mirror of
https://github.com/torvalds/linux.git
synced 2025-04-09 14:45:27 +00:00

For different CMAs, concurrent allocation of CMA memory ideally should not require synchronization using locks. Currently, a global cma_mutex lock is employed to synchronize all CMA allocations, which can impact the performance of concurrent allocations across different CMAs. To test the performance impact, follow these steps: 1. Boot the kernel with the command line argument hugetlb_cma=30G to allocate a 30GB CMA area specifically for huge page allocations. (note: on my machine, which has 3 nodes, each node is initialized with 10G of CMA) 2. Use the dd command with parameters if=/dev/zero of=/dev/shm/file bs=1G count=30 to fully utilize the CMA area by writing zeroes to a file in /dev/shm. 3. Open three terminals and execute the following commands simultaneously: (Note: Each of these commands attempts to allocate 10GB [2621440 * 4KB pages] of CMA memory.) On Terminal 1: time echo 2621440 > /sys/kernel/debug/cma/hugetlb1/alloc On Terminal 2: time echo 2621440 > /sys/kernel/debug/cma/hugetlb2/alloc On Terminal 3: time echo 2621440 > /sys/kernel/debug/cma/hugetlb3/alloc We attempt to allocate pages through the CMA debug interface and use the time command to measure the duration of each allocation. Performance comparison: Without this patch With this patch Terminal1 ~7s ~7s Terminal2 ~14s ~8s Terminal3 ~21s ~7s To solve problem above, we could use per-CMA locks to improve concurrent allocation performance. This would allow each CMA to be managed independently, reducing the need for a global lock and thus improving scalability and performance. Link: https://lkml.kernel.org/r/1739152566-744-1-git-send-email-yangge1116@126.com Signed-off-by: Ge Yang <yangge1116@126.com> Reviewed-by: Barry Song <baohua@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Aisheng Dong <aisheng.dong@nxp.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1107 lines
28 KiB
C
1107 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Contiguous Memory Allocator
|
|
*
|
|
* Copyright (c) 2010-2011 by Samsung Electronics.
|
|
* Copyright IBM Corporation, 2013
|
|
* Copyright LG Electronics Inc., 2014
|
|
* Written by:
|
|
* Marek Szyprowski <m.szyprowski@samsung.com>
|
|
* Michal Nazarewicz <mina86@mina86.com>
|
|
* Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
|
|
* Joonsoo Kim <iamjoonsoo.kim@lge.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "cma: " fmt
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/err.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <trace/events/cma.h>
|
|
|
|
#include "internal.h"
|
|
#include "cma.h"
|
|
|
|
struct cma cma_areas[MAX_CMA_AREAS];
|
|
unsigned int cma_area_count;
|
|
|
|
static int __init __cma_declare_contiguous_nid(phys_addr_t base,
|
|
phys_addr_t size, phys_addr_t limit,
|
|
phys_addr_t alignment, unsigned int order_per_bit,
|
|
bool fixed, const char *name, struct cma **res_cma,
|
|
int nid);
|
|
|
|
phys_addr_t cma_get_base(const struct cma *cma)
|
|
{
|
|
WARN_ON_ONCE(cma->nranges != 1);
|
|
return PFN_PHYS(cma->ranges[0].base_pfn);
|
|
}
|
|
|
|
unsigned long cma_get_size(const struct cma *cma)
|
|
{
|
|
return cma->count << PAGE_SHIFT;
|
|
}
|
|
|
|
const char *cma_get_name(const struct cma *cma)
|
|
{
|
|
return cma->name;
|
|
}
|
|
|
|
static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
|
|
unsigned int align_order)
|
|
{
|
|
if (align_order <= cma->order_per_bit)
|
|
return 0;
|
|
return (1UL << (align_order - cma->order_per_bit)) - 1;
|
|
}
|
|
|
|
/*
|
|
* Find the offset of the base PFN from the specified align_order.
|
|
* The value returned is represented in order_per_bits.
|
|
*/
|
|
static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
|
|
const struct cma_memrange *cmr,
|
|
unsigned int align_order)
|
|
{
|
|
return (cmr->base_pfn & ((1UL << align_order) - 1))
|
|
>> cma->order_per_bit;
|
|
}
|
|
|
|
static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
|
|
unsigned long pages)
|
|
{
|
|
return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
|
|
}
|
|
|
|
static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr,
|
|
unsigned long pfn, unsigned long count)
|
|
{
|
|
unsigned long bitmap_no, bitmap_count;
|
|
unsigned long flags;
|
|
|
|
bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit;
|
|
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
|
|
|
|
spin_lock_irqsave(&cma->lock, flags);
|
|
bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count);
|
|
cma->available_count += count;
|
|
spin_unlock_irqrestore(&cma->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Check if a CMA area contains no ranges that intersect with
|
|
* multiple zones. Store the result in the flags in case
|
|
* this gets called more than once.
