linux/kernel/kexec_core.c
Linus Torvalds 96050814a3 printk changes for 6.15
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmflJC4ACgkQUqAMR0iA
 lPIEMBAAsIJmQPHdZUQ49tkMGMoQPU9gnrrDZbRzN9IWwMQQymwEobSEkJkrx7O3
 MFQHc5Z29cAxDqrWDCG5hrH0P3rd994pLPgC/XZC9+UbksYIkIrudCqaPaekLVaw
 BQmBZnZRe7PltOiDpx/TxQ8WQgNlAmZpLpIRTB3ePHZpikq/mf4CGcoYXkrNij1j
 E7uzurLZssJwXasRkWOVNvaOFyVcxrjn78H0JoT7mVeh2IUkWyMALX4IyDeD6Uvh
 SCe19/6W3Uyeh/jpJ6+gjuirVy/Vam/2GXeer4yKpgSQBtsqIaGyki4Cc6Xy12gU
 71nRPTggysZXNnqZ40qw68Irb9JGAo63qFDwWf3OQI+yQQWHyGZIinxr+2xupwWF
 ZgmDJtvUsWKHT4+WmB9+MVTGW7Jy8wKq2u/Haf8xCJxs2yhI0J8iUvQi3CPAMdRH
 Q8G9UJP29Lfj0hdKVT2/wVNGxZKIZ8c6v1vR6Rd1hJ0Zqp4Oj+XGr0btE8Ah5LYv
 GI/M00LCdTNT2kBbbw8lekovUIs2stiRl6hfKoQFR11oiZwFDUePLDdJH2GiJAZm
 g9fPs6YuBERfPtzUeo9a9UbSd6oPTLgLNBEklpHUTWilzO8E/Jh+ZXyvQwj7eXyq
 Hi4OnShn1uxL68o6DJfKsF2qW8S2U5g61JrU3D1CaQ98Derrp0o=
 =lNTZ
 -----END PGP SIGNATURE-----

Merge tag 'printk-for-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux

Pull printk updates from Petr Mladek:

 - New option "printk.debug_non_panic_cpus" allows to store printk
   messages from non-panic CPUs during panic. It might be useful when
   panic() fails. It is disabled by default because it increases the
   chance to see the messages printed before panic() and on the
   panic-CPU.

 - New build option "CONFIG_NULL_TTY_DEFAULT_CONSOLE" allows to build
   kernel without the virtual terminal support which prefers ttynull
   over serial console.

 - Do not unblank suspended consoles.

 - Some code clean up.

* tag 'printk-for-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux:
  printk/panic: Add option to allow non-panic CPUs to write to the ring buffer.
  printk: Add an option to allow ttynull to be a default console device
  printk: Check CON_SUSPEND when unblanking a console
  printk: Rename console_start to console_resume
  printk: Rename console_stop to console_suspend
  printk: Rename resume_console to console_resume_all
  printk: Rename suspend_console to console_suspend_all
2025-03-27 19:22:24 -07:00

1086 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kexec.c - kexec system call core code.
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/btf.h>
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/ioport.h>
#include <linux/hardirq.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/utsname.h>
#include <linux/numa.h>
#include <linux/suspend.h>
#include <linux/device.h>
#include <linux/freezer.h>
#include <linux/panic_notifier.h>
#include <linux/pm.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/console.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include <linux/syscore_ops.h>
#include <linux/compiler.h>
#include <linux/hugetlb.h>
#include <linux/objtool.h>
#include <linux/kmsg_dump.h>
#include <asm/page.h>
#include <asm/sections.h>
#include <crypto/hash.h>
#include "kexec_internal.h"
atomic_t __kexec_lock = ATOMIC_INIT(0);
/* Flag to indicate we are going to kexec a new kernel */
bool kexec_in_progress = false;
bool kexec_file_dbg_print;
/*
* When kexec transitions to the new kernel there is a one-to-one
* mapping between physical and virtual addresses. On processors
* where you can disable the MMU this is trivial, and easy. For
* others it is still a simple predictable page table to setup.
*
* In that environment kexec copies the new kernel to its final
* resting place. This means I can only support memory whose
* physical address can fit in an unsigned long. In particular
* addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
* If the assembly stub has more restrictive requirements
* KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
* defined more restrictively in <asm/kexec.h>.
*
* The code for the transition from the current kernel to the
* new kernel is placed in the control_code_buffer, whose size
* is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
* page of memory is necessary, but some architectures require more.
