1
0
mirror of https://github.com/torvalds/linux.git synced 2025-04-11 04:53:02 +00:00
linux/drivers/misc/pci_endpoint_test.c
Bjorn Helgaas ba4751ae1a Merge branch 'pci/controller/dwc'
- Move struct dwc_pcie_vsec_id to include/linux/pcie-dwc.h, where it can be
  shared by debugfs, perf, sysfs, etc (Manivannan Sadhasivam)

- Add dw_pcie_find_vsec_capability() to locate Vendor Specific Extended
  Capabilities (Shradha Todi)

- Add debugfs-based Silicon Debug, Error Injection, Statistical Counter
  support for DWC (Shradha Todi)

- Add debugfs property to expose LTSSM status of DWC PCIe link (Hans Zhang)

- Add Rockchip Vendor ID and Vendor Specific ID of RAS DES Capability so
  the DWC debugfs features work for Rockchip as well (Niklas Cassel)

* pci/controller/dwc:
  PCI: dw-rockchip: Hide broken ATS capability for RK3588 running in EP mode
  PCI: dwc: ep: Add dw_pcie_ep_hide_ext_capability()
  PCI: dwc: ep: Return -ENOMEM for allocation failures
  PCI: dwc: Add Rockchip to the RAS DES allowed vendor list
  PCI: Add Rockchip Vendor ID
  PCI: dwc: Add debugfs property to provide LTSSM status of the PCIe link
  PCI: dwc: Add debugfs based Statistical Counter support for DWC
  PCI: dwc: Add debugfs based Error Injection support for DWC
  PCI: dwc: Add debugfs based Silicon Debug support for DWC
  PCI: dwc: Add helper to find the Vendor Specific Extended Capability (VSEC)
  perf/dwc_pcie: Move common DWC struct definitions to 'pcie-dwc.h'
2025-03-27 13:14:49 -05:00

1174 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Host side test driver to test endpoint functionality
*
* Copyright (C) 2017 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
#include <linux/crc32.h>
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/pci_regs.h>
#include <uapi/linux/pcitest.h>
#define DRV_MODULE_NAME "pci-endpoint-test"
#define PCI_ENDPOINT_TEST_MAGIC 0x0
#define PCI_ENDPOINT_TEST_COMMAND 0x4
#define COMMAND_RAISE_INTX_IRQ BIT(0)
#define COMMAND_RAISE_MSI_IRQ BIT(1)
#define COMMAND_RAISE_MSIX_IRQ BIT(2)
#define COMMAND_READ BIT(3)
#define COMMAND_WRITE BIT(4)
#define COMMAND_COPY BIT(5)
#define PCI_ENDPOINT_TEST_STATUS 0x8
#define STATUS_READ_SUCCESS BIT(0)
#define STATUS_READ_FAIL BIT(1)
#define STATUS_WRITE_SUCCESS BIT(2)
#define STATUS_WRITE_FAIL BIT(3)
#define STATUS_COPY_SUCCESS BIT(4)
#define STATUS_COPY_FAIL BIT(5)
#define STATUS_IRQ_RAISED BIT(6)
#define STATUS_SRC_ADDR_INVALID BIT(7)
#define STATUS_DST_ADDR_INVALID BIT(8)
#define PCI_ENDPOINT_TEST_LOWER_SRC_ADDR 0x0c
#define PCI_ENDPOINT_TEST_UPPER_SRC_ADDR 0x10
#define PCI_ENDPOINT_TEST_LOWER_DST_ADDR 0x14
#define PCI_ENDPOINT_TEST_UPPER_DST_ADDR 0x18
#define PCI_ENDPOINT_TEST_SIZE 0x1c
#define PCI_ENDPOINT_TEST_CHECKSUM 0x20
#define PCI_ENDPOINT_TEST_IRQ_TYPE 0x24
#define PCI_ENDPOINT_TEST_IRQ_NUMBER 0x28
#define PCI_ENDPOINT_TEST_FLAGS 0x2c
#define FLAG_USE_DMA BIT(0)
#define PCI_ENDPOINT_TEST_CAPS 0x30
#define CAP_UNALIGNED_ACCESS BIT(0)
#define CAP_MSI BIT(1)
#define CAP_MSIX BIT(2)
#define CAP_INTX BIT(3)
#define PCI_DEVICE_ID_TI_AM654 0xb00c
#define PCI_DEVICE_ID_TI_J7200 0xb00f
#define PCI_DEVICE_ID_TI_AM64 0xb010
#define PCI_DEVICE_ID_TI_J721S2 0xb013
#define PCI_DEVICE_ID_LS1088A 0x80c0
#define PCI_DEVICE_ID_IMX8 0x0808
#define is_am654_pci_dev(pdev) \
