linux/mm/migrate_device.c
Linus Torvalds eb0ece1602 - The 6 patch series "Enable strict percpu address space checks" from
Uros Bizjak uses x86 named address space qualifiers to provide
   compile-time checking of percpu area accesses.
 
   This has caused a small amount of fallout - two or three issues were
   reported.  In all cases the calling code was founf to be incorrect.
 
 - The 4 patch series "Some cleanup for memcg" from Chen Ridong
   implements some relatively monir cleanups for the memcontrol code.
 
 - The 17 patch series "mm: fixes for device-exclusive entries (hmm)"
   from David Hildenbrand fixes a boatload of issues which David found then
   using device-exclusive PTE entries when THP is enabled.  More work is
   needed, but this makes thins better - our own HMM selftests now succeed.
 
 - The 2 patch series "mm: zswap: remove z3fold and zbud" from Yosry
   Ahmed remove the z3fold and zbud implementations.  They have been
   deprecated for half a year and nobody has complained.
 
 - The 5 patch series "mm: further simplify VMA merge operation" from
   Lorenzo Stoakes implements numerous simplifications in this area.  No
   runtime effects are anticipated.
 
 - The 4 patch series "mm/madvise: remove redundant mmap_lock operations
   from process_madvise()" from SeongJae Park rationalizes the locking in
   the madvise() implementation.  Performance gains of 20-25% were observed
   in one MADV_DONTNEED microbenchmark.
 
 - The 12 patch series "Tiny cleanup and improvements about SWAP code"
   from Baoquan He contains a number of touchups to issues which Baoquan
   noticed when working on the swap code.
 
 - The 2 patch series "mm: kmemleak: Usability improvements" from Catalin
   Marinas implements a couple of improvements to the kmemleak user-visible
   output.
 
 - The 2 patch series "mm/damon/paddr: fix large folios access and
   schemes handling" from Usama Arif provides a couple of fixes for DAMON's
   handling of large folios.
 
 - The 3 patch series "mm/damon/core: fix wrong and/or useless
   damos_walk() behaviors" from SeongJae Park fixes a few issues with the
   accuracy of kdamond's walking of DAMON regions.
 
 - The 3 patch series "expose mapping wrprotect, fix fb_defio use" from
   Lorenzo Stoakes changes the interaction between framebuffer deferred-io
   and core MM.  No functional changes are anticipated - this is
   preparatory work for the future removal of page structure fields.
 
 - The 4 patch series "mm/damon: add support for hugepage_size DAMOS
   filter" from Usama Arif adds a DAMOS filter which permits the filtering
   by huge page sizes.
 
 - The 4 patch series "mm: permit guard regions for file-backed/shmem
   mappings" from Lorenzo Stoakes extends the guard region feature from its
   present "anon mappings only" state.  The feature now covers shmem and
   file-backed mappings.
 
 - The 4 patch series "mm: batched unmap lazyfree large folios during
   reclamation" from Barry Song cleans up and speeds up the unmapping for
   pte-mapped large folios.
 
 - The 18 patch series "reimplement per-vma lock as a refcount" from
   Suren Baghdasaryan puts the vm_lock back into the vma.  Our reasons for
   pulling it out were largely bogus and that change made the code more
   messy.  This patchset provides small (0-10%) improvements on one
   microbenchmark.
 
 - The 5 patch series "Docs/mm/damon: misc DAMOS filters documentation
   fixes and improves" from SeongJae Park does some maintenance work on the
   DAMON docs.
 
 - The 27 patch series "hugetlb/CMA improvements for large systems" from
   Frank van der Linden addresses a pile of issues which have been observed
   when using CMA on large machines.
 
 - The 2 patch series "mm/damon: introduce DAMOS filter type for unmapped
   pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the
   page's mapped/unmapped status.
 
 - The 19 patch series "zsmalloc/zram: there be preemption" from Sergey
   Senozhatsky teaches zram to run its compression and decompression
   operations preemptibly.
 
 - The 12 patch series "selftests/mm: Some cleanups from trying to run
   them" from Brendan Jackman fixes a pile of unrelated issues which
   Brendan encountered while runnimg our selftests.
 
 - The 2 patch series "fs/proc/task_mmu: add guard region bit to pagemap"
   from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
   determine whether a particular page is a guard page.
 
 - The 7 patch series "mm, swap: remove swap slot cache" from Kairui Song
   removes the swap slot cache from the allocation path - it simply wasn't
   being effective.
 
 - The 5 patch series "mm: cleanups for device-exclusive entries (hmm)"
   from David Hildenbrand implements a number of unrelated cleanups in this
   code.
 
 - The 5 patch series "mm: Rework generic PTDUMP configs" from Anshuman
   Khandual implements a number of preparatoty cleanups to the
   GENERIC_PTDUMP Kconfig logic.
 
 - The 8 patch series "mm/damon: auto-tune aggregation interval" from
   SeongJae Park implements a feedback-driven automatic tuning feature for
   DAMON's aggregation interval tuning.
 
 - The 5 patch series "Fix lazy mmu mode" from Ryan Roberts fixes some
   issues in powerpc, sparc and x86 lazy MMU implementations.  Ryan did
   this in preparation for implementing lazy mmu mode for arm64 to optimize
   vmalloc.
 
 - The 2 patch series "mm/page_alloc: Some clarifications for migratetype
   fallback" from Brendan Jackman reworks some commentary to make the code
   easier to follow.
 
 - The 3 patch series "page_counter cleanup and size reduction" from
   Shakeel Butt cleans up the page_counter code and fixes a size increase
   which we accidentally added late last year.
 
