mirror of
https://github.com/torvalds/linux.git
synced 2025-04-09 14:45:27 +00:00

AMD Zen-based systems report memory error addresses through machine check banks representing Unified Memory Controllers (UMCs) in the form of UMC relative "normalized" addresses. A normalized address must be converted to a system physical address to be usable by the OS. Future AMD platforms will provide a UEFI PRM module that implements a number of address translation PRM handlers. This will provide an interface for the OS to call platform specific code without requiring the use of SMM or other heavy firmware operations. Add support for the normalized to system physical address translation PRM handler in the AMD Address Translation Library and prefer it over native code if available. The GUID and parameter buffer structure are specific to the normalized to system physical address handler provided by the address translation PRM module included in future AMD systems. The address translation PRM module is documented in chapter 22 of the publicly available "AMD Family 1Ah Models 00h–0Fh and Models 10h–1Fh ACPI v6.5 Porting Guide". [ bp: Massage commit message. ] Signed-off-by: John Allen <john.allen@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240730151731.15363-3-john.allen@amd.com
415 lines
11 KiB
C
415 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* AMD Address Translation Library
|
|
*
|
|
* umc.c : Unified Memory Controller (UMC) topology helpers
|
|
*
|
|
* Copyright (c) 2023, Advanced Micro Devices, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
|
|
*/
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* MI300 has a fixed, model-specific mapping between a UMC instance and
|
|
* its related Data Fabric Coherent Station instance.
|
|
*
|
|
* The MCA_IPID_UMC[InstanceId] field holds a unique identifier for the
|
|
* UMC instance within a Node. Use this to find the appropriate Coherent
|
|
* Station ID.
|
|
*
|
|
* Redundant bits were removed from the map below.
|
|
*/
|
|
static const u16 umc_coh_st_map[32] = {
|
|
0x393, 0x293, 0x193, 0x093,
|
|
0x392, 0x292, 0x192, 0x092,
|
|
0x391, 0x291, 0x191, 0x091,
|
|
0x390, 0x290, 0x190, 0x090,
|
|
0x793, 0x693, 0x593, 0x493,
|
|
0x792, 0x692, 0x592, 0x492,
|
|
0x791, 0x691, 0x591, 0x491,
|
|
0x790, 0x690, 0x590, 0x490,
|
|
};
|
|
|
|
#define UMC_ID_MI300 GENMASK(23, 12)
|
|
static u8 get_coh_st_inst_id_mi300(struct atl_err *err)
|
|
{
|
|
u16 umc_id = FIELD_GET(UMC_ID_MI300, err->ipid);
|
|
u8 i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(umc_coh_st_map); i++) {
|
|
if (umc_id == umc_coh_st_map[i])
|
|
break;
|
|
}
|
|
|
|
WARN_ON_ONCE(i >= ARRAY_SIZE(umc_coh_st_map));
|
|
|
|
return i;
|
|
}
|
|
|
|
/* XOR the bits in @val. */
|
|
static u16 bitwise_xor_bits(u16 val)
|
