Linus Torvalds 317a76a996 Updates for the VDSO infrastructure:
- Consolidate the VDSO storage
 
     The VDSO data storage and data layout has been largely architecture
     specific for historical reasons. That increases the maintenance effort
     and causes inconsistencies over and over.
 
     There is no real technical reason for architecture specific layouts and
     implementations. The architecture specific details can easily be
     integrated into a generic layout, which also reduces the amount of
     duplicated code for managing the mappings.
 
     Convert all architectures over to a unified layout and common mapping
     infrastructure. This splits the VDSO data layout into subsystem
     specific blocks, timekeeping, random and architecture parts, which
     provides a better structure and allows to improve and update the
     functionalities without conflict and interaction.
 
   - Rework the timekeeping data storage
 
     The current implementation is designed for exposing system timekeeping
     accessors, which was good enough at the time when it was designed.
 
     PTP and Time Sensitive Networking (TSN) change that as there are
     requirements to expose independent PTP clocks, which are not related to
     system timekeeping.
 
     Replace the monolithic data storage by a structured layout, which
     allows to add support for independent PTP clocks on top while reusing
     both the data structures and the time accessor implementations.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmfgSWUTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoYGED/0f/M8YyacAyErDYW4ufW+zh2sUidSf
 GVlK0Jn5BMljOoye+y2XfTxuvvXxEDjJNYiJm2uKGPdV29tjNXreGK39XyNqXPu5
 jwR4f/IN/QVSM2nCO6jyydMz8ympJ2k6M4RewwmxXBL2KsUzzJWSKTgRNqM5Tdjs
 1RhJMjkQVTiiSYerBpHXYCeZLM7/VEfZ120uuzVAYPXo0/R6zuyF7IBgIao9hbfO
 IQeCMLLfpDQHQhwquTA8ZbWqQusiEoSYHT+kTDa3eXDDbE/2UklAUs9gaatI979x
 73zs0Yqxyx2iIGaghACWOAbKdcBWBeCYDw5fFwYVKn4VMQi1+wcxbtOYL767jp9o
 vfkLXGilXcVkvDjv4fH+e1NoJXXBxq1Ug1silKdOeJzenQF8Q1i3tavkWUVCNfwH
 qyOIM72NiCEWbYBDcz0lwBxEAyO4o0E6NP1bDc4y50VedEYIbXwSh0QGrdev1abn
 rjY9vsuUR9oznmZ6BRPPxMTY87gOSHoKvqydgSZUACEgLV9346f5qZf341OReYai
 MXUmXOM4+LdyaM1+Mec8ppvjMbLw+736NZyZtT2InusEBE+Ddp25L3hYiWnklJu8
 2uwv0AoyrwaJ8y6ADOX4thcLZq0gND0Z/Ayz/XvpeI30eftsGUCt5KOVlqwfwOkI
 4EQKvk2fAixPxg==
 =rwei
 -----END PGP SIGNATURE-----

Merge tag 'timers-vdso-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull VDSO infrastructure updates from Thomas Gleixner:

 - Consolidate the VDSO storage

   The VDSO data storage and data layout has been largely architecture
   specific for historical reasons. That increases the maintenance
   effort and causes inconsistencies over and over.

   There is no real technical reason for architecture specific layouts
   and implementations. The architecture specific details can easily be
   integrated into a generic layout, which also reduces the amount of
   duplicated code for managing the mappings.

   Convert all architectures over to a unified layout and common mapping
   infrastructure. This splits the VDSO data layout into subsystem
   specific blocks, timekeeping, random and architecture parts, which
   provides a better structure and allows to improve and update the
   functionalities without conflict and interaction.

 - Rework the timekeeping data storage

   The current implementation is designed for exposing system
   timekeeping accessors, which was good enough at the time when it was
   designed.

   PTP and Time Sensitive Networking (TSN) change that as there are
   requirements to expose independent PTP clocks, which are not related
   to system timekeeping.

   Replace the monolithic data storage by a structured layout, which
   allows to add support for independent PTP clocks on top while reusing
   both the data structures and the time accessor implementations.