|
|
*/
|
|
bool cma_validate_zones(struct cma *cma)
|
|
{
|
|
int r;
|
|
unsigned long base_pfn;
|
|
struct cma_memrange *cmr;
|
|
bool valid_bit_set;
|
|
|
|
/*
|
|
* If already validated, return result of previous check.
|
|
* Either the valid or invalid bit will be set if this
|
|
* check has already been done. If neither is set, the
|
|
* check has not been performed yet.
|
|
*/
|
|
valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags);
|
|
if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags))
|
|
return valid_bit_set;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
base_pfn = cmr->base_pfn;
|
|
|
|
/*
|
|
* alloc_contig_range() requires the pfn range specified
|
|
* to be in the same zone. Simplify by forcing the entire
|
|
* CMA resv range to be in the same zone.
|
|
*/
|
|
WARN_ON_ONCE(!pfn_valid(base_pfn));
|
|
if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) {
|
|
set_bit(CMA_ZONES_INVALID, &cma->flags);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
set_bit(CMA_ZONES_VALID, &cma->flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __init cma_activate_area(struct cma *cma)
|
|
{
|
|
unsigned long pfn, end_pfn;
|
|
int allocrange, r;
|
|
struct cma_memrange *cmr;
|
|
unsigned long bitmap_count, count;
|
|
|
|
for (allocrange = 0; allocrange < cma->nranges; allocrange++) {
|
|
cmr = &cma->ranges[allocrange];
|
|
cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr),
|
|
GFP_KERNEL);
|
|
if (!cmr->bitmap)
|
|
goto cleanup;
|
|
}
|
|
|
|
if (!cma_validate_zones(cma))
|
|
goto cleanup;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
if (cmr->early_pfn != cmr->base_pfn) {
|
|
count = cmr->early_pfn - cmr->base_pfn;
|
|
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
|
|
bitmap_set(cmr->bitmap, 0, bitmap_count);
|
|
}
|
|
|
|
for (pfn = cmr->early_pfn; pfn < cmr->base_pfn + cmr->count;
|
|
pfn += pageblock_nr_pages)
|
|
init_cma_reserved_pageblock(pfn_to_page(pfn));
|
|
}
|
|
|
|
spin_lock_init(&cma->lock);
|
|
|
|
mutex_init(&cma->alloc_mutex);
|
|
|
|
#ifdef CONFIG_CMA_DEBUGFS
|
|
INIT_HLIST_HEAD(&cma->mem_head);
|
|
spin_lock_init(&cma->mem_head_lock);
|
|
#endif
|
|
set_bit(CMA_ACTIVATED, &cma->flags);
|
|
|
|
return;
|
|
|
|
cleanup:
|
|
for (r = 0; r < allocrange; r++)
|
|
bitmap_free(cma->ranges[r].bitmap);
|
|
|
|
/* Expose all pages to the buddy, they are useless for CMA. */
|
|
if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) {
|
|
for (r = 0; r < allocrange; r++) {
|
|
cmr = &cma->ranges[r];
|
|
end_pfn = cmr->base_pfn + cmr->count;
|
|
for (pfn = cmr->early_pfn; pfn < end_pfn; pfn++)
|
|
free_reserved_page(pfn_to_page(pfn));
|
|
}
|
|
}
|
|
totalcma_pages -= cma->count;
|
|
cma->available_count = cma->count = 0;
|
|
pr_err("CMA area %s could not be activated\n", cma->name);
|
|
}
|
|
|
|
static int __init cma_init_reserved_areas(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cma_area_count; i++)
|
|
cma_activate_area(&cma_areas[i]);
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(cma_init_reserved_areas);
|
|
|
|
void __init cma_reserve_pages_on_error(struct cma *cma)
|
|
{
|
|
set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags);
|
|
}
|
|
|
|
static int __init cma_new_area(const char *name, phys_addr_t size,
|
|
unsigned int order_per_bit,
|
|
struct cma **res_cma)
|
|
{
|
|
struct cma *cma;
|
|
|
|
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
|
|
pr_err("Not enough slots for CMA reserved regions!\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* Each reserved area must be initialised later, when more kernel
|
|
* subsystems (like slab allocator) are available.