|
{
|
|
u16 tmp = 0;
|
|
u8 i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
tmp ^= (val >> i) & 0x1;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
struct xor_bits {
|
|
bool xor_enable;
|
|
u16 col_xor;
|
|
u32 row_xor;
|
|
};
|
|
|
|
#define NUM_BANK_BITS 4
|
|
#define NUM_COL_BITS 5
|
|
#define NUM_SID_BITS 2
|
|
|
|
static struct {
|
|
/* UMC::CH::AddrHashBank */
|
|
struct xor_bits bank[NUM_BANK_BITS];
|
|
|
|
/* UMC::CH::AddrHashPC */
|
|
struct xor_bits pc;
|
|
|
|
/* UMC::CH::AddrHashPC2 */
|
|
u8 bank_xor;
|
|
} addr_hash;
|
|
|
|
static struct {
|
|
u8 bank[NUM_BANK_BITS];
|
|
u8 col[NUM_COL_BITS];
|
|
u8 sid[NUM_SID_BITS];
|
|
u8 num_row_lo;
|
|
u8 num_row_hi;
|
|
u8 row_lo;
|
|
u8 row_hi;
|
|
u8 pc;
|
|
} bit_shifts;
|
|
|
|
#define MI300_UMC_CH_BASE 0x90000
|
|
#define MI300_ADDR_CFG (MI300_UMC_CH_BASE + 0x30)
|
|
#define MI300_ADDR_SEL (MI300_UMC_CH_BASE + 0x40)
|
|
#define MI300_COL_SEL_LO (MI300_UMC_CH_BASE + 0x50)
|
|
#define MI300_ADDR_SEL_2 (MI300_UMC_CH_BASE + 0xA4)
|
|
#define MI300_ADDR_HASH_BANK0 (MI300_UMC_CH_BASE + 0xC8)
|
|
#define MI300_ADDR_HASH_PC (MI300_UMC_CH_BASE + 0xE0)
|
|
#define MI300_ADDR_HASH_PC2 (MI300_UMC_CH_BASE + 0xE4)
|
|
|
|
#define ADDR_HASH_XOR_EN BIT(0)
|
|
#define ADDR_HASH_COL_XOR GENMASK(13, 1)
|
|
#define ADDR_HASH_ROW_XOR GENMASK(31, 14)
|
|
#define ADDR_HASH_BANK_XOR GENMASK(5, 0)
|
|
|
|
#define ADDR_CFG_NUM_ROW_LO GENMASK(11, 8)
|
|
#define ADDR_CFG_NUM_ROW_HI GENMASK(15, 12)
|
|
|
|
#define ADDR_SEL_BANK0 GENMASK(3, 0)
|
|
#define ADDR_SEL_BANK1 GENMASK(7, 4)
|
|
#define ADDR_SEL_BANK2 GENMASK(11, 8)
|
|
#define ADDR_SEL_BANK3 GENMASK(15, 12)
|
|
#define ADDR_SEL_BANK4 GENMASK(20, 16)
|
|
#define ADDR_SEL_ROW_LO GENMASK(27, 24)
|
|
#define ADDR_SEL_ROW_HI GENMASK(31, 28)
|
|
|
|
#define COL_SEL_LO_COL0 GENMASK(3, 0)
|
|
#define COL_SEL_LO_COL1 GENMASK(7, 4)
|
|
#define COL_SEL_LO_COL2 GENMASK(11, 8)
|
|
#define COL_SEL_LO_COL3 GENMASK(15, 12)
|
|
#define COL_SEL_LO_COL4 GENMASK(19, 16)
|
|
|
|
#define ADDR_SEL_2_BANK5 GENMASK(4, 0)
|
|
#define ADDR_SEL_2_CHAN GENMASK(15, 12)
|
|
|
|
/*
|
|
* Read UMC::CH::AddrHash{Bank,PC,PC2} registers to get XOR bits used
|
|
* for hashing.
|
|
*
|
|
* Also, read UMC::CH::Addr{Cfg,Sel,Sel2} and UMC::CH:ColSelLo registers to
|
|
* get the values needed to reconstruct the normalized address. Apply additional
|
|
* offsets to the raw register values, as needed.
|
|
*
|
|
* Do this during module init, since the values will not change during run time.
|
|
*
|
|
* These registers are instantiated for each UMC across each AMD Node.
|
|
* However, they should be identically programmed due to the fixed hardware
|
|
* design of MI300 systems. So read the values from Node 0 UMC 0 and keep a
|
|
* single global structure for simplicity.