 - The 3 patch series "Add a command line option that enables control of
   how many threads should be used to allocate huge pages" from Thomas
   Prescher does that.  It allows the careful operator to significantly
   reduce boot time by tuning the parallalization of huge page
   initialization.
 
 - The 3 patch series "Fix calculations in trace_balance_dirty_pages()
   for cgwb" from Tang Yizhou fixes the tracing output from the dirty page
   balancing code.
 
 - The 9 patch series "mm/damon: make allow filters after reject filters
   useful and intuitive" from SeongJae Park improves the handling of allow
   and reject filters.  Behaviour is made more consistent and the
   documention is updated accordingly.
 
 - The 5 patch series "Switch zswap to object read/write APIs" from Yosry
   Ahmed updates zswap to the new object read/write APIs and thus permits
   the removal of some legacy code from zpool and zsmalloc.
 
 - The 6 patch series "Some trivial cleanups for shmem" from Baolin Wang
   does as it claims.
 
 - The 20 patch series "fs/dax: Fix ZONE_DEVICE page reference counts"
   from Alistair Popple regularizes the weird ZONE_DEVICE page refcount
   handling in DAX, permittig the removal of a number of special-case
   checks.
 
 - The 4 patch series "refactor mremap and fix bug" from Lorenzo Stoakes
   is a preparatoty refactoring and cleanup of the mremap() code.
 
 - The 20 patch series "mm: MM owner tracking for large folios (!hugetlb)
   + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
   which we determine whether a large folio is known to be mapped
   exclusively into a single MM.
 
 - The 8 patch series "mm/damon: add sysfs dirs for managing DAMOS
   filters based on handling layers" from SeongJae Park adds a couple of
   new sysfs directories to ease the management of DAMON/DAMOS filters.
 
 - The 13 patch series "arch, mm: reduce code duplication in mem_init()"
   from Mike Rapoport consolidates many per-arch implementations of
   mem_init() into code generic code, where that is practical.
 
 - The 13 patch series "mm/damon/sysfs: commit parameters online via
   damon_call()" from SeongJae Park continues the cleaning up of sysfs
   access to DAMON internal data.
 
 - The 3 patch series "mm: page_ext: Introduce new iteration API" from
   Luiz Capitulino reworks the page_ext initialization to fix a boot-time
   crash which was observed with an unusual combination of compile and
   cmdline options.
 
 - The 8 patch series "Buddy allocator like (or non-uniform) folio split"
   from Zi Yan reworks the code to split a folio into smaller folios.  The
   main benefit is lessened memory consumption: fewer post-split folios are
   generated.
 
 - The 2 patch series "Minimize xa_node allocation during xarry split"
   from Zi Yan reduces the number of xarray xa_nodes which are generated
   during an xarray split.
 
 - The 2 patch series "drivers/base/memory: Two cleanups" from Gavin Shan
   performs some maintenance work on the drivers/base/memory code.
 
 - The 3 patch series "Add tracepoints for lowmem reserves, watermarks
   and totalreserve_pages" from Martin Liu adds some more tracepoints to
   the page allocator code.
 
 - The 4 patch series "mm/madvise: cleanup requests validations and
   classifications" from SeongJae Park cleans up some warts which SeongJae
   observed during his earlier madvise work.
 
 - The 3 patch series "mm/hwpoison: Fix regressions in memory failure
   handling" from Shuai Xue addresses two quite serious regressions which
   Shuai has observed in the memory-failure implementation.
 
 - The 5 patch series "mm: reliable huge page allocator" from Johannes
   Weiner makes huge page allocations cheaper and more reliable by reducing
   fragmentation.
 
 - The 5 patch series "Minor memcg cleanups & prep for memdescs" from
   Matthew Wilcox is preparatory work for the future implementation of
   memdescs.
 
 - The 4 patch series "track memory used by balloon drivers" from Nico
   Pache introduces a way to track memory used by our various balloon
   drivers.
 
 - The 2 patch series "mm/damon: introduce DAMOS filter type for active
   pages" from Nhat Pham permits users to filter for active/inactive pages,
   separately for file and anon pages.
 
 - The 2 patch series "Adding Proactive Memory Reclaim Statistics" from
   Hao Jia separates the proactive reclaim statistics from the direct
   reclaim statistics.
 
 - The 2 patch series "mm/vmscan: don't try to reclaim hwpoison folio"
   from Jinjiang Tu fixes our handling of hwpoisoned pages within the
   reclaim code.
 -----BEGIN PGP SIGNATURE-----
 
 iHQEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ+nZaAAKCRDdBJ7gKXxA
 jsOWAPiP4r7CJHMZRK4eyJOkvS1a1r+TsIarrFZtjwvf/GIfAQCEG+JDxVfUaUSF
 Ee93qSSLR1BkNdDw+931Pu0mXfbnBw==
 =Pn2K
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - The series "Enable strict percpu address space checks" from Uros
   Bizjak uses x86 named address space qualifiers to provide
   compile-time checking of percpu area accesses.

   This has caused a small amount of fallout - two or three issues were
   reported. In all cases the calling code was found to be incorrect.

 - The series "Some cleanup for memcg" from Chen Ridong implements some
   relatively monir cleanups for the memcontrol code.

 - The series "mm: fixes for device-exclusive entries (hmm)" from David
   Hildenbrand fixes a boatload of issues which David found then using
   device-exclusive PTE entries when THP is enabled. More work is
   needed, but this makes thins better - our own HMM selftests now
   succeed.

 - The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
   remove the z3fold and zbud implementations. They have been deprecated
   for half a year and nobody has complained.

 - The series "mm: further simplify VMA merge operation" from Lorenzo
   Stoakes implements numerous simplifications in this area. No runtime
   effects are anticipated.