|
|
*/
|
|
cma = &cma_areas[cma_area_count];
|
|
cma_area_count++;
|
|
|
|
if (name)
|
|
snprintf(cma->name, CMA_MAX_NAME, "%s", name);
|
|
else
|
|
snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count);
|
|
|
|
cma->available_count = cma->count = size >> PAGE_SHIFT;
|
|
cma->order_per_bit = order_per_bit;
|
|
*res_cma = cma;
|
|
totalcma_pages += cma->count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init cma_drop_area(struct cma *cma)
|
|
{
|
|
totalcma_pages -= cma->count;
|
|
cma_area_count--;
|
|
}
|
|
|
|
/**
|
|
* cma_init_reserved_mem() - create custom contiguous area from reserved memory
|
|
* @base: Base address of the reserved area
|
|
* @size: Size of the reserved area (in bytes),
|
|
* @order_per_bit: Order of pages represented by one bit on bitmap.
|
|
* @name: The name of the area. If this parameter is NULL, the name of
|
|
* the area will be set to "cmaN", where N is a running counter of
|
|
* used areas.
|
|
* @res_cma: Pointer to store the created cma region.
|
|
*
|
|
* This function creates custom contiguous area from already reserved memory.
|
|
*/
|
|
int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
|
|
unsigned int order_per_bit,
|
|
const char *name,
|
|
struct cma **res_cma)
|
|
{
|
|
struct cma *cma;
|
|
int ret;
|
|
|
|
/* Sanity checks */
|
|
if (!size || !memblock_is_region_reserved(base, size))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which
|
|
* needs pageblock_order to be initialized. Let's enforce it.
|
|
*/
|
|
if (!pageblock_order) {
|
|
pr_err("pageblock_order not yet initialized. Called during early boot?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* ensure minimal alignment required by mm core */
|
|
if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
|
|
return -EINVAL;
|
|
|
|
ret = cma_new_area(name, size, order_per_bit, &cma);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
cma->ranges[0].base_pfn = PFN_DOWN(base);
|
|
cma->ranges[0].early_pfn = PFN_DOWN(base);
|
|
cma->ranges[0].count = cma->count;
|
|
cma->nranges = 1;
|
|
cma->nid = NUMA_NO_NODE;
|
|
|
|
*res_cma = cma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Structure used while walking physical memory ranges and finding out
|
|
* which one(s) to use for a CMA area.
|
|
*/
|
|
struct cma_init_memrange {
|
|
phys_addr_t base;
|
|
phys_addr_t size;
|
|
struct list_head list;
|
|
};
|
|
|
|
/*
|
|
* Work array used during CMA initialization.
|
|
*/
|
|
static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata;
|
|
|
|
static bool __init revsizecmp(struct cma_init_memrange *mlp,
|
|
struct cma_init_memrange *mrp)
|
|
{
|
|
return mlp->size > mrp->size;
|
|
}
|
|
|
|
static bool __init basecmp(struct cma_init_memrange *mlp,
|
|
struct cma_init_memrange *mrp)
|
|
{
|
|
return mlp->base < mrp->base;
|
|
}
|
|
|
|
/*
|
|
* Helper function to create sorted lists.
|
|
*/
|
|
static void __init list_insert_sorted(
|
|
struct list_head *ranges,
|
|
struct cma_init_memrange *mrp,
|
|
bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh))
|
|
{
|
|
struct list_head *mp;
|
|
struct cma_init_memrange *mlp;
|
|
|
|
if (list_empty(ranges))
|
|
list_add(&mrp->list, ranges);
|
|
else {
|
|
list_for_each(mp, ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
if (cmp(mlp, mrp))
|
|
break;
|
|
}
|
|
__list_add(&mrp->list, mlp->list.prev, &mlp->list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create CMA areas with a total size of @total_size. A normal allocation
|
|
* for one area is tried first. If that fails, the biggest memblock
|
|
* ranges above 4G are selected, and allocated bottom up.
|
|
*
|
|
* The complexity here is not great, but this function will only be
|
|
* called during boot, and the lists operated on have fewer than
|
|
* CMA_MAX_RANGES elements (default value: 8).
|
|
*/
|
|
int __init cma_declare_contiguous_multi(phys_addr_t total_size,
|
|
phys_addr_t align, unsigned int order_per_bit,
|
|
const char *name, struct cma **res_cma, int nid)
|
|
{
|
|
phys_addr_t start, end;
|
|
phys_addr_t size, sizesum, sizeleft;
|
|
struct cma_init_memrange *mrp, *mlp, *failed;
|
|
struct cma_memrange *cmrp;
|
|
LIST_HEAD(ranges);
|
|
LIST_HEAD(final_ranges);
|
|
struct list_head *mp, *next;
|
|
int ret, nr = 1;
|
|
u64 i;
|
|
struct cma *cma;
|
|
|
|
/*
|
|
* First, try it the normal way, producing just one range.
