linux/fs/pidfs.c
Linus Torvalds df00ded23a vfs-6.15-rc1.pidfs
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZ90pqgAKCRCRxhvAZXjc
 oqVsAP9Aq/fMCI14HeXehPCezKQZPu1HTrPPo2clLHXoSnafawEAsA3YfWTT4Heb
 iexzqvAEUOMYOVN66QEc+6AAwtMLrwc=
 =0eYo
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.15-rc1.pidfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs pidfs updates from Christian Brauner:

 - Allow retrieving exit information after a process has been reaped
   through pidfds via the new PIDFD_INTO_EXIT extension for the
   PIDFD_GET_INFO ioctl. Various tools need access to information about
   a process/task even after it has already been reaped.

   Pidfd polling allows waiting on either task exit or for a task to
   have been reaped. The contract for PIDFD_INFO_EXIT is simply that
   EPOLLHUP must be observed before exit information can be retrieved,
   i.e., exit information is only provided once the task has been reaped
   and then can be retrieved as long as the pidfd is open.

 - Add PIDFD_SELF_{THREAD,THREAD_GROUP} sentinels allowing userspace to
   forgo allocating a file descriptor for their own process. This is
   useful in scenarios where users want to act on their own process
   through pidfds and is akin to AT_FDCWD.

 - Improve premature thread-group leader and subthread exec behavior
   when polling on pidfds:

   (1) During a multi-threaded exec by a subthread, i.e.,
       non-thread-group leader thread, all other threads in the
       thread-group including the thread-group leader are killed and the
       struct pid of the thread-group leader will be taken over by the
       subthread that called exec. IOW, two tasks change their TIDs.

   (2) A premature thread-group leader exit means that the thread-group
       leader exited before all of the other subthreads in the
       thread-group have exited.

   Both cases lead to inconsistencies for pidfd polling with
   PIDFD_THREAD. Any caller that holds a PIDFD_THREAD pidfd to the
   current thread-group leader may or may not see an exit notification
   on the file descriptor depending on when poll is performed. If the
   poll is performed before the exec of the subthread has concluded an
   exit notification is generated for the old thread-group leader. If
   the poll is performed after the exec of the subthread has concluded
   no exit notification is generated for the old thread-group leader.

   The correct behavior is to simply not generate an exit notification
   on the struct pid of a subhthread exec because the struct pid is
   taken over by the subthread and thus remains alive.

   But this is difficult to handle because a thread-group may exit
   premature as mentioned in (2). In that case an exit notification is
   reliably generated but the subthreads may continue to run for an
   indeterminate amount of time and thus also may exec at some point.

   After this pull no exit notifications will be generated for a
   PIDFD_THREAD pidfd for a thread-group leader until all subthreads
   have been reaped. If a subthread should exec before no exit
   notification will be generated until that task exits or it creates
   subthreads and repeates the cycle.

   This means an exit notification indicates the ability for the father
   to reap the child.

* tag 'vfs-6.15-rc1.pidfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (25 commits)
  selftests/pidfd: third test for multi-threaded exec polling
  selftests/pidfd: second test for multi-threaded exec polling
  selftests/pidfd: first test for multi-threaded exec polling
  pidfs: improve multi-threaded exec and premature thread-group leader exit polling
  pidfs: ensure that PIDFS_INFO_EXIT is available
  selftests/pidfd: add seventh PIDFD_INFO_EXIT selftest
  selftests/pidfd: add sixth PIDFD_INFO_EXIT selftest
  selftests/pidfd: add fifth PIDFD_INFO_EXIT selftest
  selftests/pidfd: add fourth PIDFD_INFO_EXIT selftest
  selftests/pidfd: add third PIDFD_INFO_EXIT selftest
  selftests/pidfd: add second PIDFD_INFO_EXIT selftest
  selftests/pidfd: add first PIDFD_INFO_EXIT selftest
  selftests/pidfd: expand common pidfd header
  pidfs/selftests: ensure correct headers for ioctl handling
  selftests/pidfd: fix header inclusion
  pidfs: allow to retrieve exit information
  pidfs: record exit code and cgroupid at exit
  pidfs: use private inode slab cache
  pidfs: move setting flags into pidfs_alloc_file()
  pidfd: rely on automatic cleanup in __pidfd_prepare()
  ...
2025-03-24 10:16:37 -07:00