((pdev)->device == PCI_DEVICE_ID_TI_AM654)
#define PCI_DEVICE_ID_RENESAS_R8A774A1 0x0028
#define PCI_DEVICE_ID_RENESAS_R8A774B1 0x002b
#define PCI_DEVICE_ID_RENESAS_R8A774C0 0x002d
#define PCI_DEVICE_ID_RENESAS_R8A774E1 0x0025
#define PCI_DEVICE_ID_RENESAS_R8A779F0 0x0031
#define PCI_DEVICE_ID_ROCKCHIP_RK3588 0x3588
static DEFINE_IDA(pci_endpoint_test_ida);
#define to_endpoint_test(priv) container_of((priv), struct pci_endpoint_test, \
miscdev)
enum pci_barno {
BAR_0,
BAR_1,
BAR_2,
BAR_3,
BAR_4,
BAR_5,
};
struct pci_endpoint_test {
struct pci_dev *pdev;
void __iomem *base;
void __iomem *bar[PCI_STD_NUM_BARS];
struct completion irq_raised;
int last_irq;
int num_irqs;
int irq_type;
/* mutex to protect the ioctls */
struct mutex mutex;
struct miscdevice miscdev;
enum pci_barno test_reg_bar;
size_t alignment;
u32 ep_caps;
const char *name;
};
struct pci_endpoint_test_data {
enum pci_barno test_reg_bar;
size_t alignment;
int irq_type;
};
static inline u32 pci_endpoint_test_readl(struct pci_endpoint_test *test,
u32 offset)
{
return readl(test->base + offset);
}
static inline void pci_endpoint_test_writel(struct pci_endpoint_test *test,
u32 offset, u32 value)
{
writel(value, test->base + offset);
}
static irqreturn_t pci_endpoint_test_irqhandler(int irq, void *dev_id)
{
struct pci_endpoint_test *test = dev_id;
u32 reg;
reg = pci_endpoint_test_readl(test, PCI_ENDPOINT_TEST_STATUS);
if (reg & STATUS_IRQ_RAISED) {
test->last_irq = irq;
complete(&test->irq_raised);
}
return IRQ_HANDLED;
}
static void pci_endpoint_test_free_irq_vectors(struct pci_endpoint_test *test)
{
struct pci_dev *pdev = test->pdev;
pci_free_irq_vectors(pdev);
test->irq_type = PCITEST_IRQ_TYPE_UNDEFINED;
}
static int pci_endpoint_test_alloc_irq_vectors(struct pci_endpoint_test *test,
int type)
{
int irq;
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
switch (type) {
case PCITEST_IRQ_TYPE_INTX:
irq = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_INTX);
if (irq < 0) {
dev_err(dev, "Failed to get Legacy interrupt\n");
return irq;
}
break;
case PCITEST_IRQ_TYPE_MSI:
irq = pci_alloc_irq_vectors(pdev, 1, 32, PCI_IRQ_MSI);
if (irq < 0) {
dev_err(dev, "Failed to get MSI interrupts\n");
return irq;
}
break;
case PCITEST_IRQ_TYPE_MSIX:
irq = pci_alloc_irq_vectors(pdev, 1, 2048, PCI_IRQ_MSIX);
if (irq < 0) {
dev_err(dev, "Failed to get MSI-X interrupts\n");
return irq;
}
break;
default:
dev_err(dev, "Invalid IRQ type selected\n");
return -EINVAL;
}
test->irq_type = type;
test->num_irqs = irq;
return 0;
}
static void pci_endpoint_test_release_irq(struct pci_endpoint_test *test)
{
int i;
struct pci_dev *pdev = test->pdev;
for (i = 0; i < test->num_irqs; i++)
free_irq(pci_irq_vector(pdev, i), test);
test->num_irqs = 0;
}
static int pci_endpoint_test_request_irq(struct pci_endpoint_test *test)
{
int i;
int ret;
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
for (i = 0; i < test->num_irqs; i++) {
ret = request_irq(pci_irq_vector(pdev, i),
pci_endpoint_test_irqhandler, IRQF_SHARED,
test->name, test);
if (ret)
goto fail;
}
return 0;
fail:
switch (test->irq_type) {
case PCITEST_IRQ_TYPE_INTX:
dev_err(dev, "Failed to request IRQ %d for Legacy\n",
pci_irq_vector(pdev, i));
break;
case PCITEST_IRQ_TYPE_MSI:
dev_err(dev, "Failed to request IRQ %d for MSI %d\n",