|
|
*/
|
|
ret = __cma_declare_contiguous_nid(0, total_size, 0, align,
|
|
order_per_bit, false, name, res_cma, nid);
|
|
if (ret != -ENOMEM)
|
|
goto out;
|
|
|
|
/*
|
|
* Couldn't find one range that fits our needs, so try multiple
|
|
* ranges.
|
|
*
|
|
* No need to do the alignment checks here, the call to
|
|
* cma_declare_contiguous_nid above would have caught
|
|
* any issues. With the checks, we know that:
|
|
*
|
|
* - @align is a power of 2
|
|
* - @align is >= pageblock alignment
|
|
* - @size is aligned to @align and to @order_per_bit
|
|
*
|
|
* So, as long as we create ranges that have a base
|
|
* aligned to @align, and a size that is aligned to
|
|
* both @align and @order_to_bit, things will work out.
|
|
*/
|
|
nr = 0;
|
|
sizesum = 0;
|
|
failed = NULL;
|
|
|
|
ret = cma_new_area(name, total_size, order_per_bit, &cma);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
|
|
/*
|
|
* Create a list of ranges above 4G, largest range first.
|
|
*/
|
|
for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
|
|
if (upper_32_bits(start) == 0)
|
|
continue;
|
|
|
|
start = ALIGN(start, align);
|
|
if (start >= end)
|
|
continue;
|
|
|
|
end = ALIGN_DOWN(end, align);
|
|
if (end <= start)
|
|
continue;
|
|
|
|
size = end - start;
|
|
size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit));
|
|
if (!size)
|
|
continue;
|
|
sizesum += size;
|
|
|
|
pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end);
|
|
|
|
/*
|
|
* If we don't yet have used the maximum number of
|
|
* areas, grab a new one.
|
|
*
|
|
* If we can't use anymore, see if this range is not
|
|
* smaller than the smallest one already recorded. If
|
|
* not, re-use the smallest element.
|
|
*/
|
|
if (nr < CMA_MAX_RANGES)
|
|
mrp = &memranges[nr++];
|
|
else {
|
|
mrp = list_last_entry(&ranges,
|
|
struct cma_init_memrange, list);
|
|
if (size < mrp->size)
|
|
continue;
|
|
list_del(&mrp->list);
|
|
sizesum -= mrp->size;
|
|
pr_debug("deleted %016llx - %016llx from the list\n",
|
|
(u64)mrp->base, (u64)mrp->base + size);
|
|
}
|
|
mrp->base = start;
|
|
mrp->size = size;
|
|
|
|
/*
|
|
* Now do a sorted insert.
|
|
*/
|
|
list_insert_sorted(&ranges, mrp, revsizecmp);
|
|
pr_debug("added %016llx - %016llx to the list\n",
|
|
(u64)mrp->base, (u64)mrp->base + size);
|
|
pr_debug("total size now %llu\n", (u64)sizesum);
|
|
}
|
|
|
|
/*
|
|
* There is not enough room in the CMA_MAX_RANGES largest
|
|
* ranges, so bail out.
|
|
*/
|
|
if (sizesum < total_size) {
|
|
cma_drop_area(cma);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Found ranges that provide enough combined space.
|
|
* Now, sorted them by address, smallest first, because we
|
|
* want to mimic a bottom-up memblock allocation.
|
|
*/
|
|
sizesum = 0;
|
|
list_for_each_safe(mp, next, &ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
list_del(mp);
|
|
list_insert_sorted(&final_ranges, mlp, basecmp);
|
|
sizesum += mlp->size;
|
|
if (sizesum >= total_size)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Walk the final list, and add a CMA range for
|
|
* each range, possibly not using the last one fully.
|
|
*/
|
|
nr = 0;
|
|
sizeleft = total_size;
|
|
list_for_each(mp, &final_ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
size = min(sizeleft, mlp->size);
|
|
if (memblock_reserve(mlp->base, size)) {
|
|
/*
|
|
* Unexpected error. Could go on to
|
|
* the next one, but just abort to
|
|
* be safe.