916 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/anon_inodes.h>
#include <linux/exportfs.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/cgroup.h>
#include <linux/magic.h>
#include <linux/mount.h>
#include <linux/pid.h>
#include <linux/pidfs.h>
#include <linux/pid_namespace.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/proc_ns.h>
#include <linux/pseudo_fs.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <uapi/linux/pidfd.h>
#include <linux/ipc_namespace.h>
#include <linux/time_namespace.h>
#include <linux/utsname.h>
#include <net/net_namespace.h>
#include "internal.h"
#include "mount.h"
static struct kmem_cache *pidfs_cachep __ro_after_init;
/*
* Stashes information that userspace needs to access even after the
* process has been reaped.
*/
struct pidfs_exit_info {
__u64 cgroupid;
__s32 exit_code;
};
struct pidfs_inode {
struct pidfs_exit_info __pei;
struct pidfs_exit_info *exit_info;
struct inode vfs_inode;
};
static inline struct pidfs_inode *pidfs_i(struct inode *inode)
{
return container_of(inode, struct pidfs_inode, vfs_inode);
}
static struct rb_root pidfs_ino_tree = RB_ROOT;
#if BITS_PER_LONG == 32
static inline unsigned long pidfs_ino(u64 ino)
{
return lower_32_bits(ino);
}
/* On 32 bit the generation number are the upper 32 bits. */
static inline u32 pidfs_gen(u64 ino)
{
return upper_32_bits(ino);
}
#else
/* On 64 bit simply return ino. */
static inline unsigned long pidfs_ino(u64 ino)
{
return ino;
}
/* On 64 bit the generation number is 0. */
static inline u32 pidfs_gen(u64 ino)
{
return 0;
}
#endif
static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
{
struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
u64 pid_ino_a = pid_a->ino;
u64 pid_ino_b = pid_b->ino;
if (pid_ino_a < pid_ino_b)
return -1;
if (pid_ino_a > pid_ino_b)
return 1;
return 0;
}
void pidfs_add_pid(struct pid *pid)
{
static u64 pidfs_ino_nr = 2;
/*
* On 64 bit nothing special happens. The 64bit number assigned
* to struct pid is the inode number.
*
* On 32 bit the 64 bit number assigned to struct pid is split
* into two 32 bit numbers. The lower 32 bits are used as the
* inode number and the upper 32 bits are used as the inode
* generation number.
*
* On 32 bit pidfs_ino() will return the lower 32 bit. When
* pidfs_ino() returns zero a wrap around happened. When a
* wraparound happens the 64 bit number will be incremented by 2
* so inode numbering starts at 2 again.
*
* On 64 bit comparing two pidfds is as simple as comparing
* inode numbers.
*
* When a wraparound happens on 32 bit multiple pidfds with the
* same inode number are likely to exist (This isn't a problem
* since before pidfs pidfds used the anonymous inode meaning
* all pidfds had the same inode number.). Userspace can
* reconstruct the 64 bit identifier by retrieving both the
* inode number and the inode generation number to compare or
* use file handles.
*/
if (pidfs_ino(pidfs_ino_nr) == 0)
pidfs_ino_nr += 2;
pid->ino = pidfs_ino_nr;
pid->stashed = NULL;
pidfs_ino_nr++;
write_seqcount_begin(&pidmap_lock_seq);
rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
write_seqcount_end(&pidmap_lock_seq);
}
void pidfs_remove_pid(struct pid *pid)
{
write_seqcount_begin(&pidmap_lock_seq);
rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
write_seqcount_end(&pidmap_lock_seq);
}
#ifdef CONFIG_PROC_FS
/**
* pidfd_show_fdinfo - print information about a pidfd
* @m: proc fdinfo file
* @f: file referencing a pidfd
*
* Pid:
* This function will print the pid that a given pidfd refers to in the
* pid namespace of the procfs instance.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its pid. This is
* similar to calling getppid() on a process whose parent is outside of
* its pid namespace.