 - The series "mm/madvise: remove redundant mmap_lock operations from
   process_madvise()" from SeongJae Park rationalizes the locking in the
   madvise() implementation. Performance gains of 20-25% were observed
   in one MADV_DONTNEED microbenchmark.

 - The series "Tiny cleanup and improvements about SWAP code" from
   Baoquan He contains a number of touchups to issues which Baoquan
   noticed when working on the swap code.

 - The series "mm: kmemleak: Usability improvements" from Catalin
   Marinas implements a couple of improvements to the kmemleak
   user-visible output.

 - The series "mm/damon/paddr: fix large folios access and schemes
   handling" from Usama Arif provides a couple of fixes for DAMON's
   handling of large folios.

 - The series "mm/damon/core: fix wrong and/or useless damos_walk()
   behaviors" from SeongJae Park fixes a few issues with the accuracy of
   kdamond's walking of DAMON regions.

 - The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
   Stoakes changes the interaction between framebuffer deferred-io and
   core MM. No functional changes are anticipated - this is preparatory
   work for the future removal of page structure fields.

 - The series "mm/damon: add support for hugepage_size DAMOS filter"
   from Usama Arif adds a DAMOS filter which permits the filtering by
   huge page sizes.

 - The series "mm: permit guard regions for file-backed/shmem mappings"
   from Lorenzo Stoakes extends the guard region feature from its
   present "anon mappings only" state. The feature now covers shmem and
   file-backed mappings.

 - The series "mm: batched unmap lazyfree large folios during
   reclamation" from Barry Song cleans up and speeds up the unmapping
   for pte-mapped large folios.

 - The series "reimplement per-vma lock as a refcount" from Suren
   Baghdasaryan puts the vm_lock back into the vma. Our reasons for
   pulling it out were largely bogus and that change made the code more
   messy. This patchset provides small (0-10%) improvements on one
   microbenchmark.

 - The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
   improves" from SeongJae Park does some maintenance work on the DAMON
   docs.

 - The series "hugetlb/CMA improvements for large systems" from Frank
   van der Linden addresses a pile of issues which have been observed
   when using CMA on large machines.

 - The series "mm/damon: introduce DAMOS filter type for unmapped pages"
   from SeongJae Park enables users of DMAON/DAMOS to filter my the
   page's mapped/unmapped status.

 - The series "zsmalloc/zram: there be preemption" from Sergey
   Senozhatsky teaches zram to run its compression and decompression
   operations preemptibly.

 - The series "selftests/mm: Some cleanups from trying to run them" from
   Brendan Jackman fixes a pile of unrelated issues which Brendan
   encountered while runnimg our selftests.

 - The series "fs/proc/task_mmu: add guard region bit to pagemap" from
   Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
   determine whether a particular page is a guard page.

 - The series "mm, swap: remove swap slot cache" from Kairui Song
   removes the swap slot cache from the allocation path - it simply
   wasn't being effective.

 - The series "mm: cleanups for device-exclusive entries (hmm)" from
   David Hildenbrand implements a number of unrelated cleanups in this
   code.

 - The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
   implements a number of preparatoty cleanups to the GENERIC_PTDUMP
   Kconfig logic.

 - The series "mm/damon: auto-tune aggregation interval" from SeongJae
   Park implements a feedback-driven automatic tuning feature for
   DAMON's aggregation interval tuning.

 - The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
   powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
   preparation for implementing lazy mmu mode for arm64 to optimize
   vmalloc.

 - The series "mm/page_alloc: Some clarifications for migratetype
   fallback" from Brendan Jackman reworks some commentary to make the
   code easier to follow.

 - The series "page_counter cleanup and size reduction" from Shakeel
   Butt cleans up the page_counter code and fixes a size increase which
   we accidentally added late last year.

 - The series "Add a command line option that enables control of how
   many threads should be used to allocate huge pages" from Thomas
   Prescher does that. It allows the careful operator to significantly
   reduce boot time by tuning the parallalization of huge page
   initialization.

 - The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
   from Tang Yizhou fixes the tracing output from the dirty page
   balancing code.

 - The series "mm/damon: make allow filters after reject filters useful
   and intuitive" from SeongJae Park improves the handling of allow and
   reject filters. Behaviour is made more consistent and the documention
   is updated accordingly.

 - The series "Switch zswap to object read/write APIs" from Yosry Ahmed
   updates zswap to the new object read/write APIs and thus permits the
   removal of some legacy code from zpool and zsmalloc.

 - The series "Some trivial cleanups for shmem" from Baolin Wang does as
   it claims.

 - The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
   Alistair Popple regularizes the weird ZONE_DEVICE page refcount
   handling in DAX, permittig the removal of a number of special-case
   checks.

 - The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
   preparatoty refactoring and cleanup of the mremap() code.

 - The series "mm: MM owner tracking for large folios (!hugetlb) +
   CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
   which we determine whether a large folio is known to be mapped
   exclusively into a single MM.

 - The series "mm/damon: add sysfs dirs for managing DAMOS filters based
   on handling layers" from SeongJae Park adds a couple of new sysfs
   directories to ease the management of DAMON/DAMOS filters.

 - The series "arch, mm: reduce code duplication in mem_init()" from
   Mike Rapoport consolidates many per-arch implementations of
   mem_init() into code generic code, where that is practical.

 - The series "mm/damon/sysfs: commit parameters online via
   damon_call()" from SeongJae Park continues the cleaning up of sysfs
   access to DAMON internal data.

 - The series "mm: page_ext: Introduce new iteration API" from Luiz
   Capitulino reworks the page_ext initialization to fix a boot-time
   crash which was observed with an unusual combination of compile and
   cmdline options.