* Because this memory must be identity mapped in the transition from
* virtual to physical addresses it must live in the range
* 0 - TASK_SIZE, as only the user space mappings are arbitrarily
* modifiable.
*
* The assembly stub in the control code buffer is passed a linked list
* of descriptor pages detailing the source pages of the new kernel,
* and the destination addresses of those source pages. As this data
* structure is not used in the context of the current OS, it must
* be self-contained.
*
* The code has been made to work with highmem pages and will use a
* destination page in its final resting place (if it happens
* to allocate it). The end product of this is that most of the
* physical address space, and most of RAM can be used.
*
* Future directions include:
* - allocating a page table with the control code buffer identity
* mapped, to simplify machine_kexec and make kexec_on_panic more
* reliable.
*/
/*
* KIMAGE_NO_DEST is an impossible destination address..., for
* allocating pages whose destination address we do not care about.
*/
#define KIMAGE_NO_DEST (-1UL)
#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long dest);
int sanity_check_segment_list(struct kimage *image)
{
int i;
unsigned long nr_segments = image->nr_segments;
unsigned long total_pages = 0;
unsigned long nr_pages = totalram_pages();
/*
* Verify we have good destination addresses. The caller is
* responsible for making certain we don't attempt to load
* the new image into invalid or reserved areas of RAM. This
* just verifies it is an address we can use.
*
* Since the kernel does everything in page size chunks ensure
* the destination addresses are page aligned. Too many
* special cases crop of when we don't do this. The most
* insidious is getting overlapping destination addresses
* simply because addresses are changed to page size
* granularity.
*/
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
if (mstart > mend)
return -EADDRNOTAVAIL;
if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
return -EADDRNOTAVAIL;
if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
return -EADDRNOTAVAIL;
}
/* Verify our destination addresses do not overlap.
* If we alloed overlapping destination addresses
* through very weird things can happen with no
* easy explanation as one segment stops on another.
*/
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
unsigned long j;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
for (j = 0; j < i; j++) {
unsigned long pstart, pend;
pstart = image->segment[j].mem;
pend = pstart + image->segment[j].memsz;
/* Do the segments overlap ? */
if ((mend > pstart) && (mstart < pend))
return -EINVAL;
}
}
/* Ensure our buffer sizes are strictly less than
* our memory sizes. This should always be the case,
* and it is easier to check up front than to be surprised
* later on.
*/
for (i = 0; i < nr_segments; i++) {
if (image->segment[i].bufsz > image->segment[i].memsz)
return -EINVAL;
}
/*
* Verify that no more than half of memory will be consumed. If the
* request from userspace is too large, a large amount of time will be
* wasted allocating pages, which can cause a soft lockup.
*/
for (i = 0; i < nr_segments; i++) {
if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
return -EINVAL;
total_pages += PAGE_COUNT(image->segment[i].memsz);
}
if (total_pages > nr_pages / 2)
return -EINVAL;
#ifdef CONFIG_CRASH_DUMP
/*
* Verify we have good destination addresses. Normally
* the caller is responsible for making certain we don't
* attempt to load the new image into invalid or reserved
* areas of RAM. But crash kernels are preloaded into a
* reserved area of ram. We must ensure the addresses
* are in the reserved area otherwise preloading the
* kernel could corrupt things.