*
* NSpid:
* If pid namespaces are supported then this function will also print
* the pid of a given pidfd refers to for all descendant pid namespaces
* starting from the current pid namespace of the instance, i.e. the
* Pid field and the first entry in the NSpid field will be identical.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its first NSpid
* entry and no others will be shown.
* Note that this differs from the Pid and NSpid fields in
* /proc/<pid>/status where Pid and NSpid are always shown relative to
* the pid namespace of the procfs instance. The difference becomes
* obvious when sending around a pidfd between pid namespaces from a
* different branch of the tree, i.e. where no ancestral relation is
* present between the pid namespaces:
* - create two new pid namespaces ns1 and ns2 in the initial pid
* namespace (also take care to create new mount namespaces in the
* new pid namespace and mount procfs)
* - create a process with a pidfd in ns1
* - send pidfd from ns1 to ns2
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
* have exactly one entry, which is 0
*/
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
struct pid *pid = pidfd_pid(f);
struct pid_namespace *ns;
pid_t nr = -1;
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
ns = proc_pid_ns(file_inode(m->file)->i_sb);
nr = pid_nr_ns(pid, ns);
}
seq_put_decimal_ll(m, "Pid:\t", nr);
#ifdef CONFIG_PID_NS
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
if (nr > 0) {
int i;
/* If nr is non-zero it means that 'pid' is valid and that
* ns, i.e. the pid namespace associated with the procfs
* instance, is in the pid namespace hierarchy of pid.
* Start at one below the already printed level.
*/
for (i = ns->level + 1; i <= pid->level; i++)
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
}
#endif
seq_putc(m, '\n');
}
#endif
/*
* Poll support for process exit notification.
*/
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
struct pid *pid = pidfd_pid(file);
struct task_struct *task;
__poll_t poll_flags = 0;
poll_wait(file, &pid->wait_pidfd, pts);
/*
* Don't wake waiters if the thread-group leader exited
* prematurely. They either get notified when the last subthread
* exits or not at all if one of the remaining subthreads execs
* and assumes the struct pid of the old thread-group leader.
*/
guard(rcu)();
task = pid_task(pid, PIDTYPE_PID);
if (!task)
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
else if (task->exit_state && !delay_group_leader(task))
poll_flags = EPOLLIN | EPOLLRDNORM;
return poll_flags;
}
static inline bool pid_in_current_pidns(const struct pid *pid)
{
const struct pid_namespace *ns = task_active_pid_ns(current);
if (ns->level <= pid->level)
return pid->numbers[ns->level].ns == ns;
return false;
}
static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
{
struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
struct inode *inode = file_inode(file);
struct pid *pid = pidfd_pid(file);
size_t usize = _IOC_SIZE(cmd);
struct pidfd_info kinfo = {};
struct pidfs_exit_info *exit_info;
struct user_namespace *user_ns;
struct task_struct *task;
const struct cred *c;
__u64 mask;
if (!uinfo)
return -EINVAL;
if (usize < PIDFD_INFO_SIZE_VER0)
return -EINVAL; /* First version, no smaller struct possible */
if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
return -EFAULT;
/*
* Restrict information retrieval to tasks within the caller's pid
* namespace hierarchy.
*/
if (!pid_in_current_pidns(pid))
return -ESRCH;
if (mask & PIDFD_INFO_EXIT) {
exit_info = READ_ONCE(pidfs_i(inode)->exit_info);
if (exit_info) {
kinfo.mask |= PIDFD_INFO_EXIT;
#ifdef CONFIG_CGROUPS
kinfo.cgroupid = exit_info->cgroupid;
kinfo.mask |= PIDFD_INFO_CGROUPID;
#endif