 - The series "Buddy allocator like (or non-uniform) folio split" from
   Zi Yan reworks the code to split a folio into smaller folios. The
   main benefit is lessened memory consumption: fewer post-split folios
   are generated.

 - The series "Minimize xa_node allocation during xarry split" from Zi
   Yan reduces the number of xarray xa_nodes which are generated during
   an xarray split.

 - The series "drivers/base/memory: Two cleanups" from Gavin Shan
   performs some maintenance work on the drivers/base/memory code.

 - The series "Add tracepoints for lowmem reserves, watermarks and
   totalreserve_pages" from Martin Liu adds some more tracepoints to the
   page allocator code.

 - The series "mm/madvise: cleanup requests validations and
   classifications" from SeongJae Park cleans up some warts which
   SeongJae observed during his earlier madvise work.

 - The series "mm/hwpoison: Fix regressions in memory failure handling"
   from Shuai Xue addresses two quite serious regressions which Shuai
   has observed in the memory-failure implementation.

 - The series "mm: reliable huge page allocator" from Johannes Weiner
   makes huge page allocations cheaper and more reliable by reducing
   fragmentation.

 - The series "Minor memcg cleanups & prep for memdescs" from Matthew
   Wilcox is preparatory work for the future implementation of memdescs.

 - The series "track memory used by balloon drivers" from Nico Pache
   introduces a way to track memory used by our various balloon drivers.

 - The series "mm/damon: introduce DAMOS filter type for active pages"
   from Nhat Pham permits users to filter for active/inactive pages,
   separately for file and anon pages.

 - The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
   separates the proactive reclaim statistics from the direct reclaim
   statistics.

 - The series "mm/vmscan: don't try to reclaim hwpoison folio" from
   Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
   code.

* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
  mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
  x86/mm: restore early initialization of high_memory for 32-bits
  mm/vmscan: don't try to reclaim hwpoison folio
  mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
  cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
  mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
  selftests/mm: speed up split_huge_page_test
  selftests/mm: uffd-unit-tests support for hugepages > 2M
  docs/mm/damon/design: document active DAMOS filter type
  mm/damon: implement a new DAMOS filter type for active pages
  fs/dax: don't disassociate zero page entries
  MM documentation: add "Unaccepted" meminfo entry
  selftests/mm: add commentary about 9pfs bugs
  fork: use __vmalloc_node() for stack allocation
  docs/mm: Physical Memory: Populate the "Zones" section
  xen: balloon: update the NR_BALLOON_PAGES state
  hv_balloon: update the NR_BALLOON_PAGES state
  balloon_compaction: update the NR_BALLOON_PAGES state
  meminfo: add a per node counter for balloon drivers
  mm: remove references to folio in __memcg_kmem_uncharge_page()
  ...
2025-04-01 09:29:18 -07:00

