linux/drivers/spi/spi-stm32-ospi.c
Peng Fan cc1273dfac
spi: stm32-ospi: Include "gpio/consumer.h"
of_gpio.h should be deprecated, use "gpio/consumer.h".

Signed-off-by: Peng Fan <peng.fan@nxp.com>
Link: https://patch.msgid.link/20250318045549.1711502-1-peng.fan@oss.nxp.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2025-03-18 12:27:42 +00:00

1064 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2025 - All Rights Reserved
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sizes.h>
#include <linux/spi/spi-mem.h>
#include <linux/types.h>
#define OSPI_CR 0x00
#define CR_EN BIT(0)
#define CR_ABORT BIT(1)
#define CR_DMAEN BIT(2)
#define CR_FTHRES_SHIFT 8
#define CR_TEIE BIT(16)
#define CR_TCIE BIT(17)
#define CR_SMIE BIT(19)
#define CR_APMS BIT(22)
#define CR_CSSEL BIT(24)
#define CR_FMODE_MASK GENMASK(29, 28)
#define CR_FMODE_INDW (0U)
#define CR_FMODE_INDR (1U)
#define CR_FMODE_APM (2U)
#define CR_FMODE_MM (3U)
#define OSPI_DCR1 0x08
#define DCR1_DLYBYP BIT(3)
#define DCR1_DEVSIZE_MASK GENMASK(20, 16)
#define DCR1_MTYP_MASK GENMASK(26, 24)
#define DCR1_MTYP_MX_MODE 1
#define DCR1_MTYP_HP_MEMMODE 4
#define OSPI_DCR2 0x0c
#define DCR2_PRESC_MASK GENMASK(7, 0)
#define OSPI_SR 0x20
#define SR_TEF BIT(0)
#define SR_TCF BIT(1)
#define SR_FTF BIT(2)
#define SR_SMF BIT(3)
#define SR_BUSY BIT(5)
#define OSPI_FCR 0x24
#define FCR_CTEF BIT(0)
#define FCR_CTCF BIT(1)
#define FCR_CSMF BIT(3)
#define OSPI_DLR 0x40
#define OSPI_AR 0x48
#define OSPI_DR 0x50
#define OSPI_PSMKR 0x80
#define OSPI_PSMAR 0x88
#define OSPI_CCR 0x100
#define CCR_IMODE_MASK GENMASK(2, 0)
#define CCR_IDTR BIT(3)
#define CCR_ISIZE_MASK GENMASK(5, 4)
#define CCR_ADMODE_MASK GENMASK(10, 8)
#define CCR_ADMODE_8LINES 4
#define CCR_ADDTR BIT(11)
#define CCR_ADSIZE_MASK GENMASK(13, 12)
#define CCR_ADSIZE_32BITS 3
#define CCR_DMODE_MASK GENMASK(26, 24)
#define CCR_DMODE_8LINES 4
#define CCR_DQSE BIT(29)
#define CCR_DDTR BIT(27)
#define CCR_BUSWIDTH_0 0x0
#define CCR_BUSWIDTH_1 0x1
#define CCR_BUSWIDTH_2 0x2
#define CCR_BUSWIDTH_4 0x3
#define CCR_BUSWIDTH_8 0x4
#define OSPI_TCR 0x108
#define TCR_DCYC_MASK GENMASK(4, 0)
#define TCR_DHQC BIT(28)
#define TCR_SSHIFT BIT(30)
#define OSPI_IR 0x110
#define STM32_OSPI_MAX_MMAP_SZ SZ_256M
#define STM32_OSPI_MAX_NORCHIP 2
#define STM32_FIFO_TIMEOUT_US 30000
#define STM32_ABT_TIMEOUT_US 100000
#define STM32_COMP_TIMEOUT_MS 5000
#define STM32_BUSY_TIMEOUT_US 100000
#define STM32_AUTOSUSPEND_DELAY -1
struct stm32_ospi {
struct device *dev;
struct spi_controller *ctrl;
struct clk *clk;
struct reset_control *rstc;
struct completion data_completion;
struct completion match_completion;
struct dma_chan *dma_chtx;
struct dma_chan *dma_chrx;
struct completion dma_completion;
void __iomem *regs_base;
void __iomem *mm_base;
phys_addr_t regs_phys_base;
resource_size_t mm_size;