|
|
*/
|
|
int get_umc_info_mi300(void)
|
|
{
|
|
u32 temp;
|
|
int ret;
|
|
u8 i;
|
|
|
|
for (i = 0; i < NUM_BANK_BITS; i++) {
|
|
ret = amd_smn_read(0, MI300_ADDR_HASH_BANK0 + (i * 4), &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
addr_hash.bank[i].xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
|
|
addr_hash.bank[i].col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
|
|
addr_hash.bank[i].row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
|
|
}
|
|
|
|
ret = amd_smn_read(0, MI300_ADDR_HASH_PC, &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
addr_hash.pc.xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
|
|
addr_hash.pc.col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
|
|
addr_hash.pc.row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
|
|
|
|
ret = amd_smn_read(0, MI300_ADDR_HASH_PC2, &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
addr_hash.bank_xor = FIELD_GET(ADDR_HASH_BANK_XOR, temp);
|
|
|
|
ret = amd_smn_read(0, MI300_ADDR_CFG, &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bit_shifts.num_row_hi = FIELD_GET(ADDR_CFG_NUM_ROW_HI, temp);
|
|
bit_shifts.num_row_lo = 10 + FIELD_GET(ADDR_CFG_NUM_ROW_LO, temp);
|
|
|
|
ret = amd_smn_read(0, MI300_ADDR_SEL, &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bit_shifts.bank[0] = 5 + FIELD_GET(ADDR_SEL_BANK0, temp);
|
|
bit_shifts.bank[1] = 5 + FIELD_GET(ADDR_SEL_BANK1, temp);
|
|
bit_shifts.bank[2] = 5 + FIELD_GET(ADDR_SEL_BANK2, temp);
|
|
bit_shifts.bank[3] = 5 + FIELD_GET(ADDR_SEL_BANK3, temp);
|
|
/* Use BankBit4 for the SID0 position. */
|
|
bit_shifts.sid[0] = 5 + FIELD_GET(ADDR_SEL_BANK4, temp);
|
|
bit_shifts.row_lo = 12 + FIELD_GET(ADDR_SEL_ROW_LO, temp);
|
|
bit_shifts.row_hi = 24 + FIELD_GET(ADDR_SEL_ROW_HI, temp);
|
|
|
|
ret = amd_smn_read(0, MI300_COL_SEL_LO, &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bit_shifts.col[0] = 2 + FIELD_GET(COL_SEL_LO_COL0, temp);
|
|
bit_shifts.col[1] = 2 + FIELD_GET(COL_SEL_LO_COL1, temp);
|
|
bit_shifts.col[2] = 2 + FIELD_GET(COL_SEL_LO_COL2, temp);
|
|
bit_shifts.col[3] = 2 + FIELD_GET(COL_SEL_LO_COL3, temp);
|
|
bit_shifts.col[4] = 2 + FIELD_GET(COL_SEL_LO_COL4, temp);
|
|
|
|
ret = amd_smn_read(0, MI300_ADDR_SEL_2, &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Use BankBit5 for the SID1 position. */
|
|
bit_shifts.sid[1] = 5 + FIELD_GET(ADDR_SEL_2_BANK5, temp);
|
|
bit_shifts.pc = 5 + FIELD_GET(ADDR_SEL_2_CHAN, temp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* MI300 systems report a DRAM address in MCA_ADDR for DRAM ECC errors. This must
|
|
* be converted to the intermediate normalized address (NA) before translating to a
|
|
* system physical address.
|
|
*
|
|
* The DRAM address includes bank, row, and column. Also included are bits for
|
|
* pseudochannel (PC) and stack ID (SID).
|
|
*
|
|
* Abbreviations: (S)tack ID, (P)seudochannel, (R)ow, (B)ank, (C)olumn, (Z)ero
|
|
*
|
|
* The MCA address format is as follows:
|
|
* MCA_ADDR[27:0] = {S[1:0], P[0], R[14:0], B[3:0], C[4:0], Z[0]}
|
|
*
|
|
* Additionally, the PC and Bank bits may be hashed. This must be accounted for before
|
|
* reconstructing the normalized address.