1017 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Device Memory Migration functionality.
*
* Originally written by Jérôme Glisse.
*/
#include <linux/export.h>
#include <linux/memremap.h>
#include <linux/migrate.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/mmu_notifier.h>
#include <linux/oom.h>
#include <linux/pagewalk.h>
#include <linux/rmap.h>
#include <linux/swapops.h>
#include <asm/tlbflush.h>
#include "internal.h"
static int migrate_vma_collect_skip(unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = 0;
}
return 0;
}
static int migrate_vma_collect_hole(unsigned long start,
unsigned long end,
__always_unused int depth,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
/* Only allow populating anonymous memory. */
if (!vma_is_anonymous(walk->vma))
return migrate_vma_collect_skip(start, end, walk);
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
migrate->dst[migrate->npages] = 0;
migrate->npages++;
migrate->cpages++;
}
return 0;
}
static int migrate_vma_collect_pmd(pmd_t *pmdp,
unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
struct folio *fault_folio = migrate->fault_page ?
page_folio(migrate->fault_page) : NULL;
struct vm_area_struct *vma = walk->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start, unmapped = 0;
spinlock_t *ptl;
pte_t *ptep;
again:
if (pmd_none(*pmdp))
return migrate_vma_collect_hole(start, end, -1, walk);
if (pmd_trans_huge(*pmdp)) {
struct folio *folio;
ptl = pmd_lock(mm, pmdp);
if (unlikely(!pmd_trans_huge(*pmdp))) {
spin_unlock(ptl);
goto again;
}
folio = pmd_folio(*pmdp);
if (is_huge_zero_folio(folio)) {
spin_unlock(ptl);
split_huge_pmd(vma, pmdp, addr);
} else {
int ret;
folio_get(folio);
spin_unlock(ptl);
/* FIXME: we don't expect THP for fault_folio */
if (WARN_ON_ONCE(fault_folio == folio))
return migrate_vma_collect_skip(start, end,
walk);
if (unlikely(!folio_trylock(folio)))
return migrate_vma_collect_skip(start, end,
walk);
ret = split_folio(folio);
if (fault_folio != folio)
folio_unlock(folio);
folio_put(folio);
if (ret)
return migrate_vma_collect_skip(start, end,
walk);
}
}
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
if (!ptep)
goto again;
arch_enter_lazy_mmu_mode();
for (; addr < end; addr += PAGE_SIZE, ptep++) {
struct dev_pagemap *pgmap;
unsigned long mpfn = 0, pfn;
struct folio *folio;
struct page *page;
swp_entry_t entry;
pte_t pte;
pte = ptep_get(ptep);
if (pte_none(pte)) {
if (vma_is_anonymous(vma)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
}
goto next;
}
if (!pte_present(pte)) {
/*
* Only care about unaddressable device page special
* page table entry. Other special swap entries are not
* migratable, and we ignore regular swapped page.
*/
entry = pte_to_swp_entry(pte);
if (!is_device_private_entry(entry))
goto next;
page = pfn_swap_entry_to_page(entry);
pgmap = page_pgmap(page);
if (!(migrate->flags &
MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
pgmap->owner != migrate->pgmap_owner)
goto next;
mpfn = migrate_pfn(page_to_pfn(page)) |
MIGRATE_PFN_MIGRATE;
if (is_writable_device_private_entry(entry))
mpfn |= MIGRATE_PFN_WRITE;
} else {
pfn = pte_pfn(pte);
if (is_zero_pfn(pfn) &&
(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
goto next;
}
page = vm_normal_page(migrate->vma, addr, pte);
if (page && !is_zone_device_page(page) &&
!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
goto next;
} else if (page && is_device_coherent_page(page)) {
pgmap = page_pgmap(page);
if (!(migrate->flags &
MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
pgmap->owner != migrate->pgmap_owner)
goto next;
}
mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
}
/* FIXME support THP */
if (!page || !page->mapping || PageTransCompound(page)) {
mpfn = 0;
goto next;
}
/*
* By getting a reference on the folio we pin it and that blocks
* any kind of migration. Side effect is that it "freezes" the
* pte.
*
* We drop this reference after isolating the folio from the lru
* for non device folio (device folio are not on the lru and thus
* can't be dropped from it).
*/
folio = page_folio(page);
folio_get(folio);
/*
* We rely on folio_trylock() to avoid deadlock between
* concurrent migrations where each is waiting on the others
* folio lock. If we can't immediately lock the folio we fail this
* migration as it is only best effort anyway.
*
* If we can lock the folio it's safe to set up a migration entry
* now. In the common case where the folio is mapped once in a
* single process setting up the migration entry now is an
* optimisation to avoid walking the rmap later with
* try_to_migrate().
*/
if (fault_folio == folio || folio_trylock(folio)) {
bool anon_exclusive;
pte_t swp_pte;
flush_cache_page(vma, addr, pte_pfn(pte));
anon_exclusive = folio_test_anon(folio) &&
PageAnonExclusive(page);
if (anon_exclusive) {
pte = ptep_clear_flush(vma, addr, ptep);
if (folio_try_share_anon_rmap_pte(folio, page)) {
set_pte_at(mm, addr, ptep, pte);
if (fault_folio != folio)
folio_unlock(folio);
folio_put(folio);
mpfn = 0;
goto next;
}
} else {
pte = ptep_get_and_clear(mm, addr, ptep);
}
migrate->cpages++;
/* Set the dirty flag on the folio now the pte is gone. */
if (pte_dirty(pte))
folio_mark_dirty(folio);
/* Setup special migration page table entry */
if (mpfn & MIGRATE_PFN_WRITE)
entry = make_writable_migration_entry(
page_to_pfn(page));
else if (anon_exclusive)
entry = make_readable_exclusive_migration_entry(
page_to_pfn(page));
else
entry = make_readable_migration_entry(
page_to_pfn(page));
if (pte_present(pte)) {
if (pte_young(pte))
entry = make_migration_entry_young(entry);
if (pte_dirty(pte))
entry = make_migration_entry_dirty(entry);
}
swp_pte = swp_entry_to_pte(entry);
if (pte_present(pte)) {
if (pte_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
} else {
if (pte_swp_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_swp_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
}
set_pte_at(mm, addr, ptep, swp_pte);
/*
* This is like regular unmap: we remove the rmap and
* drop the folio refcount. The folio won't be freed, as
* we took a reference just above.
*/
folio_remove_rmap_pte(folio, page, vma);
folio_put(folio);
if (pte_present(pte))
unmapped++;
} else {
folio_put(folio);
mpfn = 0;
}
next:
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = mpfn;
}
/* Only flush the TLB if we actually modified any entries */
if (unmapped)
flush_tlb_range(walk->vma, start, end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(ptep - 1, ptl);
return 0;
}