u32 clk_rate;
u32 fmode;
u32 cr_reg;
u32 dcr_reg;
u32 flash_presc[STM32_OSPI_MAX_NORCHIP];
int irq;
unsigned long status_timeout;
/*
* To protect device configuration, could be different between
* 2 flash access
*/
struct mutex lock;
};
static void stm32_ospi_read_fifo(u8 *val, void __iomem *addr)
{
*val = readb_relaxed(addr);
}
static void stm32_ospi_write_fifo(u8 *val, void __iomem *addr)
{
writeb_relaxed(*val, addr);
}
static int stm32_ospi_abort(struct stm32_ospi *ospi)
{
void __iomem *regs_base = ospi->regs_base;
u32 cr;
int timeout;
cr = readl_relaxed(regs_base + OSPI_CR) | CR_ABORT;
writel_relaxed(cr, regs_base + OSPI_CR);
/* wait clear of abort bit by hw */
timeout = readl_relaxed_poll_timeout_atomic(regs_base + OSPI_CR,
cr, !(cr & CR_ABORT), 1,
STM32_ABT_TIMEOUT_US);
if (timeout)
dev_err(ospi->dev, "%s abort timeout:%d\n", __func__, timeout);
return timeout;
}
static int stm32_ospi_poll(struct stm32_ospi *ospi, u8 *buf, u32 len, bool read)
{
void __iomem *regs_base = ospi->regs_base;
void (*fifo)(u8 *val, void __iomem *addr);
u32 sr;
int ret;
if (read)
fifo = stm32_ospi_read_fifo;
else
fifo = stm32_ospi_write_fifo;
while (len--) {
ret = readl_relaxed_poll_timeout_atomic(regs_base + OSPI_SR,
sr, sr & SR_FTF, 1,
STM32_FIFO_TIMEOUT_US);
if (ret) {
dev_err(ospi->dev, "fifo timeout (len:%d stat:%#x)\n",
len, sr);
return ret;
}
fifo(buf++, regs_base + OSPI_DR);
}
return 0;
}
static int stm32_ospi_wait_nobusy(struct stm32_ospi *ospi)
{
u32 sr;
return readl_relaxed_poll_timeout_atomic(ospi->regs_base + OSPI_SR,
sr, !(sr & SR_BUSY), 1,
STM32_BUSY_TIMEOUT_US);
}
static int stm32_ospi_wait_cmd(struct stm32_ospi *ospi)
{
void __iomem *regs_base = ospi->regs_base;
u32 cr, sr;
int err = 0;
if ((readl_relaxed(regs_base + OSPI_SR) & SR_TCF) ||
ospi->fmode == CR_FMODE_APM)
goto out;
reinit_completion(&ospi->data_completion);
cr = readl_relaxed(regs_base + OSPI_CR);
writel_relaxed(cr | CR_TCIE | CR_TEIE, regs_base + OSPI_CR);
if (!wait_for_completion_timeout(&ospi->data_completion,
msecs_to_jiffies(STM32_COMP_TIMEOUT_MS)))
err = -ETIMEDOUT;
sr = readl_relaxed(regs_base + OSPI_SR);
if (sr & SR_TCF)
/* avoid false timeout */
err = 0;
if (sr & SR_TEF)
err = -EIO;
out:
/* clear flags */
writel_relaxed(FCR_CTCF | FCR_CTEF, regs_base + OSPI_FCR);
if (!err)
err = stm32_ospi_wait_nobusy(ospi);
return err;
}
static void stm32_ospi_dma_callback(void *arg)
{
struct completion *dma_completion = arg;
complete(dma_completion);
}
static irqreturn_t stm32_ospi_irq(int irq, void *dev_id)
{
struct stm32_ospi *ospi = (struct stm32_ospi *)dev_id;
void __iomem *regs_base = ospi->regs_base;
u32 cr, sr;
cr = readl_relaxed(regs_base + OSPI_CR);
sr = readl_relaxed(regs_base + OSPI_SR);
if (cr & CR_SMIE && sr & SR_SMF) {
/* disable irq */
cr &= ~CR_SMIE;
writel_relaxed(cr, regs_base + OSPI_CR);