|
|
*/
|
|
failed = mlp;
|
|
break;
|
|
}
|
|
|
|
pr_debug("created region %d: %016llx - %016llx\n",
|
|
nr, (u64)mlp->base, (u64)mlp->base + size);
|
|
cmrp = &cma->ranges[nr++];
|
|
cmrp->base_pfn = PHYS_PFN(mlp->base);
|
|
cmrp->early_pfn = cmrp->base_pfn;
|
|
cmrp->count = size >> PAGE_SHIFT;
|
|
|
|
sizeleft -= size;
|
|
if (sizeleft == 0)
|
|
break;
|
|
}
|
|
|
|
if (failed) {
|
|
list_for_each(mp, &final_ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
if (mlp == failed)
|
|
break;
|
|
memblock_phys_free(mlp->base, mlp->size);
|
|
}
|
|
cma_drop_area(cma);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
cma->nranges = nr;
|
|
cma->nid = nid;
|
|
*res_cma = cma;
|
|
|
|
out:
|
|
if (ret != 0)
|
|
pr_err("Failed to reserve %lu MiB\n",
|
|
(unsigned long)total_size / SZ_1M);
|
|
else
|
|
pr_info("Reserved %lu MiB in %d range%s\n",
|
|
(unsigned long)total_size / SZ_1M, nr,
|
|
nr > 1 ? "s" : "");
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cma_declare_contiguous_nid() - reserve custom contiguous area
|
|
* @base: Base address of the reserved area optional, use 0 for any
|
|
* @size: Size of the reserved area (in bytes),
|
|
* @limit: End address of the reserved memory (optional, 0 for any).
|
|
* @alignment: Alignment for the CMA area, should be power of 2 or zero
|
|
* @order_per_bit: Order of pages represented by one bit on bitmap.
|
|
* @fixed: hint about where to place the reserved area
|
|
* @name: The name of the area. See function cma_init_reserved_mem()
|
|
* @res_cma: Pointer to store the created cma region.
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* This function reserves memory from early allocator. It should be
|
|
* called by arch specific code once the early allocator (memblock or bootmem)
|
|
* has been activated and all other subsystems have already allocated/reserved
|
|
* memory. This function allows to create custom reserved areas.
|
|
*
|
|
* If @fixed is true, reserve contiguous area at exactly @base. If false,
|
|
* reserve in range from @base to @limit.
|
|
*/
|
|
int __init cma_declare_contiguous_nid(phys_addr_t base,
|
|
phys_addr_t size, phys_addr_t limit,
|
|
phys_addr_t alignment, unsigned int order_per_bit,
|
|
bool fixed, const char *name, struct cma **res_cma,
|
|
int nid)
|
|
{
|
|
int ret;
|
|
|
|
ret = __cma_declare_contiguous_nid(base, size, limit, alignment,
|
|
order_per_bit, fixed, name, res_cma, nid);
|
|
if (ret != 0)
|
|
pr_err("Failed to reserve %ld MiB\n",
|
|
(unsigned long)size / SZ_1M);
|
|
else
|
|
pr_info("Reserved %ld MiB at %pa\n",
|
|
(unsigned long)size / SZ_1M, &base);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init __cma_declare_contiguous_nid(phys_addr_t base,
|
|
phys_addr_t size, phys_addr_t limit,
|
|
phys_addr_t alignment, unsigned int order_per_bit,
|
|
bool fixed, const char *name, struct cma **res_cma,
|
|
int nid)
|
|
{
|
|
phys_addr_t memblock_end = memblock_end_of_DRAM();
|
|
phys_addr_t highmem_start;
|
|
int ret;
|
|
|
|
/*
|
|
* We can't use __pa(high_memory) directly, since high_memory
|
|
* isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly)
|
|
* complain. Find the boundary by adding one to the last valid
|
|
* address.
|
|
*/
|
|
highmem_start = __pa(high_memory - 1) + 1;
|
|
pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
|
|
__func__, &size, &base, &limit, &alignment);
|
|
|
|
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
|
|
pr_err("Not enough slots for CMA reserved regions!\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (!size)
|
|
return -EINVAL;
|
|
|
|
if (alignment && !is_power_of_2(alignment))
|
|
return -EINVAL;
|
|
|
|
if (!IS_ENABLED(CONFIG_NUMA))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
/* Sanitise input arguments. */
|
|
alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
|
|
if (fixed && base & (alignment - 1)) {
|
|
pr_err("Region at %pa must be aligned to %pa bytes\n",
|
|
&base, &alignment);
|
|
return -EINVAL;
|
|
}
|
|
base = ALIGN(base, alignment);
|
|
size = ALIGN(size, alignment);
|
|
limit &= ~(alignment - 1);
|
|
|
|
if (!base)
|
|
fixed = false;
|
|
|
|
/* size should be aligned with order_per_bit */
|
|
if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If allocating at a fixed base the request region must not cross the
|
|
* low/high memory boundary.