kinfo.exit_code = exit_info->exit_code;
}
}
task = get_pid_task(pid, PIDTYPE_PID);
if (!task) {
/*
* If the task has already been reaped, only exit
* information is available
*/
if (!(mask & PIDFD_INFO_EXIT))
return -ESRCH;
goto copy_out;
}
c = get_task_cred(task);
if (!c)
return -ESRCH;
/* Unconditionally return identifiers and credentials, the rest only on request */
user_ns = current_user_ns();
kinfo.ruid = from_kuid_munged(user_ns, c->uid);
kinfo.rgid = from_kgid_munged(user_ns, c->gid);
kinfo.euid = from_kuid_munged(user_ns, c->euid);
kinfo.egid = from_kgid_munged(user_ns, c->egid);
kinfo.suid = from_kuid_munged(user_ns, c->suid);
kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
kinfo.mask |= PIDFD_INFO_CREDS;
put_cred(c);
#ifdef CONFIG_CGROUPS
if (!kinfo.cgroupid) {
struct cgroup *cgrp;
rcu_read_lock();
cgrp = task_dfl_cgroup(task);
kinfo.cgroupid = cgroup_id(cgrp);
kinfo.mask |= PIDFD_INFO_CGROUPID;
rcu_read_unlock();
}
#endif
/*
* Copy pid/tgid last, to reduce the chances the information might be
* stale. Note that it is not possible to ensure it will be valid as the
* task might return as soon as the copy_to_user finishes, but that's ok
* and userspace expects that might happen and can act accordingly, so
* this is just best-effort. What we can do however is checking that all
* the fields are set correctly, or return ESRCH to avoid providing
* incomplete information. */
kinfo.ppid = task_ppid_nr_ns(task, NULL);
kinfo.tgid = task_tgid_vnr(task);
kinfo.pid = task_pid_vnr(task);
kinfo.mask |= PIDFD_INFO_PID;
if (kinfo.pid == 0 || kinfo.tgid == 0 || (kinfo.ppid == 0 && kinfo.pid != 1))
return -ESRCH;
copy_out:
/*
* If userspace and the kernel have the same struct size it can just
* be copied. If userspace provides an older struct, only the bits that
* userspace knows about will be copied. If userspace provides a new
* struct, only the bits that the kernel knows about will be copied.
*/
return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
}
static bool pidfs_ioctl_valid(unsigned int cmd)
{
switch (cmd) {
case FS_IOC_GETVERSION:
case PIDFD_GET_CGROUP_NAMESPACE:
case PIDFD_GET_IPC_NAMESPACE:
case PIDFD_GET_MNT_NAMESPACE:
case PIDFD_GET_NET_NAMESPACE:
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_TIME_NAMESPACE:
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_UTS_NAMESPACE:
case PIDFD_GET_USER_NAMESPACE:
case PIDFD_GET_PID_NAMESPACE:
return true;
}
/* Extensible ioctls require some more careful checks. */
switch (_IOC_NR(cmd)) {
case _IOC_NR(PIDFD_GET_INFO):
/*
* Try to prevent performing a pidfd ioctl when someone
* erronously mistook the file descriptor for a pidfd.
* This is not perfect but will catch most cases.
*/
return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO));
}
return false;
}
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct task_struct *task __free(put_task) = NULL;
struct nsproxy *nsp __free(put_nsproxy) = NULL;
struct ns_common *ns_common = NULL;
struct pid_namespace *pid_ns;
if (!pidfs_ioctl_valid(cmd))
return -ENOIOCTLCMD;
if (cmd == FS_IOC_GETVERSION) {
if (!arg)
return -EINVAL;
__u32 __user *argp = (__u32 __user *)arg;
return put_user(file_inode(file)->i_generation, argp);
}
/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
return pidfd_info(file, cmd, arg);
task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
if (!task)
return -ESRCH;
if (arg)
return -EINVAL;
scoped_guard(task_lock, task) {
nsp = task->nsproxy;
if (nsp)
get_nsproxy(nsp);
}
if (!nsp)
return -ESRCH; /* just pretend it didn't exist */
/*
* We're trying to open a file descriptor to the namespace so perform a
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
return -EACCES;
switch (cmd) {
/* Namespaces that hang of nsproxy. */