complete(&ospi->match_completion);
return IRQ_HANDLED;
}
if (sr & (SR_TEF | SR_TCF)) {
/* disable irq */
cr &= ~CR_TCIE & ~CR_TEIE;
writel_relaxed(cr, regs_base + OSPI_CR);
complete(&ospi->data_completion);
}
return IRQ_HANDLED;
}
static void stm32_ospi_dma_setup(struct stm32_ospi *ospi,
struct dma_slave_config *dma_cfg)
{
if (dma_cfg && ospi->dma_chrx) {
if (dmaengine_slave_config(ospi->dma_chrx, dma_cfg)) {
dev_err(ospi->dev, "dma rx config failed\n");
dma_release_channel(ospi->dma_chrx);
ospi->dma_chrx = NULL;
}
}
if (dma_cfg && ospi->dma_chtx) {
if (dmaengine_slave_config(ospi->dma_chtx, dma_cfg)) {
dev_err(ospi->dev, "dma tx config failed\n");
dma_release_channel(ospi->dma_chtx);
ospi->dma_chtx = NULL;
}
}
init_completion(&ospi->dma_completion);
}
static int stm32_ospi_tx_mm(struct stm32_ospi *ospi,
const struct spi_mem_op *op)
{
memcpy_fromio(op->data.buf.in, ospi->mm_base + op->addr.val,
op->data.nbytes);
return 0;
}
static int stm32_ospi_tx_dma(struct stm32_ospi *ospi,
const struct spi_mem_op *op)
{
struct dma_async_tx_descriptor *desc;
void __iomem *regs_base = ospi->regs_base;
enum dma_transfer_direction dma_dir;
struct dma_chan *dma_ch;
struct sg_table sgt;
dma_cookie_t cookie;
u32 cr, t_out;
int err;
if (op->data.dir == SPI_MEM_DATA_IN) {
dma_dir = DMA_DEV_TO_MEM;
dma_ch = ospi->dma_chrx;
} else {
dma_dir = DMA_MEM_TO_DEV;
dma_ch = ospi->dma_chtx;
}
/*
* Spi_map_buf return -EINVAL if the buffer is not DMA-able
* (DMA-able: in vmalloc | kmap | virt_addr_valid)
*/
err = spi_controller_dma_map_mem_op_data(ospi->ctrl, op, &sgt);
if (err)
return err;
desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents,
dma_dir, DMA_PREP_INTERRUPT);
if (!desc) {
err = -ENOMEM;
goto out_unmap;
}
cr = readl_relaxed(regs_base + OSPI_CR);
reinit_completion(&ospi->dma_completion);
desc->callback = stm32_ospi_dma_callback;
desc->callback_param = &ospi->dma_completion;
cookie = dmaengine_submit(desc);
err = dma_submit_error(cookie);
if (err)
goto out;
dma_async_issue_pending(dma_ch);
writel_relaxed(cr | CR_DMAEN, regs_base + OSPI_CR);
t_out = sgt.nents * STM32_COMP_TIMEOUT_MS;
if (!wait_for_completion_timeout(&ospi->dma_completion,
msecs_to_jiffies(t_out)))
err = -ETIMEDOUT;
if (err)
dmaengine_terminate_all(dma_ch);
out:
writel_relaxed(cr & ~CR_DMAEN, regs_base + OSPI_CR);
out_unmap:
spi_controller_dma_unmap_mem_op_data(ospi->ctrl, op, &sgt);
return err;
}
static int stm32_ospi_xfer(struct stm32_ospi *ospi, const struct spi_mem_op *op)
{
u8 *buf;
if (!op->data.nbytes)
return 0;
if (ospi->fmode == CR_FMODE_MM)
return stm32_ospi_tx_mm(ospi, op);
else if (((op->data.dir == SPI_MEM_DATA_IN && ospi->dma_chrx) ||
(op->data.dir == SPI_MEM_DATA_OUT && ospi->dma_chtx)) &&
op->data.nbytes > 8)
if (!stm32_ospi_tx_dma(ospi, op))
return 0;
if (op->data.dir == SPI_MEM_DATA_IN)