*/
if (image->type == KEXEC_TYPE_CRASH) {
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
/* Ensure we are within the crash kernel limits */
if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
(mend > phys_to_boot_phys(crashk_res.end)))
return -EADDRNOTAVAIL;
}
}
#endif
return 0;
}
struct kimage *do_kimage_alloc_init(void)
{
struct kimage *image;
/* Allocate a controlling structure */
image = kzalloc(sizeof(*image), GFP_KERNEL);
if (!image)
return NULL;
image->head = 0;
image->entry = &image->head;
image->last_entry = &image->head;
image->control_page = ~0; /* By default this does not apply */
image->type = KEXEC_TYPE_DEFAULT;
/* Initialize the list of control pages */
INIT_LIST_HEAD(&image->control_pages);
/* Initialize the list of destination pages */
INIT_LIST_HEAD(&image->dest_pages);
/* Initialize the list of unusable pages */
INIT_LIST_HEAD(&image->unusable_pages);
#ifdef CONFIG_CRASH_HOTPLUG
image->hp_action = KEXEC_CRASH_HP_NONE;
image->elfcorehdr_index = -1;
image->elfcorehdr_updated = false;
#endif
return image;
}
int kimage_is_destination_range(struct kimage *image,
unsigned long start,
unsigned long end)
{
unsigned long i;
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
if ((end >= mstart) && (start <= mend))
return 1;
}
return 0;
}
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *pages;
if (fatal_signal_pending(current))
return NULL;
pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
if (pages) {
unsigned int count, i;
pages->mapping = NULL;
set_page_private(pages, order);
count = 1 << order;
for (i = 0; i < count; i++)
SetPageReserved(pages + i);
arch_kexec_post_alloc_pages(page_address(pages), count,
gfp_mask);
if (gfp_mask & __GFP_ZERO)
for (i = 0; i < count; i++)
clear_highpage(pages + i);
}
return pages;
}
static void kimage_free_pages(struct page *page)
{
unsigned int order, count, i;
order = page_private(page);
count = 1 << order;
arch_kexec_pre_free_pages(page_address(page), count);
for (i = 0; i < count; i++)
ClearPageReserved(page + i);
__free_pages(page, order);
}
void kimage_free_page_list(struct list_head *list)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru) {
list_del(&page->lru);
kimage_free_pages(page);
}
}
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* At worst this runs in O(N) of the image size.
*/
struct list_head extra_pages;
struct page *pages;
unsigned int count;
count = 1 << order;
INIT_LIST_HEAD(&extra_pages);
/* Loop while I can allocate a page and the page allocated
* is a destination page.
*/
do {
unsigned long pfn, epfn, addr, eaddr;
pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
if (!pages)
break;
pfn = page_to_boot_pfn(pages);
epfn = pfn + count;
addr = pfn << PAGE_SHIFT;
eaddr = (epfn << PAGE_SHIFT) - 1;
if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
kimage_is_destination_range(image, addr, eaddr)) {
list_add(&pages->lru, &extra_pages);
pages = NULL;
}
} while (!pages);
if (pages) {
/* Remember the allocated page... */
list_add(&pages->lru, &image->control_pages);
/* Because the page is already in it's destination
* location we will never allocate another page at
* that address. Therefore kimage_alloc_pages
* will not return it (again) and we don't need
* to give it an entry in image->segment[].
*/
}
/* Deal with the destination pages I have inadvertently allocated.
*
* Ideally I would convert multi-page allocations into single
* page allocations, and add everything to image->dest_pages.
*
* For now it is simpler to just free the pages.
*/
kimage_free_page_list(&extra_pages);
return pages;
}
#ifdef CONFIG_CRASH_DUMP
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* Control pages are also the only pags we must allocate
* when loading a crash kernel. All of the other pages
* are specified by the segments and we just memcpy
* into them directly.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* Given the low demand this implements a very simple
* allocator that finds the first hole of the appropriate
* size in the reserved memory region, and allocates all
* of the memory up to and including the hole.
*/
unsigned long hole_start, hole_end, size;
struct page *pages;
pages = NULL;
size = (1 << order) << PAGE_SHIFT;
hole_start = ALIGN(image->control_page, size);
hole_end = hole_start + size - 1;
while (hole_end <= crashk_res.end) {
unsigned long i;
cond_resched();
if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
break;
/* See if I overlap any of the segments */
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
if ((hole_end >= mstart) && (hole_start <= mend)) {
/* Advance the hole to the end of the segment */
hole_start = ALIGN(mend, size);
hole_end = hole_start + size - 1;
break;
}
}
/* If I don't overlap any segments I have found my hole! */
if (i == image->nr_segments) {
pages = pfn_to_page(hole_start >> PAGE_SHIFT);
image->control_page = hole_end + 1;
break;
}
}
/* Ensure that these pages are decrypted if SME is enabled. */
if (pages)
arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
return pages;
}
#endif
