT;
}
int mshv_synic_cleanup(unsigned int cpu)
{
union hv_synic_sint sint;
union hv_synic_simp simp;
union hv_synic_siefp siefp;
union hv_synic_sirbp sirbp;
union hv_synic_scontrol sctrl;
struct hv_synic_pages *spages = this_cpu_ptr(mshv_root.synic_pages);
struct hv_message_page **msg_page = &spages->synic_message_page;
struct hv_synic_event_flags_page **event_flags_page =
&spages->synic_event_flags_page;
struct hv_synic_event_ring_page **event_ring_page =
&spages->synic_event_ring_page;
/* Disable the interrupt */
sint.as_uint64 = hv_get_non_nested_msr(HV_MSR_SINT0 + HV_SYNIC_INTERCEPTION_SINT_INDEX);
sint.masked = true;
hv_set_non_nested_msr(HV_MSR_SINT0 + HV_SYNIC_INTERCEPTION_SINT_INDEX,
sint.as_uint64);
/* Disable Doorbell SINT */
sint.as_uint64 = hv_get_non_nested_msr(HV_MSR_SINT0 + HV_SYNIC_DOORBELL_SINT_INDEX);
sint.masked = true;
hv_set_non_nested_msr(HV_MSR_SINT0 + HV_SYNIC_DOORBELL_SINT_INDEX,
sint.as_uint64);
/* Disable Synic's event ring page */
sirbp.as_uint64 = hv_get_non_nested_msr(HV_MSR_SIRBP);
sirbp.sirbp_enabled = false;
hv_set_non_nested_msr(HV_MSR_SIRBP, sirbp.as_uint64);
memunmap(*event_ring_page);
/* Disable Synic's event flags page */
siefp.as_uint64 = hv_get_non_nested_msr(HV_MSR_SIEFP);
siefp.siefp_enabled = false;
hv_set_non_nested_msr(HV_MSR_SIEFP, siefp.as_uint64);
memunmap(*event_flags_page);
/* Disable Synic's message page */
simp.as_uint64 = hv_get_non_nested_msr(HV_MSR_SIMP);
simp.simp_enabled = false;
hv_set_non_nested_msr(HV_MSR_SIMP, simp.as_uint64);
memunmap(*msg_page);
/* Disable global synic bit */
sctrl.as_uint64 = hv_get_non_nested_msr(HV_MSR_SCONTROL);
sctrl.enable = 0;
hv_set_non_nested_msr(HV_MSR_SCONTROL, sctrl.as_uint64);
return 0;
}
int
mshv_register_doorbell(u64 partition_id, doorbell_cb_t doorbell_cb, void *data,
u64 gpa, u64 val, u64 flags)
{
struct hv_connection_info connection_info = { 0 };
union hv_connection_id connection_id = { 0 };
struct port_table_info *port_table_info;
struct hv_port_info port_info = { 0 };
union hv_port_id port_id = { 0 };
int ret;
port_table_info = kmalloc(sizeof(*port_table_info), GFP_KERNEL);
if (!port_table_info)
return -ENOMEM;
port_table_info->hv_port_type = HV_PORT_TYPE_DOORBELL;
port_table_info->hv_port_doorbell.doorbell_cb = doorbell_cb;
port_table_info->hv_port_doorbell.data = data;
ret = mshv_portid_alloc(port_table_info);
if (ret < 0) {
kfree(port_table_info);
return ret;
}
port_id.u.id = ret;
port_info.port_type = HV_PORT_TYPE_DOORBELL;
port_info.doorbell_port_info.target_sint = HV_SYNIC_DOORBELL_SINT_INDEX;
port_info.doorbell_port_info.target_vp = HV_ANY_VP;
ret = hv_call_create_port(hv_current_partition_id, port_id, partition_id,
&port_info,
0, 0, NUMA_NO_NODE);
if (ret < 0) {
mshv_portid_free(port_id.u.id);
return ret;
}
connection_id.u.id = port_id.u.id;
connection_info.port_type = HV_PORT_TYPE_DOORBELL;
connection_info.doorbell_connection_info.gpa = gpa;
connection_info.doorbell_connection_info.trigger_value = val;
connection_info.doorbell_connection_info.flags = flags;
ret = hv_call_connect_port(hv_current_partition_id, port_id, partition_id,
connection_id, &connection_info, 0, NUMA_NO_NODE);
if (ret < 0) {
hv_call_delete_port(hv_current_partition_id, port_id);
mshv_portid_free(port_id.u.id);
return ret;
}
// lets use the port_id as the doorbell_id
return port_id.u.id;
}
void
mshv_unregister_doorbell(u64 partition_id, int doorbell_portid)
{
union hv_port_id port_id = { 0 };
union hv_connection_id connection_id = { 0 };
connection_id.u.id = doorbell_portid;
hv_call_disconnect_port(partition_id, connection_id);
port_id.u.id = doorbell_portid;
hv_call_delete_port(hv_current_partition_id, port_id);
mshv_portid_free(doorbell_portid);
}