buf = op->data.buf.in;
else
buf = (u8 *)op->data.buf.out;
return stm32_ospi_poll(ospi, buf, op->data.nbytes,
op->data.dir == SPI_MEM_DATA_IN);
}
static int stm32_ospi_wait_poll_status(struct stm32_ospi *ospi,
const struct spi_mem_op *op)
{
void __iomem *regs_base = ospi->regs_base;
u32 cr;
reinit_completion(&ospi->match_completion);
cr = readl_relaxed(regs_base + OSPI_CR);
writel_relaxed(cr | CR_SMIE, regs_base + OSPI_CR);
if (!wait_for_completion_timeout(&ospi->match_completion,
msecs_to_jiffies(ospi->status_timeout))) {
u32 sr = readl_relaxed(regs_base + OSPI_SR);
/* Avoid false timeout */
if (!(sr & SR_SMF))
return -ETIMEDOUT;
}
writel_relaxed(FCR_CSMF, regs_base + OSPI_FCR);
return 0;
}
static int stm32_ospi_get_mode(u8 buswidth)
{
switch (buswidth) {
case 8:
return CCR_BUSWIDTH_8;
case 4:
return CCR_BUSWIDTH_4;
default:
return buswidth;
}
}
static int stm32_ospi_send(struct spi_device *spi, const struct spi_mem_op *op)
{
struct stm32_ospi *ospi = spi_controller_get_devdata(spi->controller);
void __iomem *regs_base = ospi->regs_base;
u32 ccr, cr, dcr2, tcr;
int timeout, err = 0, err_poll_status = 0;
u8 cs = spi->chip_select[ffs(spi->cs_index_mask) - 1];
dev_dbg(ospi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.val, op->data.nbytes);
cr = readl_relaxed(ospi->regs_base + OSPI_CR);
cr &= ~CR_CSSEL;
cr |= FIELD_PREP(CR_CSSEL, cs);
cr &= ~CR_FMODE_MASK;
cr |= FIELD_PREP(CR_FMODE_MASK, ospi->fmode);
writel_relaxed(cr, regs_base + OSPI_CR);
if (op->data.nbytes)
writel_relaxed(op->data.nbytes - 1, regs_base + OSPI_DLR);
/* set prescaler */
dcr2 = readl_relaxed(regs_base + OSPI_DCR2);
dcr2 |= FIELD_PREP(DCR2_PRESC_MASK, ospi->flash_presc[cs]);
writel_relaxed(dcr2, regs_base + OSPI_DCR2);
ccr = FIELD_PREP(CCR_IMODE_MASK, stm32_ospi_get_mode(op->cmd.buswidth));
if (op->addr.nbytes) {
ccr |= FIELD_PREP(CCR_ADMODE_MASK,
stm32_ospi_get_mode(op->addr.buswidth));
ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1);
}
tcr = TCR_SSHIFT;
if (op->dummy.buswidth && op->dummy.nbytes) {
tcr |= FIELD_PREP(TCR_DCYC_MASK,
op->dummy.nbytes * 8 / op->dummy.buswidth);
}
writel_relaxed(tcr, regs_base + OSPI_TCR);
if (op->data.nbytes) {
ccr |= FIELD_PREP(CCR_DMODE_MASK,
stm32_ospi_get_mode(op->data.buswidth));
}
writel_relaxed(ccr, regs_base + OSPI_CCR);
/* set instruction, must be set after ccr register update */
writel_relaxed(op->cmd.opcode, regs_base + OSPI_IR);
if (op->addr.nbytes && ospi->fmode != CR_FMODE_MM)
writel_relaxed(op->addr.val, regs_base + OSPI_AR);
if (ospi->fmode == CR_FMODE_APM)
err_poll_status = stm32_ospi_wait_poll_status(ospi, op);
err = stm32_ospi_xfer(ospi, op);
/*
* Abort in:
* -error case
* -read memory map: prefetching must be stopped if we read the last
* byte of device (device size - fifo size). like device size is not
* knows, the prefetching is always stop.