|
|
*/
|
|
#define MI300_UMC_MCA_COL GENMASK(5, 1)
|
|
#define MI300_UMC_MCA_BANK GENMASK(9, 6)
|
|
#define MI300_UMC_MCA_ROW GENMASK(24, 10)
|
|
#define MI300_UMC_MCA_PC BIT(25)
|
|
#define MI300_UMC_MCA_SID GENMASK(27, 26)
|
|
|
|
static unsigned long convert_dram_to_norm_addr_mi300(unsigned long addr)
|
|
{
|
|
u16 i, col, row, bank, pc, sid;
|
|
u32 temp;
|
|
|
|
col = FIELD_GET(MI300_UMC_MCA_COL, addr);
|
|
bank = FIELD_GET(MI300_UMC_MCA_BANK, addr);
|
|
row = FIELD_GET(MI300_UMC_MCA_ROW, addr);
|
|
pc = FIELD_GET(MI300_UMC_MCA_PC, addr);
|
|
sid = FIELD_GET(MI300_UMC_MCA_SID, addr);
|
|
|
|
/* Calculate hash for each Bank bit. */
|
|
for (i = 0; i < NUM_BANK_BITS; i++) {
|
|
if (!addr_hash.bank[i].xor_enable)
|
|
continue;
|
|
|
|
temp = bitwise_xor_bits(col & addr_hash.bank[i].col_xor);
|
|
temp ^= bitwise_xor_bits(row & addr_hash.bank[i].row_xor);
|
|
bank ^= temp << i;
|
|
}
|
|
|
|
/* Calculate hash for PC bit. */
|
|
if (addr_hash.pc.xor_enable) {
|
|
temp = bitwise_xor_bits(col & addr_hash.pc.col_xor);
|
|
temp ^= bitwise_xor_bits(row & addr_hash.pc.row_xor);
|
|
/* Bits SID[1:0] act as Bank[5:4] for PC hash, so apply them here. */
|
|
temp ^= bitwise_xor_bits((bank | sid << NUM_BANK_BITS) & addr_hash.bank_xor);
|
|
pc ^= temp;
|
|
}
|
|
|
|
/* Reconstruct the normalized address starting with NA[4:0] = 0 */
|
|
addr = 0;
|
|
|
|
/* Column bits */
|
|
for (i = 0; i < NUM_COL_BITS; i++) {
|
|
temp = (col >> i) & 0x1;
|
|
addr |= temp << bit_shifts.col[i];
|
|
}
|
|
|
|
/* Bank bits */
|
|
for (i = 0; i < NUM_BANK_BITS; i++) {
|
|
temp = (bank >> i) & 0x1;
|
|
addr |= temp << bit_shifts.bank[i];
|
|
}
|
|
|
|
/* Row lo bits */
|
|
for (i = 0; i < bit_shifts.num_row_lo; i++) {
|
|
temp = (row >> i) & 0x1;
|
|
addr |= temp << (i + bit_shifts.row_lo);
|
|
}
|
|
|
|
/* Row hi bits */
|
|
for (i = 0; i < bit_shifts.num_row_hi; i++) {
|
|
temp = (row >> (i + bit_shifts.num_row_lo)) & 0x1;
|
|
addr |= temp << (i + bit_shifts.row_hi);
|
|
}
|
|
|
|
/* PC bit */
|
|
addr |= pc << bit_shifts.pc;
|
|
|
|
/* SID bits */
|
|
for (i = 0; i < NUM_SID_BITS; i++) {
|
|
temp = (sid >> i) & 0x1;
|
|
addr |= temp << bit_shifts.sid[i];
|
|
}
|
|
|
|
pr_debug("Addr=0x%016lx", addr);
|
|
pr_debug("Bank=%u Row=%u Column=%u PC=%u SID=%u", bank, row, col, pc, sid);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* When a DRAM ECC error occurs on MI300 systems, it is recommended to retire
|
|
* all memory within that DRAM row. This applies to the memory with a DRAM
|
|
* bank.
|
|
*
|
|
* To find the memory addresses, loop through permutations of the DRAM column
|
|
* bits and find the System Physical address of each. The column bits are used
|
|
* to calculate the intermediate Normalized address, so all permutations should
|
|
* be checked.