pci_irq_vector(pdev, i),
i + 1);
break;
case PCITEST_IRQ_TYPE_MSIX:
dev_err(dev, "Failed to request IRQ %d for MSI-X %d\n",
pci_irq_vector(pdev, i),
i + 1);
break;
}
test->num_irqs = i;
pci_endpoint_test_release_irq(test);
return ret;
}
static const u32 bar_test_pattern[] = {
0xA0A0A0A0,
0xA1A1A1A1,
0xA2A2A2A2,
0xA3A3A3A3,
0xA4A4A4A4,
0xA5A5A5A5,
};
static int pci_endpoint_test_bar_memcmp(struct pci_endpoint_test *test,
enum pci_barno barno,
resource_size_t offset, void *write_buf,
void *read_buf, int size)
{
memset(write_buf, bar_test_pattern[barno], size);
memcpy_toio(test->bar[barno] + offset, write_buf, size);
memcpy_fromio(read_buf, test->bar[barno] + offset, size);
return memcmp(write_buf, read_buf, size);
}
static int pci_endpoint_test_bar(struct pci_endpoint_test *test,
enum pci_barno barno)
{
resource_size_t bar_size, offset = 0;
void *write_buf __free(kfree) = NULL;
void *read_buf __free(kfree) = NULL;
struct pci_dev *pdev = test->pdev;
int buf_size;
bar_size = pci_resource_len(pdev, barno);
if (!bar_size)
return -ENODATA;
if (!test->bar[barno])
return -ENOMEM;
if (barno == test->test_reg_bar)
bar_size = 0x4;
/*
* Allocate a buffer of max size 1MB, and reuse that buffer while
* iterating over the whole BAR size (which might be much larger).
*/
buf_size = min(SZ_1M, bar_size);
write_buf = kmalloc(buf_size, GFP_KERNEL);
if (!write_buf)
return -ENOMEM;
read_buf = kmalloc(buf_size, GFP_KERNEL);
if (!read_buf)
return -ENOMEM;
while (offset < bar_size) {
if (pci_endpoint_test_bar_memcmp(test, barno, offset, write_buf,
read_buf, buf_size))
return -EIO;
offset += buf_size;
}
return 0;
}
static u32 bar_test_pattern_with_offset(enum pci_barno barno, int offset)
{
u32 val;
/* Keep the BAR pattern in the top byte. */
val = bar_test_pattern[barno] & 0xff000000;
/* Store the (partial) offset in the remaining bytes. */
val |= offset & 0x00ffffff;
return val;
}
static void pci_endpoint_test_bars_write_bar(struct pci_endpoint_test *test,
enum pci_barno barno)
{
struct pci_dev *pdev = test->pdev;
int j, size;
size = pci_resource_len(pdev, barno);
if (barno == test->test_reg_bar)
size = 0x4;
for (j = 0; j < size; j += 4)
writel_relaxed(bar_test_pattern_with_offset(barno, j),
test->bar[barno] + j);
}
static int pci_endpoint_test_bars_read_bar(struct pci_endpoint_test *test,
enum pci_barno barno)
{
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
int j, size;
u32 val;
size = pci_resource_len(pdev, barno);
if (barno == test->test_reg_bar)
size = 0x4;
for (j = 0; j < size; j += 4) {
u32 expected = bar_test_pattern_with_offset(barno, j);
val = readl_relaxed(test->bar[barno] + j);
if (val != expected) {
dev_err(dev,
"BAR%d incorrect data at offset: %#x, got: %#x expected: %#x\n",
barno, j, val, expected);
return -EIO;
}
}
return 0;
}
static int pci_endpoint_test_bars(struct pci_endpoint_test *test)
{
enum pci_barno bar;
int ret;
/* Write all BARs in order (without reading). */
for (bar = 0; bar < PCI_STD_NUM_BARS; bar++)
if (test->bar[bar])
pci_endpoint_test_bars_write_bar(test, bar);
/*
* Read all BARs in order (without writing).
* If there is an address translation issue on the EP, writing one BAR
* might have overwritten another BAR. Ensure that this is not the case.
* (Reading back the BAR directly after writing can not detect this.)