*/
if (err || err_poll_status || ospi->fmode == CR_FMODE_MM)
goto abort;
/* Wait end of tx in indirect mode */
err = stm32_ospi_wait_cmd(ospi);
if (err)
goto abort;
return 0;
abort:
timeout = stm32_ospi_abort(ospi);
writel_relaxed(FCR_CTCF | FCR_CSMF, regs_base + OSPI_FCR);
if (err || err_poll_status || timeout)
dev_err(ospi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n",
__func__, err, err_poll_status, timeout);
return err;
}
static int stm32_ospi_poll_status(struct spi_mem *mem,
const struct spi_mem_op *op,
u16 mask, u16 match,
unsigned long initial_delay_us,
unsigned long polling_rate_us,
unsigned long timeout_ms)
{
struct stm32_ospi *ospi = spi_controller_get_devdata(mem->spi->controller);
void __iomem *regs_base = ospi->regs_base;
int ret;
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
return ret;
mutex_lock(&ospi->lock);
writel_relaxed(mask, regs_base + OSPI_PSMKR);
writel_relaxed(match, regs_base + OSPI_PSMAR);
ospi->fmode = CR_FMODE_APM;
ospi->status_timeout = timeout_ms;
ret = stm32_ospi_send(mem->spi, op);
mutex_unlock(&ospi->lock);
pm_runtime_mark_last_busy(ospi->dev);
pm_runtime_put_autosuspend(ospi->dev);
return ret;
}
static int stm32_ospi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct stm32_ospi *ospi = spi_controller_get_devdata(mem->spi->controller);
int ret;
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
return ret;
mutex_lock(&ospi->lock);
if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes)
ospi->fmode = CR_FMODE_INDR;
else
ospi->fmode = CR_FMODE_INDW;
ret = stm32_ospi_send(mem->spi, op);
mutex_unlock(&ospi->lock);
pm_runtime_mark_last_busy(ospi->dev);
pm_runtime_put_autosuspend(ospi->dev);
return ret;
}
static int stm32_ospi_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
struct stm32_ospi *ospi = spi_controller_get_devdata(desc->mem->spi->controller);
if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT)
return -EOPNOTSUPP;
/* Should never happen, as mm_base == null is an error probe exit condition */
if (!ospi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN)
return -EOPNOTSUPP;
if (!ospi->mm_size)
return -EOPNOTSUPP;
return 0;
}
static ssize_t stm32_ospi_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct stm32_ospi *ospi = spi_controller_get_devdata(desc->mem->spi->controller);
struct spi_mem_op op;
u32 addr_max;
int ret;
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
return ret;
mutex_lock(&ospi->lock);
/*
* Make a local copy of desc op_tmpl and complete dirmap rdesc
* spi_mem_op template with offs, len and *buf in order to get
* all needed transfer information into struct spi_mem_op
*/
memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op));
dev_dbg(ospi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf);
op.data.nbytes = len;
op.addr.val = desc->info.offset + offs;
op.data.buf.in = buf;
addr_max = op.addr.val + op.data.nbytes + 1;
if (addr_max < ospi->mm_size && op.addr.buswidth)
ospi->fmode = CR_FMODE_MM;
else
ospi->fmode = CR_FMODE_INDR;
ret = stm32_ospi_send(desc->mem->spi, &op);
mutex_unlock(&ospi->lock);
pm_runtime_mark_last_busy(ospi->dev);
pm_runtime_put_autosuspend(ospi->dev);
return ret ?: len;
}
static int stm32_ospi_transfer_one_message(struct spi_controller *ctrl,
struct spi_message *msg)
{
struct stm32_ospi *ospi = spi_controller_get_devdata(ctrl);
struct spi_transfer *transfer;
struct spi_device *spi = msg->spi;
struct spi_mem_op op;
struct gpio_desc *cs_gpiod = spi->cs_gpiod[ffs(spi->cs_index_mask) - 1];
int ret = 0;
if (!cs_gpiod)
return -EOPNOTSUPP;
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
return ret;
mutex_lock(&ospi->lock);
gpiod_set_value_cansleep(cs_gpiod, true);
list_for_each_entry(transfer, &msg->transfers, transfer_list) {
u8 dummy_bytes = 0;
memset(&op, 0, sizeof(op));
dev_dbg(ospi->dev, "tx_buf:%p tx_nbits:%d rx_buf:%p rx_nbits:%d len:%d dummy_data:%d\n",
transfer->tx_buf, transfer->tx_nbits,
transfer->rx_buf, transfer->rx_nbits,
transfer->len, transfer->dummy_data);
/*
* OSPI hardware supports dummy bytes transfer.
