linux/drivers/spi/spi-axi-spi-engine.c
David Lechner 5a19e1985d
spi: axi-spi-engine: implement offload support
Implement SPI offload support for the AXI SPI Engine. Currently, the
hardware only supports triggering offload transfers with a hardware
trigger so attempting to use an offload message in the regular SPI
message queue will fail. Also, only allows streaming rx data to an
external sink, so attempts to use a rx_buf in the offload message will
fail.

Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Nuno Sa <nuno.sa@analog.com>
Signed-off-by: David Lechner <dlechner@baylibre.com>
Link: https://patch.msgid.link/20250207-dlech-mainline-spi-engine-offload-2-v8-7-e48a489be48c@baylibre.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2025-02-07 20:17:13 +00:00

1049 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SPI-Engine SPI controller driver
* Copyright 2015 Analog Devices Inc.
* Copyright 2024 BayLibre, SAS
* Author: Lars-Peter Clausen <lars@metafoo.de>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dmaengine.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/overflow.h>
#include <linux/platform_device.h>
#include <linux/spi/offload/provider.h>
#include <linux/spi/spi.h>
#include <trace/events/spi.h>
#define SPI_ENGINE_REG_OFFLOAD_MEM_ADDR_WIDTH 0x10
#define SPI_ENGINE_REG_RESET 0x40
#define SPI_ENGINE_REG_INT_ENABLE 0x80
#define SPI_ENGINE_REG_INT_PENDING 0x84
#define SPI_ENGINE_REG_INT_SOURCE 0x88
#define SPI_ENGINE_REG_SYNC_ID 0xc0
#define SPI_ENGINE_REG_OFFLOAD_SYNC_ID 0xc4
#define SPI_ENGINE_REG_CMD_FIFO_ROOM 0xd0
#define SPI_ENGINE_REG_SDO_FIFO_ROOM 0xd4
#define SPI_ENGINE_REG_SDI_FIFO_LEVEL 0xd8
#define SPI_ENGINE_REG_CMD_FIFO 0xe0
#define SPI_ENGINE_REG_SDO_DATA_FIFO 0xe4
#define SPI_ENGINE_REG_SDI_DATA_FIFO 0xe8
#define SPI_ENGINE_REG_SDI_DATA_FIFO_PEEK 0xec
#define SPI_ENGINE_MAX_NUM_OFFLOADS 32
#define SPI_ENGINE_REG_OFFLOAD_CTRL(x) (0x100 + SPI_ENGINE_MAX_NUM_OFFLOADS * (x))
#define SPI_ENGINE_REG_OFFLOAD_STATUS(x) (0x104 + SPI_ENGINE_MAX_NUM_OFFLOADS * (x))
#define SPI_ENGINE_REG_OFFLOAD_RESET(x) (0x108 + SPI_ENGINE_MAX_NUM_OFFLOADS * (x))
#define SPI_ENGINE_REG_OFFLOAD_CMD_FIFO(x) (0x110 + SPI_ENGINE_MAX_NUM_OFFLOADS * (x))
#define SPI_ENGINE_REG_OFFLOAD_SDO_FIFO(x) (0x114 + SPI_ENGINE_MAX_NUM_OFFLOADS * (x))
#define SPI_ENGINE_SPI_OFFLOAD_MEM_WIDTH_SDO GENMASK(15, 8)
#define SPI_ENGINE_SPI_OFFLOAD_MEM_WIDTH_CMD GENMASK(7, 0)
#define SPI_ENGINE_INT_CMD_ALMOST_EMPTY BIT(0)
#define SPI_ENGINE_INT_SDO_ALMOST_EMPTY BIT(1)
#define SPI_ENGINE_INT_SDI_ALMOST_FULL BIT(2)
#define SPI_ENGINE_INT_SYNC BIT(3)
#define SPI_ENGINE_INT_OFFLOAD_SYNC BIT(4)
#define SPI_ENGINE_OFFLOAD_CTRL_ENABLE BIT(0)
#define SPI_ENGINE_CONFIG_CPHA BIT(0)
#define SPI_ENGINE_CONFIG_CPOL BIT(1)
#define SPI_ENGINE_CONFIG_3WIRE BIT(2)
#define SPI_ENGINE_CONFIG_SDO_IDLE_HIGH BIT(3)
#define SPI_ENGINE_INST_TRANSFER 0x0
#define SPI_ENGINE_INST_ASSERT 0x1
#define SPI_ENGINE_INST_WRITE 0x2
#define SPI_ENGINE_INST_MISC 0x3
#define SPI_ENGINE_INST_CS_INV 0x4
#define SPI_ENGINE_CMD_REG_CLK_DIV 0x0
#define SPI_ENGINE_CMD_REG_CONFIG 0x1
#define SPI_ENGINE_CMD_REG_XFER_BITS 0x2
#define SPI_ENGINE_MISC_SYNC 0x0
#define SPI_ENGINE_MISC_SLEEP 0x1
#define SPI_ENGINE_TRANSFER_WRITE 0x1
#define SPI_ENGINE_TRANSFER_READ 0x2
/* Arbitrary sync ID for use by host->cur_msg */
#define AXI_SPI_ENGINE_CUR_MSG_SYNC_ID 0x1
#define SPI_ENGINE_CMD(inst, arg1, arg2) \
(((inst) << 12) | ((arg1) << 8) | (arg2))
#define SPI_ENGINE_CMD_TRANSFER(flags, n) \
SPI_ENGINE_CMD(SPI_ENGINE_INST_TRANSFER, (flags), (n))