*/
for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
if (test->bar[bar]) {
ret = pci_endpoint_test_bars_read_bar(test, bar);
if (ret)
return ret;
}
}
return 0;
}
static int pci_endpoint_test_intx_irq(struct pci_endpoint_test *test)
{
u32 val;
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_TYPE,
PCITEST_IRQ_TYPE_INTX);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_NUMBER, 0);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_COMMAND,
COMMAND_RAISE_INTX_IRQ);
val = wait_for_completion_timeout(&test->irq_raised,
msecs_to_jiffies(1000));
if (!val)
return -ETIMEDOUT;
return 0;
}
static int pci_endpoint_test_msi_irq(struct pci_endpoint_test *test,
u16 msi_num, bool msix)
{
struct pci_dev *pdev = test->pdev;
u32 val;
int ret;
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_TYPE,
msix ? PCITEST_IRQ_TYPE_MSIX :
PCITEST_IRQ_TYPE_MSI);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_NUMBER, msi_num);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_COMMAND,
msix ? COMMAND_RAISE_MSIX_IRQ :
COMMAND_RAISE_MSI_IRQ);
val = wait_for_completion_timeout(&test->irq_raised,
msecs_to_jiffies(1000));
if (!val)
return -ETIMEDOUT;
ret = pci_irq_vector(pdev, msi_num - 1);
if (ret < 0)
return ret;
if (ret != test->last_irq)
return -EIO;
return 0;
}
static int pci_endpoint_test_validate_xfer_params(struct device *dev,
struct pci_endpoint_test_xfer_param *param, size_t alignment)
{
if (!param->size) {
dev_dbg(dev, "Data size is zero\n");
return -EINVAL;
}
if (param->size > SIZE_MAX - alignment) {
dev_dbg(dev, "Maximum transfer data size exceeded\n");
return -EINVAL;
}
return 0;
}
static int pci_endpoint_test_copy(struct pci_endpoint_test *test,
unsigned long arg)
{
struct pci_endpoint_test_xfer_param param;
void *src_addr;
void *dst_addr;
u32 flags = 0;
bool use_dma;
size_t size;
dma_addr_t src_phys_addr;
dma_addr_t dst_phys_addr;
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
void *orig_src_addr;
dma_addr_t orig_src_phys_addr;
void *orig_dst_addr;
dma_addr_t orig_dst_phys_addr;
size_t offset;
size_t alignment = test->alignment;
int irq_type = test->irq_type;
u32 src_crc32;
u32 dst_crc32;
int ret;
ret = copy_from_user(&param, (void __user *)arg, sizeof(param));
if (ret) {
dev_err(dev, "Failed to get transfer param\n");
return -EFAULT;
}
ret = pci_endpoint_test_validate_xfer_params(dev, &param, alignment);
if (ret)
return ret;
size = param.size;
use_dma = !!(param.flags & PCITEST_FLAGS_USE_DMA);
if (use_dma)
flags |= FLAG_USE_DMA;
if (irq_type < PCITEST_IRQ_TYPE_INTX ||
irq_type > PCITEST_IRQ_TYPE_MSIX) {
dev_err(dev, "Invalid IRQ type option\n");
return -EINVAL;
}
orig_src_addr = kzalloc(size + alignment, GFP_KERNEL);
if (!orig_src_addr) {
dev_err(dev, "Failed to allocate source buffer\n");
return -ENOMEM;
}
get_random_bytes(orig_src_addr, size + alignment);
orig_src_phys_addr = dma_map_single(dev, orig_src_addr,
size + alignment, DMA_TO_DEVICE);
ret = dma_mapping_error(dev, orig_src_phys_addr);
if (ret) {
dev_err(dev, "failed to map source buffer address\n");
goto err_src_phys_addr;
}
if (alignment && !IS_ALIGNED(orig_src_phys_addr, alignment)) {
src_phys_addr = PTR_ALIGN(orig_src_phys_addr, alignment);
offset = src_phys_addr - orig_src_phys_addr;
src_addr = orig_src_addr + offset;
} else {
src_phys_addr = orig_src_phys_addr;
src_addr = orig_src_addr;
}
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_LOWER_SRC_ADDR,
lower_32_bits(src_phys_addr));
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_UPPER_SRC_ADDR,
upper_32_bits(src_phys_addr));
src_crc32 = crc32_le(~0, src_addr, size);
orig_dst_addr = kzalloc(size + alignment, GFP_KERNEL);
if (!orig_dst_addr) {
dev_err(dev, "Failed to allocate destination address\n");
ret = -ENOMEM;
goto err_dst_addr;
}
orig_dst_phys_addr = dma_map_single(dev, orig_dst_addr,