|
|
*/
|
|
if (fixed && base < highmem_start && base + size > highmem_start) {
|
|
pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
|
|
&base, &highmem_start);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the limit is unspecified or above the memblock end, its effective
|
|
* value will be the memblock end. Set it explicitly to simplify further
|
|
* checks.
|
|
*/
|
|
if (limit == 0 || limit > memblock_end)
|
|
limit = memblock_end;
|
|
|
|
if (base + size > limit) {
|
|
pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
|
|
&size, &base, &limit);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Reserve memory */
|
|
if (fixed) {
|
|
if (memblock_is_region_reserved(base, size) ||
|
|
memblock_reserve(base, size) < 0) {
|
|
return -EBUSY;
|
|
}
|
|
} else {
|
|
phys_addr_t addr = 0;
|
|
|
|
/*
|
|
* If there is enough memory, try a bottom-up allocation first.
|
|
* It will place the new cma area close to the start of the node
|
|
* and guarantee that the compaction is moving pages out of the
|
|
* cma area and not into it.
|
|
* Avoid using first 4GB to not interfere with constrained zones
|
|
* like DMA/DMA32.
|
|
*/
|
|
#ifdef CONFIG_PHYS_ADDR_T_64BIT
|
|
if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) {
|
|
memblock_set_bottom_up(true);
|
|
addr = memblock_alloc_range_nid(size, alignment, SZ_4G,
|
|
limit, nid, true);
|
|
memblock_set_bottom_up(false);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* All pages in the reserved area must come from the same zone.
|
|
* If the requested region crosses the low/high memory boundary,
|
|
* try allocating from high memory first and fall back to low
|
|
* memory in case of failure.
|
|
*/
|
|
if (!addr && base < highmem_start && limit > highmem_start) {
|
|
addr = memblock_alloc_range_nid(size, alignment,
|
|
highmem_start, limit, nid, true);
|
|
limit = highmem_start;
|
|
}
|
|
|
|
if (!addr) {
|
|
addr = memblock_alloc_range_nid(size, alignment, base,
|
|
limit, nid, true);
|
|
if (!addr)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* kmemleak scans/reads tracked objects for pointers to other
|
|
* objects but this address isn't mapped and accessible
|
|
*/
|
|
kmemleak_ignore_phys(addr);
|
|
base = addr;
|
|
}
|
|
|
|
ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
|
|
if (ret)
|
|
memblock_phys_free(base, size);
|
|
|
|
(*res_cma)->nid = nid;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cma_debug_show_areas(struct cma *cma)
|
|
{
|
|
unsigned long next_zero_bit, next_set_bit, nr_zero;
|
|
unsigned long start;
|
|
unsigned long nr_part;
|
|
unsigned long nbits;
|
|
int r;
|
|
struct cma_memrange *cmr;
|
|
|
|
spin_lock_irq(&cma->lock);
|
|
pr_info("number of available pages: ");
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
|
|
start = 0;
|
|
nbits = cma_bitmap_maxno(cma, cmr);
|
|
|
|
pr_info("range %d: ", r);
|
|
for (;;) {
|
|
next_zero_bit = find_next_zero_bit(cmr->bitmap,
|
|
nbits, start);
|
|
if (next_zero_bit >= nbits)
|
|
break;
|
|
next_set_bit = find_next_bit(cmr->bitmap, nbits,
|
|
next_zero_bit);
|
|
nr_zero = next_set_bit - next_zero_bit;
|
|
nr_part = nr_zero << cma->order_per_bit;
|
|
pr_cont("%s%lu@%lu", start ? "+" : "", nr_part,
|
|
next_zero_bit);
|
|
start = next_zero_bit + nr_zero;
|
|
}
|
|
pr_info("\n");
|
|
}
|
|
pr_cont("=> %lu free of %lu total pages\n", cma->available_count,
|
|
cma->count);
|
|
spin_unlock_irq(&cma->lock);
|
|
}
|
|
|
|
static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr,
|
|
unsigned long count, unsigned int align,
|
|
struct page **pagep, gfp_t gfp)
|
|
{
|
|
unsigned long mask, offset;
|
|
unsigned long pfn = -1;
|
|
unsigned long start = 0;
|
|
unsigned long bitmap_maxno, bitmap_no, bitmap_count;
|
|
int ret = -EBUSY;
|
|
struct page *page = NULL;
|
|
|
|
mask = cma_bitmap_aligned_mask(cma, align);
|
|
offset = cma_bitmap_aligned_offset(cma, cmr, align);
|
|
bitmap_maxno = cma_bitmap_maxno(cma, cmr);
|
|
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
|
|
|
|
if (bitmap_count > bitmap_maxno)
|
|
goto out;
|
|
|
|
for (;;) {
|
|
spin_lock_irq(&cma->lock);
|
|
/*
|
|
* If the request is larger than the available number
|
|
* of pages, stop right away.