case PIDFD_GET_CGROUP_NAMESPACE:
if (IS_ENABLED(CONFIG_CGROUPS)) {
get_cgroup_ns(nsp->cgroup_ns);
ns_common = to_ns_common(nsp->cgroup_ns);
}
break;
case PIDFD_GET_IPC_NAMESPACE:
if (IS_ENABLED(CONFIG_IPC_NS)) {
get_ipc_ns(nsp->ipc_ns);
ns_common = to_ns_common(nsp->ipc_ns);
}
break;
case PIDFD_GET_MNT_NAMESPACE:
get_mnt_ns(nsp->mnt_ns);
ns_common = to_ns_common(nsp->mnt_ns);
break;
case PIDFD_GET_NET_NAMESPACE:
if (IS_ENABLED(CONFIG_NET_NS)) {
ns_common = to_ns_common(nsp->net_ns);
get_net_ns(ns_common);
}
break;
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
get_pid_ns(nsp->pid_ns_for_children);
ns_common = to_ns_common(nsp->pid_ns_for_children);
}
break;
case PIDFD_GET_TIME_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns);
ns_common = to_ns_common(nsp->time_ns);
}
break;
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns_for_children);
ns_common = to_ns_common(nsp->time_ns_for_children);
}
break;
case PIDFD_GET_UTS_NAMESPACE:
if (IS_ENABLED(CONFIG_UTS_NS)) {
get_uts_ns(nsp->uts_ns);
ns_common = to_ns_common(nsp->uts_ns);
}
break;
/* Namespaces that don't hang of nsproxy. */
case PIDFD_GET_USER_NAMESPACE:
if (IS_ENABLED(CONFIG_USER_NS)) {
rcu_read_lock();
ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
rcu_read_unlock();
}
break;
case PIDFD_GET_PID_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
rcu_read_lock();
pid_ns = task_active_pid_ns(task);
if (pid_ns)
ns_common = to_ns_common(get_pid_ns(pid_ns));
rcu_read_unlock();
}
break;
default:
return -ENOIOCTLCMD;
}
if (!ns_common)
return -EOPNOTSUPP;
/* open_namespace() unconditionally consumes the reference */
return open_namespace(ns_common);
}
static const struct file_operations pidfs_file_operations = {
.poll = pidfd_poll,
#ifdef CONFIG_PROC_FS
.show_fdinfo = pidfd_show_fdinfo,
#endif
.unlocked_ioctl = pidfd_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
struct pid *pidfd_pid(const struct file *file)
{
if (file->f_op != &pidfs_file_operations)
return ERR_PTR(-EBADF);
return file_inode(file)->i_private;
}
/*
* We're called from release_task(). We know there's at least one
* reference to struct pid being held that won't be released until the
* task has been reaped which cannot happen until we're out of
* release_task().
*
* If this struct pid is referred to by a pidfd then
* stashed_dentry_get() will return the dentry and inode for that struct
* pid. Since we've taken a reference on it there's now an additional
* reference from the exit path on it. Which is fine. We're going to put
* it again in a second and we know that the pid is kept alive anyway.
*
* Worst case is that we've filled in the info and immediately free the
* dentry and inode afterwards since the pidfd has been closed. Since
* pidfs_exit() currently is placed after exit_task_work() we know that
* it cannot be us aka the exiting task holding a pidfd to ourselves.
*/
void pidfs_exit(struct task_struct *tsk)
{
struct dentry *dentry;
might_sleep();
dentry = stashed_dentry_get(&task_pid(tsk)->stashed);
if (dentry) {
struct inode *inode = d_inode(dentry);
struct pidfs_exit_info *exit_info = &pidfs_i(inode)->__pei;
#ifdef CONFIG_CGROUPS
struct cgroup *cgrp;
rcu_read_lock();
cgrp = task_dfl_cgroup(tsk);
exit_info->cgroupid = cgroup_id(cgrp);
rcu_read_unlock();
#endif
exit_info->exit_code = tsk->exit_code;
/* Ensure that PIDFD_GET_INFO sees either all or nothing. */
smp_store_release(&pidfs_i(inode)->exit_info, &pidfs_i(inode)->__pei);
dput(dentry);
}
}
static struct vfsmount *pidfs_mnt __ro_after_init;
/*
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
* implemented. Let's reject it completely until we have a clean
* permission concept for pidfds.
*/
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
return -EOPNOTSUPP;