size + alignment, DMA_FROM_DEVICE);
ret = dma_mapping_error(dev, orig_dst_phys_addr);
if (ret) {
dev_err(dev, "failed to map destination buffer address\n");
goto err_dst_phys_addr;
}
if (alignment && !IS_ALIGNED(orig_dst_phys_addr, alignment)) {
dst_phys_addr = PTR_ALIGN(orig_dst_phys_addr, alignment);
offset = dst_phys_addr - orig_dst_phys_addr;
dst_addr = orig_dst_addr + offset;
} else {
dst_phys_addr = orig_dst_phys_addr;
dst_addr = orig_dst_addr;
}
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_LOWER_DST_ADDR,
lower_32_bits(dst_phys_addr));
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_UPPER_DST_ADDR,
upper_32_bits(dst_phys_addr));
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_SIZE,
size);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_FLAGS, flags);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_TYPE, irq_type);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_NUMBER, 1);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_COMMAND,
COMMAND_COPY);
wait_for_completion(&test->irq_raised);
dma_unmap_single(dev, orig_dst_phys_addr, size + alignment,
DMA_FROM_DEVICE);
dst_crc32 = crc32_le(~0, dst_addr, size);
if (dst_crc32 != src_crc32)
ret = -EIO;
err_dst_phys_addr:
kfree(orig_dst_addr);
err_dst_addr:
dma_unmap_single(dev, orig_src_phys_addr, size + alignment,
DMA_TO_DEVICE);
err_src_phys_addr:
kfree(orig_src_addr);
return ret;
}
static int pci_endpoint_test_write(struct pci_endpoint_test *test,
unsigned long arg)
{
struct pci_endpoint_test_xfer_param param;
u32 flags = 0;
bool use_dma;
u32 reg;
void *addr;
dma_addr_t phys_addr;
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
void *orig_addr;
dma_addr_t orig_phys_addr;
size_t offset;
size_t alignment = test->alignment;
int irq_type = test->irq_type;
size_t size;
u32 crc32;
int ret;
ret = copy_from_user(&param, (void __user *)arg, sizeof(param));
if (ret) {
dev_err(dev, "Failed to get transfer param\n");
return -EFAULT;
}
ret = pci_endpoint_test_validate_xfer_params(dev, &param, alignment);
if (ret)
return ret;
size = param.size;
use_dma = !!(param.flags & PCITEST_FLAGS_USE_DMA);
if (use_dma)
flags |= FLAG_USE_DMA;
if (irq_type < PCITEST_IRQ_TYPE_INTX ||
irq_type > PCITEST_IRQ_TYPE_MSIX) {
dev_err(dev, "Invalid IRQ type option\n");
return -EINVAL;
}
orig_addr = kzalloc(size + alignment, GFP_KERNEL);
if (!orig_addr) {
dev_err(dev, "Failed to allocate address\n");
return -ENOMEM;
}
get_random_bytes(orig_addr, size + alignment);
orig_phys_addr = dma_map_single(dev, orig_addr, size + alignment,
DMA_TO_DEVICE);
ret = dma_mapping_error(dev, orig_phys_addr);
if (ret) {
dev_err(dev, "failed to map source buffer address\n");
goto err_phys_addr;
}
if (alignment && !IS_ALIGNED(orig_phys_addr, alignment)) {
phys_addr = PTR_ALIGN(orig_phys_addr, alignment);
offset = phys_addr - orig_phys_addr;
addr = orig_addr + offset;
} else {
phys_addr = orig_phys_addr;
addr = orig_addr;
}
crc32 = crc32_le(~0, addr, size);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_CHECKSUM,
crc32);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_LOWER_SRC_ADDR,
lower_32_bits(phys_addr));
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_UPPER_SRC_ADDR,
upper_32_bits(phys_addr));
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_SIZE, size);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_FLAGS, flags);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_TYPE, irq_type);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_NUMBER, 1);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_COMMAND,
COMMAND_READ);
wait_for_completion(&test->irq_raised);
reg = pci_endpoint_test_readl(test, PCI_ENDPOINT_TEST_STATUS);
if (!(reg & STATUS_READ_SUCCESS))
ret = -EIO;
dma_unmap_single(dev, orig_phys_addr, size + alignment,
DMA_TO_DEVICE);
err_phys_addr:
kfree(orig_addr);
return ret;
}