|
|
*/
|
|
if (count > cma->available_count) {
|
|
spin_unlock_irq(&cma->lock);
|
|
break;
|
|
}
|
|
bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap,
|
|
bitmap_maxno, start, bitmap_count, mask,
|
|
offset);
|
|
if (bitmap_no >= bitmap_maxno) {
|
|
spin_unlock_irq(&cma->lock);
|
|
break;
|
|
}
|
|
bitmap_set(cmr->bitmap, bitmap_no, bitmap_count);
|
|
cma->available_count -= count;
|
|
/*
|
|
* It's safe to drop the lock here. We've marked this region for
|
|
* our exclusive use. If the migration fails we will take the
|
|
* lock again and unmark it.
|
|
*/
|
|
spin_unlock_irq(&cma->lock);
|
|
|
|
pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit);
|
|
mutex_lock(&cma->alloc_mutex);
|
|
ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp);
|
|
mutex_unlock(&cma->alloc_mutex);
|
|
if (ret == 0) {
|
|
page = pfn_to_page(pfn);
|
|
break;
|
|
}
|
|
|
|
cma_clear_bitmap(cma, cmr, pfn, count);
|
|
if (ret != -EBUSY)
|
|
break;
|
|
|
|
pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
|
|
__func__, pfn, pfn_to_page(pfn));
|
|
|
|
trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
|
|
count, align);
|
|
/* try again with a bit different memory target */
|
|
start = bitmap_no + mask + 1;
|
|
}
|
|
out:
|
|
*pagep = page;
|
|
return ret;
|
|
}
|
|
|
|
static struct page *__cma_alloc(struct cma *cma, unsigned long count,
|
|
unsigned int align, gfp_t gfp)
|
|
{
|
|
struct page *page = NULL;
|
|
int ret = -ENOMEM, r;
|
|
unsigned long i;
|
|
const char *name = cma ? cma->name : NULL;
|
|
|
|
trace_cma_alloc_start(name, count, align);
|
|
|
|
if (!cma || !cma->count)
|
|
return page;
|
|
|
|
pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
|
|
(void *)cma, cma->name, count, align);
|
|
|
|
if (!count)
|
|
return page;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
page = NULL;
|
|
|
|
ret = cma_range_alloc(cma, &cma->ranges[r], count, align,
|
|
&page, gfp);
|
|
if (ret != -EBUSY || page)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* CMA can allocate multiple page blocks, which results in different
|
|
* blocks being marked with different tags. Reset the tags to ignore
|
|
* those page blocks.
|
|
*/
|
|
if (page) {
|
|
for (i = 0; i < count; i++)
|
|
page_kasan_tag_reset(nth_page(page, i));
|
|
}
|
|
|
|
if (ret && !(gfp & __GFP_NOWARN)) {
|
|
pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
|
|
__func__, cma->name, count, ret);
|
|
cma_debug_show_areas(cma);
|
|
}
|
|
|
|
pr_debug("%s(): returned %p\n", __func__, page);
|
|
trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0,
|
|
page, count, align, ret);
|
|
if (page) {
|
|
count_vm_event(CMA_ALLOC_SUCCESS);
|
|
cma_sysfs_account_success_pages(cma, count);
|
|
} else {
|
|
count_vm_event(CMA_ALLOC_FAIL);
|
|
cma_sysfs_account_fail_pages(cma, count);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* cma_alloc() - allocate pages from contiguous area
|
|
* @cma: Contiguous memory region for which the allocation is performed.
|
|
* @count: Requested number of pages.
|
|
* @align: Requested alignment of pages (in PAGE_SIZE order).
|
|
* @no_warn: Avoid printing message about failed allocation
|
|
*
|
|
* This function allocates part of contiguous memory on specific
|
|
* contiguous memory area.
|
|
*/
|
|
struct page *cma_alloc(struct cma *cma, unsigned long count,
|
|
unsigned int align, bool no_warn)
|
|
{
|
|
return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
|
|
}
|
|
|
|
struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
if (WARN_ON(!order || !(gfp & __GFP_COMP)))
|
|
return NULL;
|
|
|
|
page = __cma_alloc(cma, 1 << order, order, gfp);
|
|
|
|
return page ? page_folio(page) : NULL;
|
|
}
|
|
|
|
bool cma_pages_valid(struct cma *cma, const struct page *pages,
|
|
unsigned long count)
|
|
{
|
|
unsigned long pfn, end;
|
|
int r;
|
|
struct cma_memrange *cmr;
|
|
bool ret;
|
|
|
|
if (!cma || !pages || count > cma->count)
|
|
return false;
|
|
|
|
pfn = page_to_pfn(pages);
|
|
ret = false;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
end = cmr->base_pfn + cmr->count;
|
|
if (pfn >= cmr->base_pfn && pfn < end) {
|
|
ret = pfn + count <= end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ret)
|
|
pr_debug("%s(page %p, count %lu)\n",
|
|
__func__, (void *)pages, count);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cma_release() - release allocated pages
|
|
* @cma: Contiguous memory region for which the allocation is performed.