#define SPI_ENGINE_CMD_ASSERT(delay, cs) \
SPI_ENGINE_CMD(SPI_ENGINE_INST_ASSERT, (delay), (cs))
#define SPI_ENGINE_CMD_WRITE(reg, val) \
SPI_ENGINE_CMD(SPI_ENGINE_INST_WRITE, (reg), (val))
#define SPI_ENGINE_CMD_SLEEP(delay) \
SPI_ENGINE_CMD(SPI_ENGINE_INST_MISC, SPI_ENGINE_MISC_SLEEP, (delay))
#define SPI_ENGINE_CMD_SYNC(id) \
SPI_ENGINE_CMD(SPI_ENGINE_INST_MISC, SPI_ENGINE_MISC_SYNC, (id))
#define SPI_ENGINE_CMD_CS_INV(flags) \
SPI_ENGINE_CMD(SPI_ENGINE_INST_CS_INV, 0, (flags))
/* default sizes - can be changed when SPI Engine firmware is compiled */
#define SPI_ENGINE_OFFLOAD_CMD_FIFO_SIZE 16
#define SPI_ENGINE_OFFLOAD_SDO_FIFO_SIZE 16
struct spi_engine_program {
unsigned int length;
uint16_t instructions[] __counted_by(length);
};
/**
* struct spi_engine_message_state - SPI engine per-message state
*/
struct spi_engine_message_state {
/** @cmd_length: Number of elements in cmd_buf array. */
unsigned cmd_length;
/** @cmd_buf: Array of commands not yet written to CMD FIFO. */
const uint16_t *cmd_buf;
/** @tx_xfer: Next xfer with tx_buf not yet fully written to TX FIFO. */
struct spi_transfer *tx_xfer;
/** @tx_length: Size of tx_buf in bytes. */
unsigned int tx_length;
/** @tx_buf: Bytes not yet written to TX FIFO. */
const uint8_t *tx_buf;
/** @rx_xfer: Next xfer with rx_buf not yet fully written to RX FIFO. */
struct spi_transfer *rx_xfer;
/** @rx_length: Size of tx_buf in bytes. */
unsigned int rx_length;
/** @rx_buf: Bytes not yet written to the RX FIFO. */
uint8_t *rx_buf;
};
enum {
SPI_ENGINE_OFFLOAD_FLAG_ASSIGNED,
SPI_ENGINE_OFFLOAD_FLAG_PREPARED,
};
struct spi_engine_offload {
struct spi_engine *spi_engine;
unsigned long flags;
unsigned int offload_num;
};
struct spi_engine {
struct clk *clk;
struct clk *ref_clk;
spinlock_t lock;
void __iomem *base;
struct spi_engine_message_state msg_state;
struct completion msg_complete;
unsigned int int_enable;
/* shadows hardware CS inversion flag state */
u8 cs_inv;
unsigned int offload_ctrl_mem_size;
unsigned int offload_sdo_mem_size;
struct spi_offload *offload;
u32 offload_caps;
};
static void spi_engine_program_add_cmd(struct spi_engine_program *p,
bool dry, uint16_t cmd)
{
p->length++;
if (!dry)
p->instructions[p->length - 1] = cmd;
}
static unsigned int spi_engine_get_config(struct spi_device *spi)
{
unsigned int config = 0;
if (spi->mode & SPI_CPOL)
config |= SPI_ENGINE_CONFIG_CPOL;
if (spi->mode & SPI_CPHA)
config |= SPI_ENGINE_CONFIG_CPHA;
if (spi->mode & SPI_3WIRE)
config |= SPI_ENGINE_CONFIG_3WIRE;
if (spi->mode & SPI_MOSI_IDLE_HIGH)
config |= SPI_ENGINE_CONFIG_SDO_IDLE_HIGH;
if (spi->mode & SPI_MOSI_IDLE_LOW)
config &= ~SPI_ENGINE_CONFIG_SDO_IDLE_HIGH;
return config;
}
static void spi_engine_gen_xfer(struct spi_engine_program *p, bool dry,
struct spi_transfer *xfer)
{
unsigned int len;
if (xfer->bits_per_word <= 8)
len = xfer->len;
else if (xfer->bits_per_word <= 16)
len = xfer->len / 2;
else
len = xfer->len / 4;
while (len) {
unsigned int n = min(len, 256U);
unsigned int flags = 0;
if (xfer->tx_buf || (xfer->offload_flags & SPI_OFFLOAD_XFER_TX_STREAM))
flags |= SPI_ENGINE_TRANSFER_WRITE;
if (xfer->rx_buf || (xfer->offload_flags & SPI_OFFLOAD_XFER_RX_STREAM))
flags |= SPI_ENGINE_TRANSFER_READ;
spi_engine_program_add_cmd(p, dry,
SPI_ENGINE_CMD_TRANSFER(flags, n - 1));
len -= n;
}
}
static void spi_engine_gen_sleep(struct spi_engine_program *p, bool dry,
int delay_ns, int inst_ns, u32 sclk_hz)
{
unsigned int t;
/*
* Negative delay indicates error, e.g. from spi_delay_to_ns(). And if
* delay is less that the instruction execution time, there is no need