* If current transfer is dummy byte, merge it with the next
* transfer in order to take into account OSPI block constraint
*/
if (transfer->dummy_data) {
op.dummy.buswidth = transfer->tx_nbits;
op.dummy.nbytes = transfer->len;
dummy_bytes = transfer->len;
/* If happens, means that message is not correctly built */
if (list_is_last(&transfer->transfer_list, &msg->transfers)) {
ret = -EINVAL;
goto end_of_transfer;
}
transfer = list_next_entry(transfer, transfer_list);
}
op.data.nbytes = transfer->len;
if (transfer->rx_buf) {
ospi->fmode = CR_FMODE_INDR;
op.data.buswidth = transfer->rx_nbits;
op.data.dir = SPI_MEM_DATA_IN;
op.data.buf.in = transfer->rx_buf;
} else {
ospi->fmode = CR_FMODE_INDW;
op.data.buswidth = transfer->tx_nbits;
op.data.dir = SPI_MEM_DATA_OUT;
op.data.buf.out = transfer->tx_buf;
}
ret = stm32_ospi_send(spi, &op);
if (ret)
goto end_of_transfer;
msg->actual_length += transfer->len + dummy_bytes;
}
end_of_transfer:
gpiod_set_value_cansleep(cs_gpiod, false);
mutex_unlock(&ospi->lock);
msg->status = ret;
spi_finalize_current_message(ctrl);
pm_runtime_mark_last_busy(ospi->dev);
pm_runtime_put_autosuspend(ospi->dev);
return ret;
}
static int stm32_ospi_setup(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct stm32_ospi *ospi = spi_controller_get_devdata(ctrl);
void __iomem *regs_base = ospi->regs_base;
int ret;
u8 cs = spi->chip_select[ffs(spi->cs_index_mask) - 1];
if (ctrl->busy)
return -EBUSY;
if (!spi->max_speed_hz)
return -EINVAL;
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
return ret;
ospi->flash_presc[cs] = DIV_ROUND_UP(ospi->clk_rate, spi->max_speed_hz) - 1;
mutex_lock(&ospi->lock);
ospi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_EN;
writel_relaxed(ospi->cr_reg, regs_base + OSPI_CR);
/* set dcr fsize to max address */
ospi->dcr_reg = DCR1_DEVSIZE_MASK | DCR1_DLYBYP;
writel_relaxed(ospi->dcr_reg, regs_base + OSPI_DCR1);
mutex_unlock(&ospi->lock);
pm_runtime_mark_last_busy(ospi->dev);
pm_runtime_put_autosuspend(ospi->dev);
return 0;
}
/*
* No special host constraint, so use default spi_mem_default_supports_op
* to check supported mode.
