linux/mm/mremap.c
Lorenzo Stoakes 36eed54008 mm/mremap: do not set vrm->vma NULL immediately prior to checking it
This seems rather unwise.  If we cannot merge, extend, then we need to
recall the original VMA to see if we need to uncharge.

If we do need to, do so.

Link: https://lkml.kernel.org/r/b2fb6b9c-376d-4e9b-905e-26d847fd3865@lucifer.local
Fixes: d5c8aec0542e ("mm/mremap: initial refactor of move_vma()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reported-=by: "Lai, Yi" <yi1.lai@linux.intel.com>
Closes: https://lore.kernel.org/linux-mm/Z+lcvEIHMLiKVR1i@ly-workstation/
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-01 15:17:09 -07:00

1787 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* mm/mremap.c
*
* (C) Copyright 1996 Linus Torvalds
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
#include <linux/ksm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/swapops.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/mmu_notifier.h>
#include <linux/uaccess.h>
#include <linux/userfaultfd_k.h>
#include <linux/mempolicy.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
/* Classify the kind of remap operation being performed. */
enum mremap_type {
MREMAP_INVALID, /* Initial state. */
MREMAP_NO_RESIZE, /* old_len == new_len, if not moved, do nothing. */
MREMAP_SHRINK, /* old_len > new_len. */
MREMAP_EXPAND, /* old_len < new_len. */
};
/*
* Describes a VMA mremap() operation and is threaded throughout it.
*
* Any of the fields may be mutated by the operation, however these values will
* always accurately reflect the remap (for instance, we may adjust lengths and
* delta to account for hugetlb alignment).
*/
struct vma_remap_struct {
/* User-provided state. */
unsigned long addr; /* User-specified address from which we remap. */
unsigned long old_len; /* Length of range being remapped. */
unsigned long new_len; /* Desired new length of mapping. */
unsigned long flags; /* user-specified MREMAP_* flags. */
unsigned long new_addr; /* Optionally, desired new address. */
/* uffd state. */
struct vm_userfaultfd_ctx *uf;
struct list_head *uf_unmap_early;
struct list_head *uf_unmap;
/* VMA state, determined in do_mremap(). */
struct vm_area_struct *vma;
/* Internal state, determined in do_mremap(). */
unsigned long delta; /* Absolute delta of old_len,new_len. */
bool mlocked; /* Was the VMA mlock()'d? */
enum mremap_type remap_type; /* expand, shrink, etc. */
bool mmap_locked; /* Is mm currently write-locked? */
unsigned long charged; /* If VM_ACCOUNT, # pages to account. */
};
static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pgd = pgd_offset(mm, addr);
if (pgd_none_or_clear_bad(pgd))
return NULL;
p4d = p4d_offset(pgd, addr);
if (p4d_none_or_clear_bad(p4d))
return NULL;
pud = pud_offset(p4d, addr);
if (pud_none_or_clear_bad(pud))
return NULL;
return pud;
}
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = get_old_pud(mm, addr);
if (!pud)
return NULL;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return NULL;
return pmd;
}
static pud_t *alloc_new_pud(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pgd = pgd_offset(mm, addr);
p4d = p4d_alloc(mm, pgd, addr);
if (!p4d)
return NULL;
return pud_alloc(mm, p4d, addr);
}
static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = alloc_new_pud(mm, addr);
if (!pud)
return NULL;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return NULL;
VM_BUG_ON(pmd_trans_huge(*pmd));
return pmd;
}
static void take_rmap_locks(struct vm_area_struct *vma)
{
if (vma->vm_file)
i_mmap_lock_write(vma->vm_file->f_mapping);
if (vma->anon_vma)
anon_vma_lock_write(vma->anon_vma);
}
static void drop_rmap_locks(struct vm_area_struct *vma)
{
if (vma->anon_vma)
anon_vma_unlock_write(vma->anon_vma);
if (vma->vm_file)
i_mmap_unlock_write(vma->vm_file->f_mapping);
}
static pte_t move_soft_dirty_pte(pte_t pte)
{
/*
* Set soft dirty bit so we can notice
* in userspace the ptes were moved.
*/
#ifdef CONFIG_MEM_SOFT_DIRTY
if (pte_present(pte))
pte = pte_mksoft_dirty(pte);
else if (is_swap_pte(pte))
pte = pte_swp_mksoft_dirty(pte);
#endif
return pte;
}
static int move_ptes(struct pagetable_move_control *pmc,
unsigned long extent, pmd_t *old_pmd, pmd_t *new_pmd)
{
struct vm_area_struct *vma = pmc->old;
bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
struct mm_struct *mm = vma->vm_mm;
pte_t *old_pte, *new_pte, pte;
pmd_t dummy_pmdval;
spinlock_t *old_ptl, *new_ptl;
bool force_flush = false;
unsigned long old_addr = pmc->old_addr;
unsigned long new_addr = pmc->new_addr;
unsigned long old_end = old_addr + extent;
unsigned long len = old_end - old_addr;
int err = 0;
/*
* When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
* locks to ensure that rmap will always observe either the old or the
* new ptes. This is the easiest way to avoid races with
* truncate_pagecache(), page migration, etc...