* for an extra sleep instruction since the instruction execution time
* will already cover the required delay.
*/
if (delay_ns < 0 || delay_ns <= inst_ns)
return;
t = DIV_ROUND_UP_ULL((u64)(delay_ns - inst_ns) * sclk_hz, NSEC_PER_SEC);
while (t) {
unsigned int n = min(t, 256U);
spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_SLEEP(n - 1));
t -= n;
}
}
static void spi_engine_gen_cs(struct spi_engine_program *p, bool dry,
struct spi_device *spi, bool assert)
{
unsigned int mask = 0xff;
if (assert)
mask ^= BIT(spi_get_chipselect(spi, 0));
spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_ASSERT(0, mask));
}
/*
* Performs precompile steps on the message.
*
* The SPI core does most of the message/transfer validation and filling in
* fields for us via __spi_validate(). This fixes up anything remaining not
* done there.
*
* NB: This is separate from spi_engine_compile_message() because the latter
* is called twice and would otherwise result in double-evaluation.
*
* Returns 0 on success, -EINVAL on failure.
*/
static int spi_engine_precompile_message(struct spi_message *msg)
{
unsigned int clk_div, max_hz = msg->spi->controller->max_speed_hz;
struct spi_transfer *xfer;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
/* If we have an offload transfer, we can't rx to buffer */
if (msg->offload && xfer->rx_buf)
return -EINVAL;
clk_div = DIV_ROUND_UP(max_hz, xfer->speed_hz);
xfer->effective_speed_hz = max_hz / min(clk_div, 256U);
}
return 0;
}
static void spi_engine_compile_message(struct spi_message *msg, bool dry,
struct spi_engine_program *p)
{
struct spi_device *spi = msg->spi;
struct spi_controller *host = spi->controller;
struct spi_transfer *xfer;
int clk_div, new_clk_div, inst_ns;
bool keep_cs = false;
u8 bits_per_word = 0;
/*
* Take into account instruction execution time for more accurate sleep
* times, especially when the delay is small.
*/
inst_ns = DIV_ROUND_UP(NSEC_PER_SEC, host->max_speed_hz);
clk_div = 1;
spi_engine_program_add_cmd(p, dry,
SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CONFIG,
spi_engine_get_config(spi)));
xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
spi_engine_gen_cs(p, dry, spi, !xfer->cs_off);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
new_clk_div = host->max_speed_hz / xfer->effective_speed_hz;
if (new_clk_div != clk_div) {
clk_div = new_clk_div;
/* actual divider used is register value + 1 */
spi_engine_program_add_cmd(p, dry,
SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CLK_DIV,
clk_div - 1));
}
if (bits_per_word != xfer->bits_per_word && xfer->len) {
bits_per_word = xfer->bits_per_word;
spi_engine_program_add_cmd(p, dry,
SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_XFER_BITS,
bits_per_word));
}
spi_engine_gen_xfer(p, dry, xfer);
spi_engine_gen_sleep(p, dry, spi_delay_to_ns(&xfer->delay, xfer),
inst_ns, xfer->effective_speed_hz);
if (xfer->cs_change) {
if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
keep_cs = true;
} else {
if (!xfer->cs_off)
spi_engine_gen_cs(p, dry, spi, false);
spi_engine_gen_sleep(p, dry, spi_delay_to_ns(
&xfer->cs_change_delay, xfer), inst_ns,
xfer->effective_speed_hz);
if (!list_next_entry(xfer, transfer_list)->cs_off)
spi_engine_gen_cs(p, dry, spi, true);
}
} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
spi_engine_gen_cs(p, dry, spi, xfer->cs_off);
}
}
if (!keep_cs)
spi_engine_gen_cs(p, dry, spi, false);
/*
* Restore clockdiv to default so that future gen_sleep commands don't
* have to be aware of the current register state.