*/
static const struct spi_controller_mem_ops stm32_ospi_mem_ops = {
.exec_op = stm32_ospi_exec_op,
.dirmap_create = stm32_ospi_dirmap_create,
.dirmap_read = stm32_ospi_dirmap_read,
.poll_status = stm32_ospi_poll_status,
};
static int stm32_ospi_get_resources(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_ospi *ospi = platform_get_drvdata(pdev);
struct resource *res;
struct reserved_mem *rmem = NULL;
struct device_node *node;
int ret;
ospi->regs_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(ospi->regs_base))
return PTR_ERR(ospi->regs_base);
ospi->regs_phys_base = res->start;
ospi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(ospi->clk))
return dev_err_probe(dev, PTR_ERR(ospi->clk),
"Can't get clock\n");
ospi->clk_rate = clk_get_rate(ospi->clk);
if (!ospi->clk_rate) {
dev_err(dev, "Invalid clock rate\n");
return -EINVAL;
}
ospi->irq = platform_get_irq(pdev, 0);
if (ospi->irq < 0)
return ospi->irq;
ret = devm_request_irq(dev, ospi->irq, stm32_ospi_irq, 0,
dev_name(dev), ospi);
if (ret) {
dev_err(dev, "Failed to request irq\n");
return ret;
}
ospi->rstc = devm_reset_control_array_get_optional_exclusive(dev);
if (IS_ERR(ospi->rstc))
return dev_err_probe(dev, PTR_ERR(ospi->rstc),
"Can't get reset\n");
ospi->dma_chrx = dma_request_chan(dev, "rx");
if (IS_ERR(ospi->dma_chrx)) {
ret = PTR_ERR(ospi->dma_chrx);
ospi->dma_chrx = NULL;
if (ret == -EPROBE_DEFER)
goto err_dma;
}
ospi->dma_chtx = dma_request_chan(dev, "tx");
if (IS_ERR(ospi->dma_chtx)) {
ret = PTR_ERR(ospi->dma_chtx);
ospi->dma_chtx = NULL;
if (ret == -EPROBE_DEFER)
goto err_dma;
}
node = of_parse_phandle(dev->of_node, "memory-region", 0);
if (node)
rmem = of_reserved_mem_lookup(node);
of_node_put(node);
if (rmem) {
ospi->mm_size = rmem->size;
ospi->mm_base = devm_ioremap(dev, rmem->base, rmem->size);
if (!ospi->mm_base) {
dev_err(dev, "unable to map memory region: %pa+%pa\n",
&rmem->base, &rmem->size);
ret = -ENOMEM;
goto err_dma;
}
if (ospi->mm_size > STM32_OSPI_MAX_MMAP_SZ) {
dev_err(dev, "Memory map size outsize bounds\n");
ret = -EINVAL;
goto err_dma;
}
} else {
dev_info(dev, "No memory-map region found\n");
}
init_completion(&ospi->data_completion);
init_completion(&ospi->match_completion);
return 0;
err_dma:
dev_info(dev, "Can't get all resources (%d)\n", ret);
if (ospi->dma_chtx)
dma_release_channel(ospi->dma_chtx);
if (ospi->dma_chrx)
dma_release_channel(ospi->dma_chrx);
return ret;
};
static int stm32_ospi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_controller *ctrl;
struct stm32_ospi *ospi;
struct dma_slave_config dma_cfg;
struct device_node *child;
int ret;
u8 spi_flash_count = 0;
/*
* Flash subnodes sanity check:
* 1 or 2 spi-nand/spi-nor flashes => supported
* All other flash node configuration => not supported
*/
for_each_available_child_of_node(dev->of_node, child) {
if (of_device_is_compatible(child, "jedec,spi-nor") ||
of_device_is_compatible(child, "spi-nand"))
spi_flash_count++;
}
if (spi_flash_count == 0 || spi_flash_count > 2) {
dev_err(dev, "Incorrect DT flash node\n");
return -ENODEV;
}
ctrl = devm_spi_alloc_host(dev, sizeof(*ospi));
if (!ctrl)
return -ENOMEM;
ospi = spi_controller_get_devdata(ctrl);
ospi->ctrl = ctrl;
ospi->dev = &pdev->dev;
platform_set_drvdata(pdev, ospi);
ret = stm32_ospi_get_resources(pdev);
if (ret)
return ret;
memset(&dma_cfg, 0, sizeof(dma_cfg));
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
dma_cfg.src_addr = ospi->regs_phys_base + OSPI_DR;
dma_cfg.dst_addr = ospi->regs_phys_base + OSPI_DR;