static const struct mm_walk_ops migrate_vma_walk_ops = {
.pmd_entry = migrate_vma_collect_pmd,
.pte_hole = migrate_vma_collect_hole,
.walk_lock = PGWALK_RDLOCK,
};
/*
* migrate_vma_collect() - collect pages over a range of virtual addresses
* @migrate: migrate struct containing all migration information
*
* This will walk the CPU page table. For each virtual address backed by a
* valid page, it updates the src array and takes a reference on the page, in
* order to pin the page until we lock it and unmap it.
*/
static void migrate_vma_collect(struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
/*
* Note that the pgmap_owner is passed to the mmu notifier callback so
* that the registered device driver can skip invalidating device
* private page mappings that won't be migrated.
*/
mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, migrate->start, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
&migrate_vma_walk_ops, migrate);
mmu_notifier_invalidate_range_end(&range);
migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}
/*
* migrate_vma_check_page() - check if page is pinned or not
* @page: struct page to check
*
* Pinned pages cannot be migrated. This is the same test as in
* folio_migrate_mapping(), except that here we allow migration of a
* ZONE_DEVICE page.
*/
static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
{
struct folio *folio = page_folio(page);
/*
* One extra ref because caller holds an extra reference, either from
* folio_isolate_lru() for a regular folio, or migrate_vma_collect() for
* a device folio.
*/
int extra = 1 + (page == fault_page);
/*
* FIXME support THP (transparent huge page), it is bit more complex to
* check them than regular pages, because they can be mapped with a pmd
* or with a pte (split pte mapping).
*/
if (folio_test_large(folio))
return false;
/* Page from ZONE_DEVICE have one extra reference */
if (folio_is_zone_device(folio))
extra++;
/* For file back page */
if (folio_mapping(folio))
extra += 1 + folio_has_private(folio);
if ((folio_ref_count(folio) - extra) > folio_mapcount(folio))
return false;
return true;
}
/*
* Unmaps pages for migration. Returns number of source pfns marked as
* migrating.
*/
static unsigned long migrate_device_unmap(unsigned long *src_pfns,
unsigned long npages,
struct page *fault_page)
{
struct folio *fault_folio = fault_page ?
page_folio(fault_page) : NULL;
unsigned long i, restore = 0;
bool allow_drain = true;
unsigned long unmapped = 0;
lru_add_drain();
for (i = 0; i < npages; i++) {
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
if (!page) {
if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
unmapped++;
continue;
}
folio = page_folio(page);
/* ZONE_DEVICE folios are not on LRU */
if (!folio_is_zone_device(folio)) {
if (!folio_test_lru(folio) && allow_drain) {
/* Drain CPU's lru cache */
lru_add_drain_all();
allow_drain = false;
}
if (!folio_isolate_lru(folio)) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
continue;
}
/* Drop the reference we took in collect */
folio_put(folio);
}
if (folio_mapped(folio))
try_to_migrate(folio, 0);
if (folio_mapped(folio) ||
!migrate_vma_check_page(page, fault_page)) {
if (!folio_is_zone_device(folio)) {
folio_get(folio);
folio_putback_lru(folio);
}
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
continue;
}
unmapped++;
}
for (i = 0; i < npages && restore; i++) {
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
folio = page_folio(page);
remove_migration_ptes(folio, folio, 0);
src_pfns[i] = 0;
if (fault_folio != folio)
folio_unlock(folio);
folio_put(folio);
restore--;
}
return unmapped;
}
/*
* migrate_vma_unmap() - replace page mapping with special migration pte entry
* @migrate: migrate struct containing all migration information
*
* Isolate pages from the LRU and replace mappings (CPU page table pte) with a
* special migration pte entry and check if it has been pinned. Pinned pages are
* restored because we cannot migrate them.
*
* This is the last step before we call the device driver callback to allocate
* destination memory and copy contents of original page over to new page.
*/
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
migrate->fault_page);
}
/**
* migrate_vma_setup() - prepare to migrate a range of memory
* @args: contains the vma, start, and pfns arrays for the migration
*
* Returns: negative errno on failures, 0 when 0 or more pages were migrated
* without an error.
*
* Prepare to migrate a range of memory virtual address range by collecting all
* the pages backing each virtual address in the range, saving them inside the
* src array. Then lock those pages and unmap them. Once the pages are locked
* and unmapped, check whether each page is pinned or not. Pages that aren't
* pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
* corresponding src array entry. Then restores any pages that are pinned, by
* remapping and unlocking those pages.
*
* The caller should then allocate destination memory and copy source memory to
* it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
* flag set). Once these are allocated and copied, the caller must update each
* corresponding entry in the dst array with the pfn value of the destination
* page and with MIGRATE_PFN_VALID. Destination pages must be locked via
* lock_page().
*
* Note that the caller does not have to migrate all the pages that are marked
* with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
* device memory to system memory. If the caller cannot migrate a device page
* back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
* consequences for the userspace process, so it must be avoided if at all
* possible.
*
* For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
* do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
* allowing the caller to allocate device memory for those unbacked virtual
* addresses. For this the caller simply has to allocate device memory and
* properly set the destination entry like for regular migration. Note that
* this can still fail, and thus inside the device driver you must check if the
* migration was successful for those entries after calling migrate_vma_pages(),
* just like for regular migration.
*
* After that, the callers must call migrate_vma_pages() to go over each entry
* in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
* set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
* then migrate_vma_pages() to migrate struct page information from the source