*/
if (clk_div != 1)
spi_engine_program_add_cmd(p, dry,
SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CLK_DIV, 0));
}
static void spi_engine_xfer_next(struct spi_message *msg,
struct spi_transfer **_xfer)
{
struct spi_transfer *xfer = *_xfer;
if (!xfer) {
xfer = list_first_entry(&msg->transfers,
struct spi_transfer, transfer_list);
} else if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
xfer = NULL;
} else {
xfer = list_next_entry(xfer, transfer_list);
}
*_xfer = xfer;
}
static void spi_engine_tx_next(struct spi_message *msg)
{
struct spi_engine_message_state *st = msg->state;
struct spi_transfer *xfer = st->tx_xfer;
do {
spi_engine_xfer_next(msg, &xfer);
} while (xfer && !xfer->tx_buf);
st->tx_xfer = xfer;
if (xfer) {
st->tx_length = xfer->len;
st->tx_buf = xfer->tx_buf;
} else {
st->tx_buf = NULL;
}
}
static void spi_engine_rx_next(struct spi_message *msg)
{
struct spi_engine_message_state *st = msg->state;
struct spi_transfer *xfer = st->rx_xfer;
do {
spi_engine_xfer_next(msg, &xfer);
} while (xfer && !xfer->rx_buf);
st->rx_xfer = xfer;
if (xfer) {
st->rx_length = xfer->len;
st->rx_buf = xfer->rx_buf;
} else {
st->rx_buf = NULL;
}
}
static bool spi_engine_write_cmd_fifo(struct spi_engine *spi_engine,
struct spi_message *msg)
{
void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_CMD_FIFO;
struct spi_engine_message_state *st = msg->state;
unsigned int n, m, i;
const uint16_t *buf;
n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_CMD_FIFO_ROOM);
while (n && st->cmd_length) {
m = min(n, st->cmd_length);
buf = st->cmd_buf;
for (i = 0; i < m; i++)
writel_relaxed(buf[i], addr);
st->cmd_buf += m;
st->cmd_length -= m;
n -= m;
}
return st->cmd_length != 0;
}
static bool spi_engine_write_tx_fifo(struct spi_engine *spi_engine,
struct spi_message *msg)
{
void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_SDO_DATA_FIFO;
struct spi_engine_message_state *st = msg->state;
unsigned int n, m, i;
n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_SDO_FIFO_ROOM);
while (n && st->tx_length) {
if (st->tx_xfer->bits_per_word <= 8) {
const u8 *buf = st->tx_buf;
m = min(n, st->tx_length);
for (i = 0; i < m; i++)
writel_relaxed(buf[i], addr);
st->tx_buf += m;
st->tx_length -= m;
} else if (st->tx_xfer->bits_per_word <= 16) {
const u16 *buf = (const u16 *)st->tx_buf;
m = min(n, st->tx_length / 2);
for (i = 0; i < m; i++)
writel_relaxed(buf[i], addr);
st->tx_buf += m * 2;
st->tx_length -= m * 2;
} else {
const u32 *buf = (const u32 *)st->tx_buf;
m = min(n, st->tx_length / 4);
for (i = 0; i < m; i++)
writel_relaxed(buf[i], addr);
st->tx_buf += m * 4;
st->tx_length -= m * 4;
}
n -= m;
if (st->tx_length == 0)
spi_engine_tx_next(msg);
}
return st->tx_length != 0;
}
static bool spi_engine_read_rx_fifo(struct spi_engine *spi_engine,
struct spi_message *msg)
{
void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_SDI_DATA_FIFO;
struct spi_engine_message_state *st = msg->state;
unsigned int n, m, i;
n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_SDI_FIFO_LEVEL);
while (n && st->rx_length) {
if (st->rx_xfer->bits_per_word <= 8) {
u8 *buf = st->rx_buf;
m = min(n, st->rx_length);