}
/*
* User space expects pidfs inodes to have no file type in st_mode.
*
* In particular, 'lsof' has this legacy logic:
*
* type = s->st_mode & S_IFMT;
* switch (type) {
* ...
* case 0:
* if (!strcmp(p, "anon_inode"))
* Lf->ntype = Ntype = N_ANON_INODE;
*
* to detect our old anon_inode logic.
*
* Rather than mess with our internal sane inode data, just fix it
* up here in getattr() by masking off the format bits.
*/
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask,
unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
stat->mode &= ~S_IFMT;
return 0;
}
static const struct inode_operations pidfs_inode_operations = {
.getattr = pidfs_getattr,
.setattr = pidfs_setattr,
};
static void pidfs_evict_inode(struct inode *inode)
{
struct pid *pid = inode->i_private;
clear_inode(inode);
put_pid(pid);
}
static struct inode *pidfs_alloc_inode(struct super_block *sb)
{
struct pidfs_inode *pi;
pi = alloc_inode_sb(sb, pidfs_cachep, GFP_KERNEL);
if (!pi)
return NULL;
memset(&pi->__pei, 0, sizeof(pi->__pei));
pi->exit_info = NULL;
return &pi->vfs_inode;
}
static void pidfs_free_inode(struct inode *inode)
{
kmem_cache_free(pidfs_cachep, pidfs_i(inode));
}
static const struct super_operations pidfs_sops = {
.alloc_inode = pidfs_alloc_inode,
.drop_inode = generic_delete_inode,
.evict_inode = pidfs_evict_inode,
.free_inode = pidfs_free_inode,
.statfs = simple_statfs,
};
/*
* 'lsof' has knowledge of out historical anon_inode use, and expects
* the pidfs dentry name to start with 'anon_inode'.
*/
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
}
const struct dentry_operations pidfs_dentry_operations = {
.d_dname = pidfs_dname,
.d_prune = stashed_dentry_prune,
};
static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
struct inode *parent)
{
const struct pid *pid = inode->i_private;
if (*max_len < 2) {
*max_len = 2;
return FILEID_INVALID;
}
*max_len = 2;
*(u64 *)fh = pid->ino;
return FILEID_KERNFS;
}
static int pidfs_ino_find(const void *key, const struct rb_node *node)
{
const u64 pid_ino = *(u64 *)key;
const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
if (pid_ino < pid->ino)
return -1;
if (pid_ino > pid->ino)
return 1;
return 0;
}
/* Find a struct pid based on the inode number. */
static struct pid *pidfs_ino_get_pid(u64 ino)
{
struct pid *pid;
struct rb_node *node;
unsigned int seq;
guard(rcu)();
do {
seq = read_seqcount_begin(&pidmap_lock_seq);
node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
if (node)
break;
} while (read_seqcount_retry(&pidmap_lock_seq, seq));
if (!node)
return NULL;
pid = rb_entry(node, struct pid, pidfs_node);
/* Within our pid namespace hierarchy? */
if (pid_vnr(pid) == 0)
return NULL;
return get_pid(pid);
}
static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len,
int fh_type)
{
int ret;
u64 pid_ino;
struct path path;
struct pid *pid;
if (fh_len < 2)
return NULL;
switch (fh_type) {
case FILEID_KERNFS:
pid_ino = *(u64 *)fid;
break;
default:
return NULL;
}
pid = pidfs_ino_get_pid(pid_ino);
if (!pid)
return NULL;
ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
if (ret < 0)
return ERR_PTR(ret);
mntput(path.mnt);
return path.dentry;
}
/*
* Make sure that we reject any nonsensical flags that users pass via
* open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
* PIDFD_NONBLOCK as O_NONBLOCK.
*/
#define VALID_FILE_HANDLE_OPEN_FLAGS \
(O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
unsigned int oflags)
{
if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
return -EINVAL;
/*
* pidfd_ino_get_pid() will verify that the struct pid is part
* of the caller's pid namespace hierarchy. No further
* permission checks are needed.
*/
return 0;
}
static inline bool pidfs_pid_valid(struct pid *pid, const struct path *path,