static int pci_endpoint_test_read(struct pci_endpoint_test *test,
unsigned long arg)
{
struct pci_endpoint_test_xfer_param param;
u32 flags = 0;
bool use_dma;
size_t size;
void *addr;
dma_addr_t phys_addr;
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
void *orig_addr;
dma_addr_t orig_phys_addr;
size_t offset;
size_t alignment = test->alignment;
int irq_type = test->irq_type;
u32 crc32;
int ret;
ret = copy_from_user(&param, (void __user *)arg, sizeof(param));
if (ret) {
dev_err(dev, "Failed to get transfer param\n");
return -EFAULT;
}
ret = pci_endpoint_test_validate_xfer_params(dev, &param, alignment);
if (ret)
return ret;
size = param.size;
use_dma = !!(param.flags & PCITEST_FLAGS_USE_DMA);
if (use_dma)
flags |= FLAG_USE_DMA;
if (irq_type < PCITEST_IRQ_TYPE_INTX ||
irq_type > PCITEST_IRQ_TYPE_MSIX) {
dev_err(dev, "Invalid IRQ type option\n");
return -EINVAL;
}
orig_addr = kzalloc(size + alignment, GFP_KERNEL);
if (!orig_addr) {
dev_err(dev, "Failed to allocate destination address\n");
return -ENOMEM;
}
orig_phys_addr = dma_map_single(dev, orig_addr, size + alignment,
DMA_FROM_DEVICE);
ret = dma_mapping_error(dev, orig_phys_addr);
if (ret) {
dev_err(dev, "failed to map source buffer address\n");
goto err_phys_addr;
}
if (alignment && !IS_ALIGNED(orig_phys_addr, alignment)) {
phys_addr = PTR_ALIGN(orig_phys_addr, alignment);
offset = phys_addr - orig_phys_addr;
addr = orig_addr + offset;
} else {
phys_addr = orig_phys_addr;
addr = orig_addr;
}
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_LOWER_DST_ADDR,
lower_32_bits(phys_addr));
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_UPPER_DST_ADDR,
upper_32_bits(phys_addr));
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_SIZE, size);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_FLAGS, flags);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_TYPE, irq_type);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_IRQ_NUMBER, 1);
pci_endpoint_test_writel(test, PCI_ENDPOINT_TEST_COMMAND,
COMMAND_WRITE);
wait_for_completion(&test->irq_raised);
dma_unmap_single(dev, orig_phys_addr, size + alignment,
DMA_FROM_DEVICE);
crc32 = crc32_le(~0, addr, size);
if (crc32 != pci_endpoint_test_readl(test, PCI_ENDPOINT_TEST_CHECKSUM))
ret = -EIO;
err_phys_addr:
kfree(orig_addr);
return ret;
}
static int pci_endpoint_test_clear_irq(struct pci_endpoint_test *test)
{
pci_endpoint_test_release_irq(test);
pci_endpoint_test_free_irq_vectors(test);
return 0;
}
static int pci_endpoint_test_set_irq(struct pci_endpoint_test *test,
int req_irq_type)
{
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
int ret;
if (req_irq_type < PCITEST_IRQ_TYPE_INTX ||
req_irq_type > PCITEST_IRQ_TYPE_AUTO) {
dev_err(dev, "Invalid IRQ type option\n");
return -EINVAL;
}
if (req_irq_type == PCITEST_IRQ_TYPE_AUTO) {
if (test->ep_caps & CAP_MSI)
req_irq_type = PCITEST_IRQ_TYPE_MSI;
else if (test->ep_caps & CAP_MSIX)
req_irq_type = PCITEST_IRQ_TYPE_MSIX;
else if (test->ep_caps & CAP_INTX)
req_irq_type = PCITEST_IRQ_TYPE_INTX;
else
/* fallback to MSI if no caps defined */
req_irq_type = PCITEST_IRQ_TYPE_MSI;
}
if (test->irq_type == req_irq_type)
return 0;
pci_endpoint_test_release_irq(test);
pci_endpoint_test_free_irq_vectors(test);
ret = pci_endpoint_test_alloc_irq_vectors(test, req_irq_type);
if (ret)
return ret;
ret = pci_endpoint_test_request_irq(test);
if (ret) {
pci_endpoint_test_free_irq_vectors(test);
return ret;
}
return 0;
}
static long pci_endpoint_test_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
int ret = -EINVAL;
enum pci_barno bar;
struct pci_endpoint_test *test = to_endpoint_test(file->private_data);
struct pci_dev *pdev = test->pdev;
mutex_lock(&test->mutex);
reinit_completion(&test->irq_raised);
test->last_irq = -ENODATA;
switch (cmd) {
case PCITEST_BAR:
bar = arg;
if (bar > BAR_5)
goto ret;