struct page *kimage_alloc_control_pages(struct kimage *image,
unsigned int order)
{
struct page *pages = NULL;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
pages = kimage_alloc_normal_control_pages(image, order);
break;
#ifdef CONFIG_CRASH_DUMP
case KEXEC_TYPE_CRASH:
pages = kimage_alloc_crash_control_pages(image, order);
break;
#endif
}
return pages;
}
static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
if (*image->entry != 0)
image->entry++;
if (image->entry == image->last_entry) {
kimage_entry_t *ind_page;
struct page *page;
page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
if (!page)
return -ENOMEM;
ind_page = page_address(page);
*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
image->entry = ind_page;
image->last_entry = ind_page +
((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
}
*image->entry = entry;
image->entry++;
*image->entry = 0;
return 0;
}
static int kimage_set_destination(struct kimage *image,
unsigned long destination)
{
destination &= PAGE_MASK;
return kimage_add_entry(image, destination | IND_DESTINATION);
}
static int kimage_add_page(struct kimage *image, unsigned long page)
{
page &= PAGE_MASK;
return kimage_add_entry(image, page | IND_SOURCE);
}
static void kimage_free_extra_pages(struct kimage *image)
{
/* Walk through and free any extra destination pages I may have */
kimage_free_page_list(&image->dest_pages);
/* Walk through and free any unusable pages I have cached */
kimage_free_page_list(&image->unusable_pages);
}
void kimage_terminate(struct kimage *image)
{
if (*image->entry != 0)
image->entry++;
*image->entry = IND_DONE;
}
#define for_each_kimage_entry(image, ptr, entry) \
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
ptr = (entry & IND_INDIRECTION) ? \
boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
static void kimage_free_entry(kimage_entry_t entry)
{
struct page *page;
page = boot_pfn_to_page(entry >> PAGE_SHIFT);
kimage_free_pages(page);
}
void kimage_free(struct kimage *image)
{
kimage_entry_t *ptr, entry;
kimage_entry_t ind = 0;
if (!image)
return;
#ifdef CONFIG_CRASH_DUMP
if (image->vmcoreinfo_data_copy) {
crash_update_vmcoreinfo_safecopy(NULL);
vunmap(image->vmcoreinfo_data_copy);
}
#endif
kimage_free_extra_pages(image);
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_INDIRECTION) {
/* Free the previous indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Save this indirection page until we are
* done with it.
*/
ind = entry;
} else if (entry & IND_SOURCE)
kimage_free_entry(entry);
}
/* Free the final indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Handle any machine specific cleanup */
machine_kexec_cleanup(image);
/* Free the kexec control pages... */
kimage_free_page_list(&image->control_pages);
/*
* Free up any temporary buffers allocated. This might hit if
* error occurred much later after buffer allocation.
*/
if (image->file_mode)
kimage_file_post_load_cleanup(image);
kfree(image);
}
static kimage_entry_t *kimage_dst_used(struct kimage *image,
unsigned long page)
{
kimage_entry_t *ptr, entry;
unsigned long destination = 0;
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_DESTINATION)
destination = entry & PAGE_MASK;
else if (entry & IND_SOURCE) {
if (page == destination)
return ptr;
destination += PAGE_SIZE;
}
}
return NULL;
}
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long destination)
{
/*
* Here we implement safeguards to ensure that a source page
* is not copied to its destination page before the data on
* the destination page is no longer useful.
*
* To do this we maintain the invariant that a source page is
* either its own destination page, or it is not a
* destination page at all.
*
* That is slightly stronger than required, but the proof
* that no problems will not occur is trivial, and the
* implementation is simply to verify.
*
* When allocating all pages normally this algorithm will run
* in O(N) time, but in the worst case it will run in O(N^2)
* time. If the runtime is a problem the data structures can
* be fixed.
*/
struct page *page;
unsigned long addr;
/*
* Walk through the list of destination pages, and see if I
* have a match.
*/
list_for_each_entry(page, &image->dest_pages, lru) {
addr = page_to_boot_pfn(page) << PAGE_SHIFT;
if (addr == destination) {
list_del(&page->lru);
return page;
}
}
page = NULL;
while (1) {
kimage_entry_t *old;
/* Allocate a page, if we run out of memory give up */
page = kimage_alloc_pages(gfp_mask, 0);
if (!page)
return NULL;
/* If the page cannot be used file it away */
if (page_to_boot_pfn(page) >
(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
list_add(&page->lru, &image->unusable_pages);
continue;
}
addr = page_to_boot_pfn(page) << PAGE_SHIFT;
/* If it is the destination page we want use it */
if (addr == destination)
break;
/* If the page is not a destination page use it */
if (!kimage_is_destination_range(image, addr,
addr + PAGE_SIZE - 1))
break;
/*
* I know that the page is someones destination page.
* See if there is already a source page for this
* destination page. And if so swap the source pages.