dma_cfg.src_maxburst = 4;
dma_cfg.dst_maxburst = 4;
stm32_ospi_dma_setup(ospi, &dma_cfg);
mutex_init(&ospi->lock);
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
SPI_TX_DUAL | SPI_TX_QUAD |
SPI_TX_OCTAL | SPI_RX_OCTAL;
ctrl->flags = SPI_CONTROLLER_HALF_DUPLEX;
ctrl->setup = stm32_ospi_setup;
ctrl->bus_num = -1;
ctrl->mem_ops = &stm32_ospi_mem_ops;
ctrl->use_gpio_descriptors = true;
ctrl->transfer_one_message = stm32_ospi_transfer_one_message;
ctrl->num_chipselect = STM32_OSPI_MAX_NORCHIP;
ctrl->dev.of_node = dev->of_node;
pm_runtime_enable(ospi->dev);
pm_runtime_set_autosuspend_delay(ospi->dev, STM32_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(ospi->dev);
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
goto err_pm_enable;
if (ospi->rstc) {
reset_control_assert(ospi->rstc);
udelay(2);
reset_control_deassert(ospi->rstc);
}
ret = spi_register_controller(ctrl);
if (ret) {
/* Disable ospi */
writel_relaxed(0, ospi->regs_base + OSPI_CR);
goto err_pm_resume;
}
pm_runtime_mark_last_busy(ospi->dev);
pm_runtime_put_autosuspend(ospi->dev);
return 0;
err_pm_resume:
pm_runtime_put_sync_suspend(ospi->dev);
err_pm_enable:
pm_runtime_force_suspend(ospi->dev);
mutex_destroy(&ospi->lock);
return ret;
}
static void stm32_ospi_remove(struct platform_device *pdev)
{
struct stm32_ospi *ospi = platform_get_drvdata(pdev);
int ret;
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
return;
spi_unregister_controller(ospi->ctrl);
/* Disable ospi */
writel_relaxed(0, ospi->regs_base + OSPI_CR);
mutex_destroy(&ospi->lock);
if (ospi->dma_chtx)
dma_release_channel(ospi->dma_chtx);
if (ospi->dma_chrx)
dma_release_channel(ospi->dma_chrx);
pm_runtime_put_sync_suspend(ospi->dev);
pm_runtime_force_suspend(ospi->dev);
}
static int __maybe_unused stm32_ospi_suspend(struct device *dev)
{
struct stm32_ospi *ospi = dev_get_drvdata(dev);
pinctrl_pm_select_sleep_state(dev);
return pm_runtime_force_suspend(ospi->dev);
}
static int __maybe_unused stm32_ospi_resume(struct device *dev)
{
struct stm32_ospi *ospi = dev_get_drvdata(dev);
void __iomem *regs_base = ospi->regs_base;
int ret;
ret = pm_runtime_force_resume(ospi->dev);
if (ret < 0)
return ret;
pinctrl_pm_select_default_state(dev);
ret = pm_runtime_resume_and_get(ospi->dev);
if (ret < 0)
return ret;
writel_relaxed(ospi->cr_reg, regs_base + OSPI_CR);
writel_relaxed(ospi->dcr_reg, regs_base + OSPI_DCR1);
pm_runtime_mark_last_busy(ospi->dev);
pm_runtime_put_autosuspend(ospi->dev);
return 0;
}
static int __maybe_unused stm32_ospi_runtime_suspend(struct device *dev)
{
struct stm32_ospi *ospi = dev_get_drvdata(dev);
clk_disable_unprepare(ospi->clk);
return 0;
}
static int __maybe_unused stm32_ospi_runtime_resume(struct device *dev)
{
struct stm32_ospi *ospi = dev_get_drvdata(dev);
return clk_prepare_enable(ospi->clk);
}
static const struct dev_pm_ops stm32_ospi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(stm32_ospi_suspend, stm32_ospi_resume)
SET_RUNTIME_PM_OPS(stm32_ospi_runtime_suspend,
stm32_ospi_runtime_resume, NULL)
};
static const struct of_device_id stm32_ospi_of_match[] = {
{ .compatible = "st,stm32mp25-ospi" },
{},
};
MODULE_DEVICE_TABLE(of, stm32_ospi_of_match);
static struct platform_driver stm32_ospi_driver = {
.probe = stm32_ospi_probe,
.remove = stm32_ospi_remove,
.driver = {
.name = "stm32-ospi",
.pm = &stm32_ospi_pm_ops,
.of_match_table = stm32_ospi_of_match,
},
};
module_platform_driver(stm32_ospi_driver);
MODULE_DESCRIPTION("STMicroelectronics STM32 OCTO SPI driver");
MODULE_LICENSE("GPL");