if (is_am654_pci_dev(pdev) && bar == BAR_0)
goto ret;
ret = pci_endpoint_test_bar(test, bar);
break;
case PCITEST_BARS:
ret = pci_endpoint_test_bars(test);
break;
case PCITEST_INTX_IRQ:
ret = pci_endpoint_test_intx_irq(test);
break;
case PCITEST_MSI:
case PCITEST_MSIX:
ret = pci_endpoint_test_msi_irq(test, arg, cmd == PCITEST_MSIX);
break;
case PCITEST_WRITE:
ret = pci_endpoint_test_write(test, arg);
break;
case PCITEST_READ:
ret = pci_endpoint_test_read(test, arg);
break;
case PCITEST_COPY:
ret = pci_endpoint_test_copy(test, arg);
break;
case PCITEST_SET_IRQTYPE:
ret = pci_endpoint_test_set_irq(test, arg);
break;
case PCITEST_GET_IRQTYPE:
ret = test->irq_type;
break;
case PCITEST_CLEAR_IRQ:
ret = pci_endpoint_test_clear_irq(test);
break;
}
ret:
mutex_unlock(&test->mutex);
return ret;
}
static const struct file_operations pci_endpoint_test_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = pci_endpoint_test_ioctl,
};
static void pci_endpoint_test_get_capabilities(struct pci_endpoint_test *test)
{
struct pci_dev *pdev = test->pdev;
struct device *dev = &pdev->dev;
test->ep_caps = pci_endpoint_test_readl(test, PCI_ENDPOINT_TEST_CAPS);
dev_dbg(dev, "PCI_ENDPOINT_TEST_CAPS: %#x\n", test->ep_caps);
/* CAP_UNALIGNED_ACCESS is set if the EP can do unaligned access */
if (test->ep_caps & CAP_UNALIGNED_ACCESS)
test->alignment = 0;
}
static int pci_endpoint_test_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int ret;
int id;
char name[29];
enum pci_barno bar;
void __iomem *base;
struct device *dev = &pdev->dev;
struct pci_endpoint_test *test;
struct pci_endpoint_test_data *data;
enum pci_barno test_reg_bar = BAR_0;
struct miscdevice *misc_device;
if (pci_is_bridge(pdev))
return -ENODEV;
test = devm_kzalloc(dev, sizeof(*test), GFP_KERNEL);
if (!test)
return -ENOMEM;
test->test_reg_bar = 0;
test->alignment = 0;
test->pdev = pdev;
test->irq_type = PCITEST_IRQ_TYPE_UNDEFINED;
data = (struct pci_endpoint_test_data *)ent->driver_data;
if (data) {
test_reg_bar = data->test_reg_bar;
test->test_reg_bar = test_reg_bar;
test->alignment = data->alignment;
test->irq_type = data->irq_type;
}
init_completion(&test->irq_raised);
mutex_init(&test->mutex);
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
ret = pci_enable_device(pdev);
if (ret) {
dev_err(dev, "Cannot enable PCI device\n");
return ret;
}
ret = pci_request_regions(pdev, DRV_MODULE_NAME);
if (ret) {
dev_err(dev, "Cannot obtain PCI resources\n");
goto err_disable_pdev;
}
pci_set_master(pdev);
ret = pci_endpoint_test_alloc_irq_vectors(test, test->irq_type);
if (ret)
goto err_disable_irq;
for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
base = pci_ioremap_bar(pdev, bar);
if (!base) {
dev_err(dev, "Failed to read BAR%d\n", bar);
WARN_ON(bar == test_reg_bar);
}
test->bar[bar] = base;
}
}
test->base = test->bar[test_reg_bar];
if (!test->base) {
ret = -ENOMEM;
dev_err(dev, "Cannot perform PCI test without BAR%d\n",
test_reg_bar);
goto err_iounmap;
}
pci_set_drvdata(pdev, test);
id = ida_alloc(&pci_endpoint_test_ida, GFP_KERNEL);
if (id < 0) {
ret = id;
dev_err(dev, "Unable to get id\n");
goto err_iounmap;
}
snprintf(name, sizeof(name), DRV_MODULE_NAME ".%d", id);
test->name = kstrdup(name, GFP_KERNEL);
if (!test->name) {
ret = -ENOMEM;
goto err_ida_remove;
}
ret = pci_endpoint_test_request_irq(test);
if (ret)
goto err_kfree_test_name;
pci_endpoint_test_get_capabilities(test);
misc_device = &test->miscdev;
misc_device->minor = MISC_DYNAMIC_MINOR;
misc_device->name = kstrdup(name, GFP_KERNEL);
if (!misc_device->name) {
ret = -ENOMEM;
goto err_release_irq;
}
misc_device->parent = &pdev->dev;
misc_device->fops = &pci_endpoint_test_fops;
ret = misc_register(misc_device);
if (ret) {
dev_err(dev, "Failed to register device\n");
goto err_kfree_name;
}
return 0;
err_kfree_name:
kfree(misc_device->name);