|
|
* @pages: Allocated pages.
|
|
* @count: Number of allocated pages.
|
|
*
|
|
* This function releases memory allocated by cma_alloc().
|
|
* It returns false when provided pages do not belong to contiguous area and
|
|
* true otherwise.
|
|
*/
|
|
bool cma_release(struct cma *cma, const struct page *pages,
|
|
unsigned long count)
|
|
{
|
|
struct cma_memrange *cmr;
|
|
unsigned long pfn, end_pfn;
|
|
int r;
|
|
|
|
pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
|
|
|
|
if (!cma_pages_valid(cma, pages, count))
|
|
return false;
|
|
|
|
pfn = page_to_pfn(pages);
|
|
end_pfn = pfn + count;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
if (pfn >= cmr->base_pfn &&
|
|
pfn < (cmr->base_pfn + cmr->count)) {
|
|
VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (r == cma->nranges)
|
|
return false;
|
|
|
|
free_contig_range(pfn, count);
|
|
cma_clear_bitmap(cma, cmr, pfn, count);
|
|
cma_sysfs_account_release_pages(cma, count);
|
|
trace_cma_release(cma->name, pfn, pages, count);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool cma_free_folio(struct cma *cma, const struct folio *folio)
|
|
{
|
|
if (WARN_ON(!folio_test_large(folio)))
|
|
return false;
|
|
|
|
return cma_release(cma, &folio->page, folio_nr_pages(folio));
|
|
}
|
|
|
|
int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cma_area_count; i++) {
|
|
int ret = it(&cma_areas[i], data);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end)
|
|
{
|
|
int r;
|
|
struct cma_memrange *cmr;
|
|
unsigned long rstart, rend;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
|
|
rstart = PFN_PHYS(cmr->base_pfn);
|
|
rend = PFN_PHYS(cmr->base_pfn + cmr->count);
|
|
if (end < rstart)
|
|
continue;
|
|
if (start >= rend)
|
|
continue;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Very basic function to reserve memory from a CMA area that has not
|
|
* yet been activated. This is expected to be called early, when the
|
|
* system is single-threaded, so there is no locking. The alignment
|
|
* checking is restrictive - only pageblock-aligned areas
|
|
* (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function.
|
|
* This keeps things simple, and is enough for the current use case.
|
|
*
|
|
* The CMA bitmaps have not yet been allocated, so just start
|
|
* reserving from the bottom up, using a PFN to keep track
|
|
* of what has been reserved. Unreserving is not possible.
|
|
*
|
|
* The caller is responsible for initializing the page structures
|
|
* in the area properly, since this just points to memblock-allocated
|
|
* memory. The caller should subsequently use init_cma_pageblock to
|
|
* set the migrate type and CMA stats the pageblocks that were reserved.
|
|
*
|
|
* If the CMA area fails to activate later, memory obtained through
|
|
* this interface is not handed to the page allocator, this is
|
|
* the responsibility of the caller (e.g. like normal memblock-allocated
|
|
* memory).
|
|
*/
|
|
void __init *cma_reserve_early(struct cma *cma, unsigned long size)
|
|
{
|
|
int r;
|
|
struct cma_memrange *cmr;
|
|
unsigned long available;
|
|
void *ret = NULL;
|
|
|
|
if (!cma || !cma->count)
|
|
return NULL;
|
|
/*
|
|
* Can only be called early in init.
|
|
*/
|
|
if (test_bit(CMA_ACTIVATED, &cma->flags))
|
|
return NULL;
|
|
|
|
if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES))
|
|
return NULL;
|
|
|
|
if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit)))
|
|
return NULL;
|
|
|
|
size >>= PAGE_SHIFT;
|
|
|
|
if (size > cma->available_count)
|
|
return NULL;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
available = cmr->count - (cmr->early_pfn - cmr->base_pfn);
|
|
if (size <= available) {
|
|
ret = phys_to_virt(PFN_PHYS(cmr->early_pfn));
|
|
cmr->early_pfn += size;
|
|
cma->available_count -= size;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|