for (i = 0; i < m; i++)
buf[i] = readl_relaxed(addr);
st->rx_buf += m;
st->rx_length -= m;
} else if (st->rx_xfer->bits_per_word <= 16) {
u16 *buf = (u16 *)st->rx_buf;
m = min(n, st->rx_length / 2);
for (i = 0; i < m; i++)
buf[i] = readl_relaxed(addr);
st->rx_buf += m * 2;
st->rx_length -= m * 2;
} else {
u32 *buf = (u32 *)st->rx_buf;
m = min(n, st->rx_length / 4);
for (i = 0; i < m; i++)
buf[i] = readl_relaxed(addr);
st->rx_buf += m * 4;
st->rx_length -= m * 4;
}
n -= m;
if (st->rx_length == 0)
spi_engine_rx_next(msg);
}
return st->rx_length != 0;
}
static irqreturn_t spi_engine_irq(int irq, void *devid)
{
struct spi_controller *host = devid;
struct spi_message *msg = host->cur_msg;
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
unsigned int disable_int = 0;
unsigned int pending;
int completed_id = -1;
pending = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
if (pending & SPI_ENGINE_INT_SYNC) {
writel_relaxed(SPI_ENGINE_INT_SYNC,
spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
completed_id = readl_relaxed(
spi_engine->base + SPI_ENGINE_REG_SYNC_ID);
}
spin_lock(&spi_engine->lock);
if (pending & SPI_ENGINE_INT_CMD_ALMOST_EMPTY) {
if (!spi_engine_write_cmd_fifo(spi_engine, msg))
disable_int |= SPI_ENGINE_INT_CMD_ALMOST_EMPTY;
}
if (pending & SPI_ENGINE_INT_SDO_ALMOST_EMPTY) {
if (!spi_engine_write_tx_fifo(spi_engine, msg))
disable_int |= SPI_ENGINE_INT_SDO_ALMOST_EMPTY;
}
if (pending & (SPI_ENGINE_INT_SDI_ALMOST_FULL | SPI_ENGINE_INT_SYNC)) {
if (!spi_engine_read_rx_fifo(spi_engine, msg))
disable_int |= SPI_ENGINE_INT_SDI_ALMOST_FULL;
}
if (pending & SPI_ENGINE_INT_SYNC && msg) {
if (completed_id == AXI_SPI_ENGINE_CUR_MSG_SYNC_ID) {
msg->status = 0;
msg->actual_length = msg->frame_length;
complete(&spi_engine->msg_complete);
disable_int |= SPI_ENGINE_INT_SYNC;
}
}
if (disable_int) {
spi_engine->int_enable &= ~disable_int;
writel_relaxed(spi_engine->int_enable,
spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
}
spin_unlock(&spi_engine->lock);
return IRQ_HANDLED;
}
static int spi_engine_offload_prepare(struct spi_message *msg)
{
struct spi_controller *host = msg->spi->controller;
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
struct spi_engine_program *p = msg->opt_state;
struct spi_engine_offload *priv = msg->offload->priv;
struct spi_transfer *xfer;
void __iomem *cmd_addr;
void __iomem *sdo_addr;
size_t tx_word_count = 0;
unsigned int i;
if (p->length > spi_engine->offload_ctrl_mem_size)
return -EINVAL;
/* count total number of tx words in message */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
/* no support for reading to rx_buf */
if (xfer->rx_buf)
return -EINVAL;
if (!xfer->tx_buf)
continue;
if (xfer->bits_per_word <= 8)
tx_word_count += xfer->len;
else if (xfer->bits_per_word <= 16)
tx_word_count += xfer->len / 2;
else
tx_word_count += xfer->len / 4;
}
if (tx_word_count && !(spi_engine->offload_caps & SPI_OFFLOAD_CAP_TX_STATIC_DATA))
return -EINVAL;
if (tx_word_count > spi_engine->offload_sdo_mem_size)
return -EINVAL;
/*
* This protects against calling spi_optimize_message() with an offload
* that has already been prepared with a different message.