*/
old = kimage_dst_used(image, addr);
if (old) {
/* If so move it */
unsigned long old_addr;
struct page *old_page;
old_addr = *old & PAGE_MASK;
old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
copy_highpage(page, old_page);
*old = addr | (*old & ~PAGE_MASK);
/* The old page I have found cannot be a
* destination page, so return it if it's
* gfp_flags honor the ones passed in.
*/
if (!(gfp_mask & __GFP_HIGHMEM) &&
PageHighMem(old_page)) {
kimage_free_pages(old_page);
continue;
}
page = old_page;
break;
}
/* Place the page on the destination list, to be used later */
list_add(&page->lru, &image->dest_pages);
}
return page;
}
static int kimage_load_normal_segment(struct kimage *image,
struct kexec_segment *segment)
{
unsigned long maddr;
size_t ubytes, mbytes;
int result;
unsigned char __user *buf = NULL;
unsigned char *kbuf = NULL;
if (image->file_mode)
kbuf = segment->kbuf;
else
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
result = kimage_set_destination(image, maddr);
if (result < 0)
goto out;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
if (!page) {
result = -ENOMEM;
goto out;
}
result = kimage_add_page(image, page_to_boot_pfn(page)
<< PAGE_SHIFT);
if (result < 0)
goto out;
ptr = kmap_local_page(page);
/* Start with a clear page */
clear_page(ptr);
ptr += maddr & ~PAGE_MASK;
mchunk = min_t(size_t, mbytes,
PAGE_SIZE - (maddr & ~PAGE_MASK));
uchunk = min(ubytes, mchunk);
if (uchunk) {
/* For file based kexec, source pages are in kernel memory */
if (image->file_mode)
memcpy(ptr, kbuf, uchunk);
else
result = copy_from_user(ptr, buf, uchunk);
ubytes -= uchunk;
if (image->file_mode)
kbuf += uchunk;
else
buf += uchunk;
}
kunmap_local(ptr);
if (result) {
result = -EFAULT;
goto out;
}
maddr += mchunk;
mbytes -= mchunk;
cond_resched();
}
out:
return result;
}
#ifdef CONFIG_CRASH_DUMP
static int kimage_load_crash_segment(struct kimage *image,
struct kexec_segment *segment)
{
/* For crash dumps kernels we simply copy the data from
* user space to it's destination.
* We do things a page at a time for the sake of kmap.
*/
unsigned long maddr;
size_t ubytes, mbytes;
int result;
unsigned char __user *buf = NULL;
unsigned char *kbuf = NULL;
result = 0;
if (image->file_mode)
kbuf = segment->kbuf;
else
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
if (!page) {
result = -ENOMEM;
goto out;
}
arch_kexec_post_alloc_pages(page_address(page), 1, 0);
ptr = kmap_local_page(page);
ptr += maddr & ~PAGE_MASK;
mchunk = min_t(size_t, mbytes,
PAGE_SIZE - (maddr & ~PAGE_MASK));
uchunk = min(ubytes, mchunk);
if (mchunk > uchunk) {
/* Zero the trailing part of the page */
memset(ptr + uchunk, 0, mchunk - uchunk);
}
if (uchunk) {
/* For file based kexec, source pages are in kernel memory */
if (image->file_mode)
memcpy(ptr, kbuf, uchunk);
else
result = copy_from_user(ptr, buf, uchunk);
ubytes -= uchunk;
if (image->file_mode)
kbuf += uchunk;
else
buf += uchunk;
}
kexec_flush_icache_page(page);
kunmap_local(ptr);
arch_kexec_pre_free_pages(page_address(page), 1);
if (result) {
result = -EFAULT;
goto out;
}
maddr += mchunk;
mbytes -= mchunk;
cond_resched();
}
out:
return result;
}
#endif
int kimage_load_segment(struct kimage *image,
struct kexec_segment *segment)
{
int result = -ENOMEM;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
result = kimage_load_normal_segment(image, segment);
break;
#ifdef CONFIG_CRASH_DUMP
case KEXEC_TYPE_CRASH:
result = kimage_load_crash_segment(image, segment);
break;
#endif
}
return result;
}
struct kexec_load_limit {
/* Mutex protects the limit count. */
struct mutex mutex;
int limit;
};
static struct kexec_load_limit load_limit_reboot = {
.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
.limit = -1,
};
static struct kexec_load_limit load_limit_panic = {
.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
.limit = -1,
};
struct kimage *kexec_image;
struct kimage *kexec_crash_image;
static int kexec_load_disabled;
#ifdef CONFIG_SYSCTL
static int kexec_limit_handler(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct kexec_load_limit *limit = table->data;