|
|
*
|
|
* See amd_atl::convert_dram_to_norm_addr_mi300() for MI300 address formats.
|
|
*/
|
|
#define MI300_NUM_COL BIT(HWEIGHT(MI300_UMC_MCA_COL))
|
|
static void retire_row_mi300(struct atl_err *a_err)
|
|
{
|
|
unsigned long addr;
|
|
struct page *p;
|
|
u8 col;
|
|
|
|
for (col = 0; col < MI300_NUM_COL; col++) {
|
|
a_err->addr &= ~MI300_UMC_MCA_COL;
|
|
a_err->addr |= FIELD_PREP(MI300_UMC_MCA_COL, col);
|
|
|
|
addr = amd_convert_umc_mca_addr_to_sys_addr(a_err);
|
|
if (IS_ERR_VALUE(addr))
|
|
continue;
|
|
|
|
addr = PHYS_PFN(addr);
|
|
|
|
/*
|
|
* Skip invalid or already poisoned pages to avoid unnecessary
|
|
* error messages from memory_failure().
|
|
*/
|
|
p = pfn_to_online_page(addr);
|
|
if (!p)
|
|
continue;
|
|
|
|
if (PageHWPoison(p))
|
|
continue;
|
|
|
|
memory_failure(addr, 0);
|
|
}
|
|
}
|
|
|
|
void amd_retire_dram_row(struct atl_err *a_err)
|
|
{
|
|
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
|
|
return retire_row_mi300(a_err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_retire_dram_row);
|
|
|
|
static unsigned long get_addr(unsigned long addr)
|
|
{
|
|
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
|
|
return convert_dram_to_norm_addr_mi300(addr);
|
|
|
|
return addr;
|
|
}
|
|
|
|
#define MCA_IPID_INST_ID_HI GENMASK_ULL(47, 44)
|
|
static u8 get_die_id(struct atl_err *err)
|
|
{
|
|
/*
|
|
* AMD Node ID is provided in MCA_IPID[InstanceIdHi], and this
|
|
* needs to be divided by 4 to get the internal Die ID.
|
|
*/
|
|
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) {
|
|
u8 node_id = FIELD_GET(MCA_IPID_INST_ID_HI, err->ipid);
|
|
|
|
return node_id >> 2;
|
|
}
|
|
|
|
/*
|
|
* For CPUs, this is the AMD Node ID modulo the number
|
|
* of AMD Nodes per socket.
|
|
*/
|
|
return topology_amd_node_id(err->cpu) % topology_amd_nodes_per_pkg();
|
|
}
|
|
|
|
#define UMC_CHANNEL_NUM GENMASK(31, 20)
|
|
static u8 get_coh_st_inst_id(struct atl_err *err)
|
|
{
|
|
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
|
|
return get_coh_st_inst_id_mi300(err);
|
|
|
|
return FIELD_GET(UMC_CHANNEL_NUM, err->ipid);
|
|
}
|
|
|
|
unsigned long convert_umc_mca_addr_to_sys_addr(struct atl_err *err)
|
|
{
|
|
u8 socket_id = topology_physical_package_id(err->cpu);
|
|
u8 coh_st_inst_id = get_coh_st_inst_id(err);
|
|
unsigned long addr = get_addr(err->addr);
|
|
u8 die_id = get_die_id(err);
|
|
unsigned long ret_addr;
|
|
|
|
pr_debug("socket_id=0x%x die_id=0x%x coh_st_inst_id=0x%x addr=0x%016lx",
|
|
socket_id, die_id, coh_st_inst_id, addr);
|
|
|
|
ret_addr = prm_umc_norm_to_sys_addr(socket_id, err->ipid, addr);
|
|
if (!IS_ERR_VALUE(ret_addr))
|
|
return ret_addr;
|
|
|
|
return norm_to_sys_addr(socket_id, die_id, coh_st_inst_id, addr);
|
|
}
|