unsigned int flags)
{
enum pid_type type;
if (flags & PIDFD_CLONE)
return true;
/*
* Make sure that if a pidfd is created PIDFD_INFO_EXIT
* information will be available. So after an inode for the
* pidfd has been allocated perform another check that the pid
* is still alive. If it is exit information is available even
* if the task gets reaped before the pidfd is returned to
* userspace. The only exception is PIDFD_CLONE where no task
* linkage has been established for @pid yet and the kernel is
* in the middle of process creation so there's nothing for
* pidfs to miss.
*/
if (flags & PIDFD_THREAD)
type = PIDTYPE_PID;
else
type = PIDTYPE_TGID;
/*
* Since pidfs_exit() is called before struct pid's task linkage
* is removed the case where the task got reaped but a dentry
* was already attached to struct pid and exit information was
* recorded and published can be handled correctly.
*/
if (unlikely(!pid_has_task(pid, type))) {
struct inode *inode = d_inode(path->dentry);
return !!READ_ONCE(pidfs_i(inode)->exit_info);
}
return true;
}
static struct file *pidfs_export_open(struct path *path, unsigned int oflags)
{
if (!pidfs_pid_valid(d_inode(path->dentry)->i_private, path, oflags))
return ERR_PTR(-ESRCH);
/*
* Clear O_LARGEFILE as open_by_handle_at() forces it and raise
* O_RDWR as pidfds always are.
*/
oflags &= ~O_LARGEFILE;
return dentry_open(path, oflags | O_RDWR, current_cred());
}
static const struct export_operations pidfs_export_operations = {
.encode_fh = pidfs_encode_fh,
.fh_to_dentry = pidfs_fh_to_dentry,
.open = pidfs_export_open,
.permission = pidfs_export_permission,
};
static int pidfs_init_inode(struct inode *inode, void *data)
{
const struct pid *pid = data;
inode->i_private = data;
inode->i_flags |= S_PRIVATE;
inode->i_mode |= S_IRWXU;
inode->i_op = &pidfs_inode_operations;
inode->i_fop = &pidfs_file_operations;
inode->i_ino = pidfs_ino(pid->ino);
inode->i_generation = pidfs_gen(pid->ino);
return 0;
}
static void pidfs_put_data(void *data)
{
struct pid *pid = data;
put_pid(pid);
}
static const struct stashed_operations pidfs_stashed_ops = {
.init_inode = pidfs_init_inode,
.put_data = pidfs_put_data,
};
static int pidfs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx;
ctx = init_pseudo(fc, PID_FS_MAGIC);
if (!ctx)
return -ENOMEM;
ctx->ops = &pidfs_sops;
ctx->eops = &pidfs_export_operations;
ctx->dops = &pidfs_dentry_operations;
fc->s_fs_info = (void *)&pidfs_stashed_ops;
return 0;
}
static struct file_system_type pidfs_type = {
.name = "pidfs",
.init_fs_context = pidfs_init_fs_context,
.kill_sb = kill_anon_super,
};
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
{
struct file *pidfd_file;
struct path path __free(path_put) = {};
int ret;
/*
* Ensure that PIDFD_CLONE can be passed as a flag without
* overloading other uapi pidfd flags.
*/
BUILD_BUG_ON(PIDFD_CLONE == PIDFD_THREAD);
BUILD_BUG_ON(PIDFD_CLONE == PIDFD_NONBLOCK);
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
if (ret < 0)
return ERR_PTR(ret);
if (!pidfs_pid_valid(pid, &path, flags))
return ERR_PTR(-ESRCH);
flags &= ~PIDFD_CLONE;
pidfd_file = dentry_open(&path, flags, current_cred());
/* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
if (!IS_ERR(pidfd_file))
pidfd_file->f_flags |= (flags & PIDFD_THREAD);
return pidfd_file;
}
static void pidfs_inode_init_once(void *data)
{
struct pidfs_inode *pi = data;
inode_init_once(&pi->vfs_inode);
}
void __init pidfs_init(void)
{
pidfs_cachep = kmem_cache_create("pidfs_cache", sizeof(struct pidfs_inode), 0,
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT | SLAB_PANIC),
pidfs_inode_init_once);
pidfs_mnt = kern_mount(&pidfs_type);
if (IS_ERR(pidfs_mnt))
panic("Failed to mount pidfs pseudo filesystem");
}