* struct page to the destination struct page. If it fails to migrate the
* struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
* src array.
*
* At this point all successfully migrated pages have an entry in the src
* array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
* array entry with MIGRATE_PFN_VALID flag set.
*
* Once migrate_vma_pages() returns the caller may inspect which pages were
* successfully migrated, and which were not. Successfully migrated pages will
* have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
*
* It is safe to update device page table after migrate_vma_pages() because
* both destination and source page are still locked, and the mmap_lock is held
* in read mode (hence no one can unmap the range being migrated).
*
* Once the caller is done cleaning up things and updating its page table (if it
* chose to do so, this is not an obligation) it finally calls
* migrate_vma_finalize() to update the CPU page table to point to new pages
* for successfully migrated pages or otherwise restore the CPU page table to
* point to the original source pages.
*/
int migrate_vma_setup(struct migrate_vma *args)
{
long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
args->start &= PAGE_MASK;
args->end &= PAGE_MASK;
if (!args->vma || is_vm_hugetlb_page(args->vma) ||
(args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
return -EINVAL;
if (nr_pages <= 0)
return -EINVAL;
if (args->start < args->vma->vm_start ||
args->start >= args->vma->vm_end)
return -EINVAL;
if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
return -EINVAL;
if (!args->src || !args->dst)
return -EINVAL;
if (args->fault_page && !is_device_private_page(args->fault_page))
return -EINVAL;
if (args->fault_page && !PageLocked(args->fault_page))
return -EINVAL;
memset(args->src, 0, sizeof(*args->src) * nr_pages);
args->cpages = 0;
args->npages = 0;
migrate_vma_collect(args);
if (args->cpages)
migrate_vma_unmap(args);
/*
* At this point pages are locked and unmapped, and thus they have
* stable content and can safely be copied to destination memory that
* is allocated by the drivers.
*/
return 0;
}
EXPORT_SYMBOL(migrate_vma_setup);
/*
* This code closely matches the code in:
* __handle_mm_fault()
* handle_pte_fault()
* do_anonymous_page()
* to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
* private or coherent page.
*/
static void migrate_vma_insert_page(struct migrate_vma *migrate,
unsigned long addr,
struct page *page,
unsigned long *src)
{
struct folio *folio = page_folio(page);
struct vm_area_struct *vma = migrate->vma;
struct mm_struct *mm = vma->vm_mm;
bool flush = false;
spinlock_t *ptl;
pte_t entry;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
pte_t orig_pte;
/* Only allow populating anonymous memory */
if (!vma_is_anonymous(vma))
goto abort;
pgdp = pgd_offset(mm, addr);
p4dp = p4d_alloc(mm, pgdp, addr);
if (!p4dp)
goto abort;
pudp = pud_alloc(mm, p4dp, addr);
if (!pudp)
goto abort;
pmdp = pmd_alloc(mm, pudp, addr);
if (!pmdp)
goto abort;
if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
goto abort;
if (pte_alloc(mm, pmdp))
goto abort;
if (unlikely(anon_vma_prepare(vma)))
goto abort;
if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
goto abort;
/*
* The memory barrier inside __folio_mark_uptodate makes sure that
* preceding stores to the folio contents become visible before
* the set_pte_at() write.
*/
__folio_mark_uptodate(folio);
if (folio_is_device_private(folio)) {
swp_entry_t swp_entry;
if (vma->vm_flags & VM_WRITE)
swp_entry = make_writable_device_private_entry(
page_to_pfn(page));
else
swp_entry = make_readable_device_private_entry(
page_to_pfn(page));
entry = swp_entry_to_pte(swp_entry);
} else {
if (folio_is_zone_device(folio) &&
!folio_is_device_coherent(folio)) {
pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
goto abort;
}
entry = mk_pte(page, vma->vm_page_prot);
if (vma->vm_flags & VM_WRITE)
entry = pte_mkwrite(pte_mkdirty(entry), vma);
}
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
if (!ptep)
goto abort;
orig_pte = ptep_get(ptep);
if (check_stable_address_space(mm))
goto unlock_abort;
if (pte_present(orig_pte)) {
unsigned long pfn = pte_pfn(orig_pte);
if (!is_zero_pfn(pfn))
goto unlock_abort;
flush = true;
} else if (!pte_none(orig_pte))
goto unlock_abort;
/*
* Check for userfaultfd but do not deliver the fault. Instead,
* just back off.
*/
if (userfaultfd_missing(vma))
goto unlock_abort;
inc_mm_counter(mm, MM_ANONPAGES);
folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
if (!folio_is_zone_device(folio))
folio_add_lru_vma(folio, vma);
folio_get(folio);
if (flush) {
flush_cache_page(vma, addr, pte_pfn(orig_pte));
ptep_clear_flush(vma, addr, ptep);
}
set_pte_at(mm, addr, ptep, entry);
update_mmu_cache(vma, addr, ptep);
pte_unmap_unlock(ptep, ptl);
*src = MIGRATE_PFN_MIGRATE;
return;
unlock_abort:
pte_unmap_unlock(ptep, ptl);
abort:
*src &= ~MIGRATE_PFN_MIGRATE;
}
static void __migrate_device_pages(unsigned long *src_pfns,
unsigned long *dst_pfns, unsigned long npages,
struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
unsigned long i;
bool notified = false;
for (i = 0; i < npages; i++) {
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct address_space *mapping;
struct folio *newfolio, *folio;
int r, extra_cnt = 0;
if (!newpage) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
if (!page) {
unsigned long addr;
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
/*
* The only time there is no vma is when called from
* migrate_device_coherent_folio(). However this isn't
* called if the page could not be unmapped.
*/
VM_BUG_ON(!migrate);
addr = migrate->start + i*PAGE_SIZE;
if (!notified) {
notified = true;
mmu_notifier_range_init_owner(&range,
MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, addr, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
}
migrate_vma_insert_page(migrate, addr, newpage,
&src_pfns[i]);
continue;
}
newfolio = page_folio(newpage);
folio = page_folio(page);
mapping = folio_mapping(folio);
if (folio_is_device_private(newfolio) ||
folio_is_device_coherent(newfolio)) {
if (mapping) {
/*
* For now only support anonymous memory migrating to
* device private or coherent memory.
*
* Try to get rid of swap cache if possible.
*/
if (!folio_test_anon(folio) ||
!folio_free_swap(folio)) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
}
} else if (folio_is_zone_device(newfolio)) {
/*
* Other types of ZONE_DEVICE page are not supported.
*/
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