*
* When need_rmap_locks is false, we use other ways to avoid
* such races:
*
* - During exec() shift_arg_pages(), we use a specially tagged vma
* which rmap call sites look for using vma_is_temporary_stack().
*
* - During mremap(), new_vma is often known to be placed after vma
* in rmap traversal order. This ensures rmap will always observe
* either the old pte, or the new pte, or both (the page table locks
* serialize access to individual ptes, but only rmap traversal
* order guarantees that we won't miss both the old and new ptes).
*/
if (pmc->need_rmap_locks)
take_rmap_locks(vma);
/*
* We don't have to worry about the ordering of src and dst
* pte locks because exclusive mmap_lock prevents deadlock.
*/
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
if (!old_pte) {
err = -EAGAIN;
goto out;
}
/*
* Now new_pte is none, so hpage_collapse_scan_file() path can not find
* this by traversing file->f_mapping, so there is no concurrency with
* retract_page_tables(). In addition, we already hold the exclusive
* mmap_lock, so this new_pte page is stable, so there is no need to get
* pmdval and do pmd_same() check.
*/
new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval,
&new_ptl);
if (!new_pte) {
pte_unmap_unlock(old_pte, old_ptl);
err = -EAGAIN;
goto out;
}
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
flush_tlb_batched_pending(vma->vm_mm);
arch_enter_lazy_mmu_mode();
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
new_pte++, new_addr += PAGE_SIZE) {
if (pte_none(ptep_get(old_pte)))
continue;
pte = ptep_get_and_clear(mm, old_addr, old_pte);
/*
* If we are remapping a valid PTE, make sure
* to flush TLB before we drop the PTL for the
* PTE.
*
* NOTE! Both old and new PTL matter: the old one
* for racing with folio_mkclean(), the new one to
* make sure the physical page stays valid until
* the TLB entry for the old mapping has been
* flushed.
*/
if (pte_present(pte))
force_flush = true;
pte = move_pte(pte, old_addr, new_addr);
pte = move_soft_dirty_pte(pte);
if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
pte_clear(mm, new_addr, new_pte);
else {
if (need_clear_uffd_wp) {
if (pte_present(pte))
pte = pte_clear_uffd_wp(pte);
else if (is_swap_pte(pte))
pte = pte_swp_clear_uffd_wp(pte);
}
set_pte_at(mm, new_addr, new_pte, pte);
}
}
arch_leave_lazy_mmu_mode();
if (force_flush)
flush_tlb_range(vma, old_end - len, old_end);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
pte_unmap(new_pte - 1);
pte_unmap_unlock(old_pte - 1, old_ptl);
out:
if (pmc->need_rmap_locks)
drop_rmap_locks(vma);
return err;
}
#ifndef arch_supports_page_table_move
#define arch_supports_page_table_move arch_supports_page_table_move
static inline bool arch_supports_page_table_move(void)
{
return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
}
#endif
#ifdef CONFIG_HAVE_MOVE_PMD
static bool move_normal_pmd(struct pagetable_move_control *pmc,
pmd_t *old_pmd, pmd_t *new_pmd)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
bool res = false;
pmd_t pmd;
if (!arch_supports_page_table_move())
return false;
/*
* The destination pmd shouldn't be established, free_pgtables()
* should have released it.
*
* However, there's a case during execve() where we use mremap
* to move the initial stack, and in that case the target area
* may overlap the source area (always moving down).
*
* If everything is PMD-aligned, that works fine, as moving
* each pmd down will clear the source pmd. But if we first
* have a few 4kB-only pages that get moved down, and then
* hit the "now the rest is PMD-aligned, let's do everything
* one pmd at a time", we will still have the old (now empty
* of any 4kB pages, but still there) PMD in the page table
* tree.
*
* Warn on it once - because we really should try to figure
* out how to do this better - but then say "I won't move
* this pmd".
*
* One alternative might be to just unmap the target pmd at
* this point, and verify that it really is empty. We'll see.
*/
if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
return false;
/* If this pmd belongs to a uffd vma with remap events disabled, we need
* to ensure that the uffd-wp state is cleared from all pgtables. This
* means recursing into lower page tables in move_page_tables(), and we
* can reuse the existing code if we simply treat the entry as "not
* moved".