*/
if (test_and_set_bit_lock(SPI_ENGINE_OFFLOAD_FLAG_PREPARED, &priv->flags))
return -EBUSY;
cmd_addr = spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_CMD_FIFO(priv->offload_num);
sdo_addr = spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_SDO_FIFO(priv->offload_num);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
if (!xfer->tx_buf)
continue;
if (xfer->bits_per_word <= 8) {
const u8 *buf = xfer->tx_buf;
for (i = 0; i < xfer->len; i++)
writel_relaxed(buf[i], sdo_addr);
} else if (xfer->bits_per_word <= 16) {
const u16 *buf = xfer->tx_buf;
for (i = 0; i < xfer->len / 2; i++)
writel_relaxed(buf[i], sdo_addr);
} else {
const u32 *buf = xfer->tx_buf;
for (i = 0; i < xfer->len / 4; i++)
writel_relaxed(buf[i], sdo_addr);
}
}
for (i = 0; i < p->length; i++)
writel_relaxed(p->instructions[i], cmd_addr);
return 0;
}
static void spi_engine_offload_unprepare(struct spi_offload *offload)
{
struct spi_engine_offload *priv = offload->priv;
struct spi_engine *spi_engine = priv->spi_engine;
writel_relaxed(1, spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_RESET(priv->offload_num));
writel_relaxed(0, spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_RESET(priv->offload_num));
clear_bit_unlock(SPI_ENGINE_OFFLOAD_FLAG_PREPARED, &priv->flags);
}
static int spi_engine_optimize_message(struct spi_message *msg)
{
struct spi_engine_program p_dry, *p;
int ret;
ret = spi_engine_precompile_message(msg);
if (ret)
return ret;
p_dry.length = 0;
spi_engine_compile_message(msg, true, &p_dry);
p = kzalloc(struct_size(p, instructions, p_dry.length + 1), GFP_KERNEL);
if (!p)
return -ENOMEM;
spi_engine_compile_message(msg, false, p);
spi_engine_program_add_cmd(p, false, SPI_ENGINE_CMD_SYNC(
msg->offload ? 0 : AXI_SPI_ENGINE_CUR_MSG_SYNC_ID));
msg->opt_state = p;
if (msg->offload) {
ret = spi_engine_offload_prepare(msg);
if (ret) {
msg->opt_state = NULL;
kfree(p);
return ret;
}
}
return 0;
}
static int spi_engine_unoptimize_message(struct spi_message *msg)
{
if (msg->offload)
spi_engine_offload_unprepare(msg->offload);
kfree(msg->opt_state);
return 0;
}
static struct spi_offload
*spi_engine_get_offload(struct spi_device *spi,
const struct spi_offload_config *config)
{
struct spi_controller *host = spi->controller;
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
struct spi_engine_offload *priv;
if (!spi_engine->offload)
return ERR_PTR(-ENODEV);
if (config->capability_flags & ~spi_engine->offload_caps)
return ERR_PTR(-EINVAL);
priv = spi_engine->offload->priv;
if (test_and_set_bit_lock(SPI_ENGINE_OFFLOAD_FLAG_ASSIGNED, &priv->flags))
return ERR_PTR(-EBUSY);
return spi_engine->offload;
}
static void spi_engine_put_offload(struct spi_offload *offload)
{
struct spi_engine_offload *priv = offload->priv;
clear_bit_unlock(SPI_ENGINE_OFFLOAD_FLAG_ASSIGNED, &priv->flags);
}
static int spi_engine_setup(struct spi_device *device)
{
struct spi_controller *host = device->controller;
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
if (device->mode & SPI_CS_HIGH)
spi_engine->cs_inv |= BIT(spi_get_chipselect(device, 0));
else
spi_engine->cs_inv &= ~BIT(spi_get_chipselect(device, 0));
writel_relaxed(SPI_ENGINE_CMD_CS_INV(spi_engine->cs_inv),
spi_engine->base + SPI_ENGINE_REG_CMD_FIFO);
/*
* In addition to setting the flags, we have to do a CS assert command
* to make the new setting actually take effect.