BUG_ON(folio_test_writeback(folio));
if (migrate && migrate->fault_page == page)
extra_cnt = 1;
r = folio_migrate_mapping(mapping, newfolio, folio, extra_cnt);
if (r != MIGRATEPAGE_SUCCESS)
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
else
folio_migrate_flags(newfolio, folio);
}
if (notified)
mmu_notifier_invalidate_range_end(&range);
}
/**
* migrate_device_pages() - migrate meta-data from src page to dst page
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Equivalent to migrate_vma_pages(). This is called to migrate struct page
* meta-data from source struct page to destination.
*/
void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
unsigned long npages)
{
__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
}
EXPORT_SYMBOL(migrate_device_pages);
/**
* migrate_vma_pages() - migrate meta-data from src page to dst page
* @migrate: migrate struct containing all migration information
*
* This migrates struct page meta-data from source struct page to destination
* struct page. This effectively finishes the migration from source page to the
* destination page.
*/
void migrate_vma_pages(struct migrate_vma *migrate)
{
__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
}
EXPORT_SYMBOL(migrate_vma_pages);
static void __migrate_device_finalize(unsigned long *src_pfns,
unsigned long *dst_pfns,
unsigned long npages,
struct page *fault_page)
{
struct folio *fault_folio = fault_page ?
page_folio(fault_page) : NULL;
unsigned long i;
for (i = 0; i < npages; i++) {
struct folio *dst = NULL, *src = NULL;
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
if (newpage)
dst = page_folio(newpage);
if (!page) {
if (dst) {
WARN_ON_ONCE(fault_folio == dst);
folio_unlock(dst);
folio_put(dst);
}
continue;
}
src = page_folio(page);
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !dst) {
if (dst) {
WARN_ON_ONCE(fault_folio == dst);
folio_unlock(dst);
folio_put(dst);
}
dst = src;
}
if (!folio_is_zone_device(dst))
folio_add_lru(dst);
remove_migration_ptes(src, dst, 0);
if (fault_folio != src)
folio_unlock(src);
folio_put(src);
if (dst != src) {
WARN_ON_ONCE(fault_folio == dst);
folio_unlock(dst);
folio_put(dst);
}
}
}
/*
* migrate_device_finalize() - complete page migration
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Completes migration of the page by removing special migration entries.
* Drivers must ensure copying of page data is complete and visible to the CPU
* before calling this.
*/
void migrate_device_finalize(unsigned long *src_pfns,
unsigned long *dst_pfns, unsigned long npages)
{
return __migrate_device_finalize(src_pfns, dst_pfns, npages, NULL);
}
EXPORT_SYMBOL(migrate_device_finalize);
/**
* migrate_vma_finalize() - restore CPU page table entry
* @migrate: migrate struct containing all migration information
*
* This replaces the special migration pte entry with either a mapping to the
* new page if migration was successful for that page, or to the original page
* otherwise.
*
* This also unlocks the pages and puts them back on the lru, or drops the extra
* refcount, for device pages.
*/
void migrate_vma_finalize(struct migrate_vma *migrate)
{
__migrate_device_finalize(migrate->src, migrate->dst, migrate->npages,
migrate->fault_page);
}
EXPORT_SYMBOL(migrate_vma_finalize);
static unsigned long migrate_device_pfn_lock(unsigned long pfn)
{
struct folio *folio;
folio = folio_get_nontail_page(pfn_to_page(pfn));
if (!folio)
return 0;
if (!folio_trylock(folio)) {
folio_put(folio);
return 0;
}
return migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
}
/**
* migrate_device_range() - migrate device private pfns to normal memory.
* @src_pfns: array large enough to hold migrating source device private pfns.
* @start: starting pfn in the range to migrate.
* @npages: number of pages to migrate.
*
* migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
* instead of looking up pages based on virtual address mappings a range of
* device pfns that should be migrated to system memory is used instead.
*
* This is useful when a driver needs to free device memory but doesn't know the
* virtual mappings of every page that may be in device memory. For example this
* is often the case when a driver is being unloaded or unbound from a device.
*
* Like migrate_vma_setup() this function will take a reference and lock any
* migrating pages that aren't free before unmapping them. Drivers may then
* allocate destination pages and start copying data from the device to CPU
* memory before calling migrate_device_pages().
*/
int migrate_device_range(unsigned long *src_pfns, unsigned long start,
unsigned long npages)
{
unsigned long i, pfn;
for (pfn = start, i = 0; i < npages; pfn++, i++)
src_pfns[i] = migrate_device_pfn_lock(pfn);
migrate_device_unmap(src_pfns, npages, NULL);
return 0;
}
EXPORT_SYMBOL(migrate_device_range);
/**
* migrate_device_pfns() - migrate device private pfns to normal memory.
* @src_pfns: pre-popluated array of source device private pfns to migrate.
* @npages: number of pages to migrate.
*
* Similar to migrate_device_range() but supports non-contiguous pre-popluated
* array of device pages to migrate.
*/
int migrate_device_pfns(unsigned long *src_pfns, unsigned long npages)
{
unsigned long i;
for (i = 0; i < npages; i++)
src_pfns[i] = migrate_device_pfn_lock(src_pfns[i]);
migrate_device_unmap(src_pfns, npages, NULL);
return 0;
}
EXPORT_SYMBOL(migrate_device_pfns);
/*
* Migrate a device coherent folio back to normal memory. The caller should have
* a reference on folio which will be copied to the new folio if migration is
* successful or dropped on failure.
*/
int migrate_device_coherent_folio(struct folio *folio)
{
unsigned long src_pfn, dst_pfn = 0;
struct folio *dfolio;
WARN_ON_ONCE(folio_test_large(folio));
folio_lock(folio);
src_pfn = migrate_pfn(folio_pfn(folio)) | MIGRATE_PFN_MIGRATE;
/*
* We don't have a VMA and don't need to walk the page tables to find
* the source folio. So call migrate_vma_unmap() directly to unmap the
* folio as migrate_vma_setup() will fail if args.vma == NULL.
*/
migrate_device_unmap(&src_pfn, 1, NULL);
if (!(src_pfn & MIGRATE_PFN_MIGRATE))
return -EBUSY;
dfolio = folio_alloc(GFP_USER | __GFP_NOWARN, 0);
if (dfolio) {
folio_lock(dfolio);
dst_pfn = migrate_pfn(folio_pfn(dfolio));
}
migrate_device_pages(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
folio_copy(dfolio, folio);
migrate_device_finalize(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
return 0;
return -EBUSY;
}