int val;
struct ctl_table tmp = {
.data = &val,
.maxlen = sizeof(val),
.mode = table->mode,
};
int ret;
if (write) {
ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
if (ret)
return ret;
if (val < 0)
return -EINVAL;
mutex_lock(&limit->mutex);
if (limit->limit != -1 && val >= limit->limit)
ret = -EINVAL;
else
limit->limit = val;
mutex_unlock(&limit->mutex);
return ret;
}
mutex_lock(&limit->mutex);
val = limit->limit;
mutex_unlock(&limit->mutex);
return proc_dointvec(&tmp, write, buffer, lenp, ppos);
}
static const struct ctl_table kexec_core_sysctls[] = {
{
.procname = "kexec_load_disabled",
.data = &kexec_load_disabled,
.maxlen = sizeof(int),
.mode = 0644,
/* only handle a transition from default "0" to "1" */
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ONE,
.extra2 = SYSCTL_ONE,
},
{
.procname = "kexec_load_limit_panic",
.data = &load_limit_panic,
.mode = 0644,
.proc_handler = kexec_limit_handler,
},
{
.procname = "kexec_load_limit_reboot",
.data = &load_limit_reboot,
.mode = 0644,
.proc_handler = kexec_limit_handler,
},
};
static int __init kexec_core_sysctl_init(void)
{
register_sysctl_init("kernel", kexec_core_sysctls);
return 0;
}
late_initcall(kexec_core_sysctl_init);
#endif
bool kexec_load_permitted(int kexec_image_type)
{
struct kexec_load_limit *limit;
/*
* Only the superuser can use the kexec syscall and if it has not
* been disabled.
*/
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
return false;
/* Check limit counter and decrease it.*/
limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
&load_limit_panic : &load_limit_reboot;
mutex_lock(&limit->mutex);
if (!limit->limit) {
mutex_unlock(&limit->mutex);
return false;
}
if (limit->limit != -1)
limit->limit--;
mutex_unlock(&limit->mutex);
return true;
}
/*
* Move into place and start executing a preloaded standalone
* executable. If nothing was preloaded return an error.
*/
int kernel_kexec(void)
{
int error = 0;
if (!kexec_trylock())
return -EBUSY;
if (!kexec_image) {
error = -EINVAL;
goto Unlock;
}
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
/*
* This flow is analogous to hibernation flows that occur
* before creating an image and before jumping from the
* restore kernel to the image one, so it uses the same
* device callbacks as those two flows.
*/
pm_prepare_console();
error = freeze_processes();
if (error) {
error = -EBUSY;
goto Restore_console;
}
console_suspend_all();
error = dpm_suspend_start(PMSG_FREEZE);
if (error)
goto Resume_console;
/*
* dpm_suspend_end() must be called after dpm_suspend_start()
* to complete the transition, like in the hibernation flows
* mentioned above.
*/
error = dpm_suspend_end(PMSG_FREEZE);
if (error)
goto Resume_devices;
error = suspend_disable_secondary_cpus();
if (error)
goto Enable_cpus;
local_irq_disable();
error = syscore_suspend();
if (error)
goto Enable_irqs;
} else
#endif
{
kexec_in_progress = true;
kernel_restart_prepare("kexec reboot");
migrate_to_reboot_cpu();
syscore_shutdown();
/*
* migrate_to_reboot_cpu() disables CPU hotplug assuming that
* no further code needs to use CPU hotplug (which is true in
* the reboot case). However, the kexec path depends on using
* CPU hotplug again; so re-enable it here.
*/
cpu_hotplug_enable();
pr_notice("Starting new kernel\n");
machine_shutdown();
}
kmsg_dump(KMSG_DUMP_SHUTDOWN);
machine_kexec(kexec_image);
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
/*
* This flow is analogous to hibernation flows that occur after
* creating an image and after the image kernel has got control
* back, and in case the devices have been reset or otherwise
* manipulated in the meantime, it uses the device callbacks
* used by the latter.
*/
syscore_resume();
Enable_irqs:
local_irq_enable();
Enable_cpus:
suspend_enable_secondary_cpus();
dpm_resume_start(PMSG_RESTORE);
Resume_devices:
dpm_resume_end(PMSG_RESTORE);
Resume_console:
console_resume_all();
thaw_processes();
Restore_console:
pm_restore_console();
}
#endif
Unlock:
kexec_unlock();
return error;
}