*/
writel_relaxed(SPI_ENGINE_CMD_ASSERT(0, 0xff),
spi_engine->base + SPI_ENGINE_REG_CMD_FIFO);
return 0;
}
static int spi_engine_transfer_one_message(struct spi_controller *host,
struct spi_message *msg)
{
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
struct spi_engine_message_state *st = &spi_engine->msg_state;
struct spi_engine_program *p = msg->opt_state;
unsigned int int_enable = 0;
unsigned long flags;
if (msg->offload) {
dev_err(&host->dev, "Single transfer offload not supported\n");
msg->status = -EOPNOTSUPP;
goto out;
}
/* reinitialize message state for this transfer */
memset(st, 0, sizeof(*st));
st->cmd_buf = p->instructions;
st->cmd_length = p->length;
msg->state = st;
reinit_completion(&spi_engine->msg_complete);
if (trace_spi_transfer_start_enabled()) {
struct spi_transfer *xfer;
list_for_each_entry(xfer, &msg->transfers, transfer_list)
trace_spi_transfer_start(msg, xfer);
}
spin_lock_irqsave(&spi_engine->lock, flags);
if (spi_engine_write_cmd_fifo(spi_engine, msg))
int_enable |= SPI_ENGINE_INT_CMD_ALMOST_EMPTY;
spi_engine_tx_next(msg);
if (spi_engine_write_tx_fifo(spi_engine, msg))
int_enable |= SPI_ENGINE_INT_SDO_ALMOST_EMPTY;
spi_engine_rx_next(msg);
if (st->rx_length != 0)
int_enable |= SPI_ENGINE_INT_SDI_ALMOST_FULL;
int_enable |= SPI_ENGINE_INT_SYNC;
writel_relaxed(int_enable,
spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
spi_engine->int_enable = int_enable;
spin_unlock_irqrestore(&spi_engine->lock, flags);
if (!wait_for_completion_timeout(&spi_engine->msg_complete,
msecs_to_jiffies(5000))) {
dev_err(&host->dev,
"Timeout occurred while waiting for transfer to complete. Hardware is probably broken.\n");
msg->status = -ETIMEDOUT;
}
if (trace_spi_transfer_stop_enabled()) {
struct spi_transfer *xfer;
list_for_each_entry(xfer, &msg->transfers, transfer_list)
trace_spi_transfer_stop(msg, xfer);
}
out:
spi_finalize_current_message(host);
return msg->status;
}
static int spi_engine_trigger_enable(struct spi_offload *offload)
{
struct spi_engine_offload *priv = offload->priv;
struct spi_engine *spi_engine = priv->spi_engine;
unsigned int reg;
reg = readl_relaxed(spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_CTRL(priv->offload_num));
reg |= SPI_ENGINE_OFFLOAD_CTRL_ENABLE;
writel_relaxed(reg, spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_CTRL(priv->offload_num));
return 0;
}
static void spi_engine_trigger_disable(struct spi_offload *offload)
{
struct spi_engine_offload *priv = offload->priv;
struct spi_engine *spi_engine = priv->spi_engine;
unsigned int reg;
reg = readl_relaxed(spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_CTRL(priv->offload_num));
reg &= ~SPI_ENGINE_OFFLOAD_CTRL_ENABLE;
writel_relaxed(reg, spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_CTRL(priv->offload_num));
}
static struct dma_chan
*spi_engine_tx_stream_request_dma_chan(struct spi_offload *offload)
{
struct spi_engine_offload *priv = offload->priv;
char name[16];
snprintf(name, sizeof(name), "offload%u-tx", priv->offload_num);
return dma_request_chan(offload->provider_dev, name);
}
static struct dma_chan
*spi_engine_rx_stream_request_dma_chan(struct spi_offload *offload)
{
struct spi_engine_offload *priv = offload->priv;
char name[16];
snprintf(name, sizeof(name), "offload%u-rx", priv->offload_num);
return dma_request_chan(offload->provider_dev, name);
}
static const struct spi_offload_ops spi_engine_offload_ops = {
.trigger_enable = spi_engine_trigger_enable,
.trigger_disable = spi_engine_trigger_disable,
.tx_stream_request_dma_chan = spi_engine_tx_stream_request_dma_chan,
.rx_stream_request_dma_chan = spi_engine_rx_stream_request_dma_chan,
};
static void spi_engine_release_hw(void *p)
{
struct spi_engine *spi_engine = p;
writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
writel_relaxed(0x01, spi_engine->base + SPI_ENGINE_REG_RESET);
}
static int spi_engine_probe(struct platform_device *pdev)
{
struct spi_engine *spi_engine;
struct spi_controller *host;
unsigned int version;
int irq, ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
host = devm_spi_alloc_host(&pdev->dev, sizeof(*spi_engine));
if (!host)
return -ENOMEM;
spi_engine = spi_controller_get_devdata(host);
spin_lock_init(&spi_engine->lock);
init_completion(&spi_engine->msg_complete);
/*
* REVISIT: for now, all SPI Engines only have one offload. In the
* future, this should be read from a memory mapped register to
* determine the number of offloads enabled at HDL compile time. For
* now, we can tell if an offload is present if there is a trigger
* source wired up to it.