* tag 'timers-vdso-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (55 commits)
  sparc/vdso: Always reject undefined references during linking
  x86/vdso: Always reject undefined references during linking
  vdso: Rework struct vdso_time_data and introduce struct vdso_clock
  vdso: Move architecture related data before basetime data
  powerpc/vdso: Prepare introduction of struct vdso_clock
  arm64/vdso: Prepare introduction of struct vdso_clock
  x86/vdso: Prepare introduction of struct vdso_clock
  time/namespace: Prepare introduction of struct vdso_clock
  vdso/namespace: Rename timens_setup_vdso_data() to reflect new vdso_clock struct
  vdso/vsyscall: Prepare introduction of struct vdso_clock
  vdso/gettimeofday: Prepare helper functions for introduction of struct vdso_clock
  vdso/gettimeofday: Prepare do_coarse_timens() for introduction of struct vdso_clock
  vdso/gettimeofday: Prepare do_coarse() for introduction of struct vdso_clock
  vdso/gettimeofday: Prepare do_hres_timens() for introduction of struct vdso_clock
  vdso/gettimeofday: Prepare do_hres() for introduction of struct vdso_clock
  vdso/gettimeofday: Prepare introduction of struct vdso_clock
  vdso/helpers: Prepare introduction of struct vdso_clock
  vdso/datapage: Define vdso_clock to prepare for multiple PTP clocks
  vdso: Make vdso_time_data cacheline aligned
  arm64: Make asm/cache.h compatible with vDSO
  ...
2025-03-25 11:30:42 -07:00

96 lines
2.6 KiB
Makefile

# SPDX-License-Identifier: GPL-2.0
# Makefile for nolibc installation and tests
include ../../scripts/Makefile.include
# we're in ".../tools/include/nolibc"
ifeq ($(srctree),)
srctree := $(patsubst %/tools/include/,%,$(dir $(CURDIR)))
endif
# when run as make -C tools/ nolibc_<foo> the arch is not set
ifeq ($(ARCH),)
include $(srctree)/scripts/subarch.include
ARCH = $(SUBARCH)
endif
# OUTPUT is only set when run from the main makefile, otherwise
# it defaults to this nolibc directory.
OUTPUT ?= $(CURDIR)/
ifeq ($(V),1)
Q=
else
Q=@
endif
nolibc_arch := $(patsubst arm64,aarch64,$(ARCH))
arch_file := arch-$(nolibc_arch).h
all_files := \
compiler.h \
crt.h \
ctype.h \
dirent.h \
errno.h \
limits.h \
nolibc.h \
signal.h \
stackprotector.h \
std.h \
stdarg.h \
stdbool.h \
stdint.h \
stdlib.h \
string.h \
sys.h \
time.h \
types.h \
unistd.h \
stdio.h \
# install all headers needed to support a bare-metal compiler
all: headers
install: help
help:
@echo "Supported targets under nolibc:"
@echo " all call \"headers\""
@echo " clean clean the sysroot"
@echo " headers prepare a sysroot in tools/include/nolibc/sysroot"
@echo " headers_standalone like \"headers\", and also install kernel headers"
@echo " help this help"
@echo ""
@echo "These targets may also be called from tools as \"make nolibc_<target>\"."
@echo ""
@echo "Currently using the following variables:"
@echo " ARCH = $(ARCH)"
@echo " OUTPUT = $(OUTPUT)"
@echo ""
# Note: when ARCH is "x86" we concatenate both x86_64 and i386
headers:
$(Q)mkdir -p $(OUTPUT)sysroot
$(Q)mkdir -p $(OUTPUT)sysroot/include
$(Q)cp $(all_files) $(OUTPUT)sysroot/include/
$(Q)if [ "$(ARCH)" = "x86" ]; then \
sed -e \
's,^#ifndef _NOLIBC_ARCH_X86_64_H,#if !defined(_NOLIBC_ARCH_X86_64_H) \&\& defined(__x86_64__),' \
arch-x86_64.h; \
sed -e \
's,^#ifndef _NOLIBC_ARCH_I386_H,#if !defined(_NOLIBC_ARCH_I386_H) \&\& !defined(__x86_64__),' \
arch-i386.h; \
elif [ -e "$(arch_file)" ]; then \
cat $(arch_file); \
else \
echo "Fatal: architecture $(ARCH) not yet supported by nolibc." >&2; \
exit 1; \
fi > $(OUTPUT)sysroot/include/arch.h
headers_standalone: headers
$(Q)$(MAKE) -C $(srctree) headers
$(Q)$(MAKE) -C $(srctree) headers_install INSTALL_HDR_PATH=$(OUTPUT)sysroot
clean:
$(call QUIET_CLEAN, nolibc) rm -rf "$(OUTPUT)sysroot"