err_release_irq:
pci_endpoint_test_release_irq(test);
err_kfree_test_name:
kfree(test->name);
err_ida_remove:
ida_free(&pci_endpoint_test_ida, id);
err_iounmap:
for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
if (test->bar[bar])
pci_iounmap(pdev, test->bar[bar]);
}
err_disable_irq:
pci_endpoint_test_free_irq_vectors(test);
pci_release_regions(pdev);
err_disable_pdev:
pci_disable_device(pdev);
return ret;
}
static void pci_endpoint_test_remove(struct pci_dev *pdev)
{
int id;
enum pci_barno bar;
struct pci_endpoint_test *test = pci_get_drvdata(pdev);
struct miscdevice *misc_device = &test->miscdev;
if (sscanf(misc_device->name, DRV_MODULE_NAME ".%d", &id) != 1)
return;
if (id < 0)
return;
pci_endpoint_test_release_irq(test);
pci_endpoint_test_free_irq_vectors(test);
misc_deregister(&test->miscdev);
kfree(misc_device->name);
kfree(test->name);
ida_free(&pci_endpoint_test_ida, id);
for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
if (test->bar[bar])
pci_iounmap(pdev, test->bar[bar]);
}
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static const struct pci_endpoint_test_data default_data = {
.test_reg_bar = BAR_0,
.alignment = SZ_4K,
.irq_type = PCITEST_IRQ_TYPE_MSI,
};
static const struct pci_endpoint_test_data am654_data = {
.test_reg_bar = BAR_2,
.alignment = SZ_64K,
.irq_type = PCITEST_IRQ_TYPE_MSI,
};
static const struct pci_endpoint_test_data j721e_data = {
.alignment = 256,
.irq_type = PCITEST_IRQ_TYPE_MSI,
};
static const struct pci_endpoint_test_data rk3588_data = {
.alignment = SZ_64K,
.irq_type = PCITEST_IRQ_TYPE_MSI,
};
/*
* If the controller's Vendor/Device ID are programmable, you may be able to
* use one of the existing entries for testing instead of adding a new one.
*/
static const struct pci_device_id pci_endpoint_test_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_DRA74x),
.driver_data = (kernel_ulong_t)&default_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_DRA72x),
.driver_data = (kernel_ulong_t)&default_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, 0x81c0),
.driver_data = (kernel_ulong_t)&default_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_IMX8),},
{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_LS1088A),
.driver_data = (kernel_ulong_t)&default_data,
},
{ PCI_DEVICE_DATA(SYNOPSYS, EDDA, NULL) },
{ PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_AM654),
.driver_data = (kernel_ulong_t)&am654_data
},
{ PCI_DEVICE(PCI_VENDOR_ID_RENESAS, PCI_DEVICE_ID_RENESAS_R8A774A1),},
{ PCI_DEVICE(PCI_VENDOR_ID_RENESAS, PCI_DEVICE_ID_RENESAS_R8A774B1),},
{ PCI_DEVICE(PCI_VENDOR_ID_RENESAS, PCI_DEVICE_ID_RENESAS_R8A774C0),},
{ PCI_DEVICE(PCI_VENDOR_ID_RENESAS, PCI_DEVICE_ID_RENESAS_R8A774E1),},
{ PCI_DEVICE(PCI_VENDOR_ID_RENESAS, PCI_DEVICE_ID_RENESAS_R8A779F0),
.driver_data = (kernel_ulong_t)&default_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_J721E),
.driver_data = (kernel_ulong_t)&j721e_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_J7200),
.driver_data = (kernel_ulong_t)&j721e_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_AM64),
.driver_data = (kernel_ulong_t)&j721e_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_J721S2),
.driver_data = (kernel_ulong_t)&j721e_data,
},
{ PCI_DEVICE(PCI_VENDOR_ID_ROCKCHIP, PCI_DEVICE_ID_ROCKCHIP_RK3588),
.driver_data = (kernel_ulong_t)&rk3588_data,
},
{ }
};
MODULE_DEVICE_TABLE(pci, pci_endpoint_test_tbl);
static struct pci_driver pci_endpoint_test_driver = {
.name = DRV_MODULE_NAME,
.id_table = pci_endpoint_test_tbl,
.probe = pci_endpoint_test_probe,
.remove = pci_endpoint_test_remove,
.sriov_configure = pci_sriov_configure_simple,
};
module_pci_driver(pci_endpoint_test_driver);
MODULE_DESCRIPTION("PCI ENDPOINT TEST HOST DRIVER");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
MODULE_LICENSE("GPL v2");