*/
if (device_property_present(&pdev->dev, "trigger-sources")) {
struct spi_engine_offload *priv;
spi_engine->offload =
devm_spi_offload_alloc(&pdev->dev,
sizeof(struct spi_engine_offload));
if (IS_ERR(spi_engine->offload))
return PTR_ERR(spi_engine->offload);
priv = spi_engine->offload->priv;
priv->spi_engine = spi_engine;
priv->offload_num = 0;
spi_engine->offload->ops = &spi_engine_offload_ops;
spi_engine->offload_caps = SPI_OFFLOAD_CAP_TRIGGER;
if (device_property_match_string(&pdev->dev, "dma-names", "offload0-rx") >= 0) {
spi_engine->offload_caps |= SPI_OFFLOAD_CAP_RX_STREAM_DMA;
spi_engine->offload->xfer_flags |= SPI_OFFLOAD_XFER_RX_STREAM;
}
if (device_property_match_string(&pdev->dev, "dma-names", "offload0-tx") >= 0) {
spi_engine->offload_caps |= SPI_OFFLOAD_CAP_TX_STREAM_DMA;
spi_engine->offload->xfer_flags |= SPI_OFFLOAD_XFER_TX_STREAM;
} else {
/*
* HDL compile option to enable TX DMA stream also disables
* the SDO memory, so can't do both at the same time.
*/
spi_engine->offload_caps |= SPI_OFFLOAD_CAP_TX_STATIC_DATA;
}
}
spi_engine->clk = devm_clk_get_enabled(&pdev->dev, "s_axi_aclk");
if (IS_ERR(spi_engine->clk))
return PTR_ERR(spi_engine->clk);
spi_engine->ref_clk = devm_clk_get_enabled(&pdev->dev, "spi_clk");
if (IS_ERR(spi_engine->ref_clk))
return PTR_ERR(spi_engine->ref_clk);
spi_engine->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spi_engine->base))
return PTR_ERR(spi_engine->base);
version = readl(spi_engine->base + ADI_AXI_REG_VERSION);
if (ADI_AXI_PCORE_VER_MAJOR(version) != 1) {
dev_err(&pdev->dev, "Unsupported peripheral version %u.%u.%u\n",
ADI_AXI_PCORE_VER_MAJOR(version),
ADI_AXI_PCORE_VER_MINOR(version),
ADI_AXI_PCORE_VER_PATCH(version));
return -ENODEV;
}
if (ADI_AXI_PCORE_VER_MINOR(version) >= 1) {
unsigned int sizes = readl(spi_engine->base +
SPI_ENGINE_REG_OFFLOAD_MEM_ADDR_WIDTH);
spi_engine->offload_ctrl_mem_size = 1 <<
FIELD_GET(SPI_ENGINE_SPI_OFFLOAD_MEM_WIDTH_CMD, sizes);
spi_engine->offload_sdo_mem_size = 1 <<
FIELD_GET(SPI_ENGINE_SPI_OFFLOAD_MEM_WIDTH_SDO, sizes);
} else {
spi_engine->offload_ctrl_mem_size = SPI_ENGINE_OFFLOAD_CMD_FIFO_SIZE;
spi_engine->offload_sdo_mem_size = SPI_ENGINE_OFFLOAD_SDO_FIFO_SIZE;
}
writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_RESET);
writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
ret = devm_add_action_or_reset(&pdev->dev, spi_engine_release_hw,
spi_engine);
if (ret)
return ret;
ret = devm_request_irq(&pdev->dev, irq, spi_engine_irq, 0, pdev->name,
host);
if (ret)
return ret;
host->dev.of_node = pdev->dev.of_node;
host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE;
host->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
host->max_speed_hz = clk_get_rate(spi_engine->ref_clk) / 2;
host->transfer_one_message = spi_engine_transfer_one_message;
host->optimize_message = spi_engine_optimize_message;
host->unoptimize_message = spi_engine_unoptimize_message;
host->get_offload = spi_engine_get_offload;
host->put_offload = spi_engine_put_offload;
host->num_chipselect = 8;
/* Some features depend of the IP core version. */
if (ADI_AXI_PCORE_VER_MAJOR(version) >= 1) {
if (ADI_AXI_PCORE_VER_MINOR(version) >= 2) {
host->mode_bits |= SPI_CS_HIGH;
host->setup = spi_engine_setup;
}
if (ADI_AXI_PCORE_VER_MINOR(version) >= 3)
host->mode_bits |= SPI_MOSI_IDLE_LOW | SPI_MOSI_IDLE_HIGH;
}
if (host->max_speed_hz == 0)
return dev_err_probe(&pdev->dev, -EINVAL, "spi_clk rate is 0");
return devm_spi_register_controller(&pdev->dev, host);
}
static const struct of_device_id spi_engine_match_table[] = {
{ .compatible = "adi,axi-spi-engine-1.00.a" },
{ },
};
MODULE_DEVICE_TABLE(of, spi_engine_match_table);
static struct platform_driver spi_engine_driver = {
.probe = spi_engine_probe,
.driver = {
.name = "spi-engine",
.of_match_table = spi_engine_match_table,
},
};
module_platform_driver(spi_engine_driver);
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Analog Devices SPI engine peripheral driver");
MODULE_LICENSE("GPL");