*/
if (vma_has_uffd_without_event_remap(vma))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pmd_lock(mm, old_pmd);
new_ptl = pmd_lockptr(mm, new_pmd);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
pmd = *old_pmd;
/* Racing with collapse? */
if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
goto out_unlock;
/* Clear the pmd */
pmd_clear(old_pmd);
res = true;
VM_BUG_ON(!pmd_none(*new_pmd));
pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PMD_SIZE);
out_unlock:
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return res;
}
#else
static inline bool move_normal_pmd(struct pagetable_move_control *pmc,
pmd_t *old_pmd, pmd_t *new_pmd)
{
return false;
}
#endif
#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
static bool move_normal_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
if (!arch_supports_page_table_move())
return false;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/* If this pud belongs to a uffd vma with remap events disabled, we need
* to ensure that the uffd-wp state is cleared from all pgtables. This
* means recursing into lower page tables in move_page_tables(), and we
* can reuse the existing code if we simply treat the entry as "not
* moved".
*/
if (vma_has_uffd_without_event_remap(vma))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
pud_populate(mm, new_pud, pud_pgtable(pud));
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static inline bool move_normal_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
return false;
}
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
static bool move_huge_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
/* Set the new pud */
/* mark soft_ditry when we add pud level soft dirty support */
set_pud_at(mm, pmc->new_addr, new_pud, pud);
flush_pud_tlb_range(vma, pmc->old_addr, pmc->old_addr + HPAGE_PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static bool move_huge_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
WARN_ON_ONCE(1);
return false;
}
#endif
enum pgt_entry {
NORMAL_PMD,
HPAGE_PMD,
NORMAL_PUD,
HPAGE_PUD,
};
/*
* Returns an extent of the corresponding size for the pgt_entry specified if
* valid. Else returns a smaller extent bounded by the end of the source and
* destination pgt_entry.
*/
static __always_inline unsigned long get_extent(enum pgt_entry entry,
struct pagetable_move_control *pmc)
{
unsigned long next, extent, mask, size;
unsigned long old_addr = pmc->old_addr;
unsigned long old_end = pmc->old_end;
unsigned long new_addr = pmc->new_addr;
switch (entry) {
case HPAGE_PMD:
case NORMAL_PMD:
mask = PMD_MASK;
size = PMD_SIZE;
break;
case HPAGE_PUD:
case NORMAL_PUD:
mask = PUD_MASK;
size = PUD_SIZE;
break;
default:
BUILD_BUG();
break;
}
next = (old_addr + size) & mask;
/* even if next overflowed, extent below will be ok */
extent = next - old_addr;
if (extent > old_end - old_addr)
extent = old_end - old_addr;
next = (new_addr + size) & mask;
if (extent > next - new_addr)
extent = next - new_addr;
return extent;
}
/*
* Should move_pgt_entry() acquire the rmap locks? This is either expressed in
* the PMC, or overridden in the case of normal, larger page tables.
*/
static bool should_take_rmap_locks(struct pagetable_move_control *pmc,
enum pgt_entry entry)
{
switch (entry) {
case NORMAL_PMD:
case NORMAL_PUD:
return true;
default:
return pmc->need_rmap_locks;
}
}
/*
* Attempts to speedup the move by moving entry at the level corresponding to
* pgt_entry. Returns true if the move was successful, else false.
*/
static bool move_pgt_entry(struct pagetable_move_control *pmc,
enum pgt_entry entry, void *old_entry, void *new_entry)
{
bool moved = false;
bool need_rmap_locks = should_take_rmap_locks(pmc, entry);
/* See comment in move_ptes() */
if (need_rmap_locks)
take_rmap_locks(pmc->old);
switch (entry) {
case NORMAL_PMD:
moved = move_normal_pmd(pmc, old_entry, new_entry);
break;
case NORMAL_PUD:
moved = move_normal_pud(pmc, old_entry, new_entry);
break;
case HPAGE_PMD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pmd(pmc->old, pmc->old_addr, pmc->new_addr, old_entry,
new_entry);
break;
case HPAGE_PUD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pud(pmc, old_entry, new_entry);
break;
default:
WARN_ON_ONCE(1);
break;
}
if (need_rmap_locks)
drop_rmap_locks(pmc->old);
return moved;
}
/*
* A helper to check if aligning down is OK. The aligned address should fall
* on *no mapping*. For the stack moving down, that's a special move within
* the VMA that is created to span the source and destination of the move,
* so we make an exception for it.
*/
static bool can_align_down(struct pagetable_move_control *pmc,
struct vm_area_struct *vma, unsigned long addr_to_align,
unsigned long mask)
{
unsigned long addr_masked = addr_to_align & mask;
/*
* If @addr_to_align of either source or destination is not the beginning
* of the corresponding VMA, we can't align down or we will destroy part
* of the current mapping.
*/
if (!pmc->for_stack && vma->vm_start != addr_to_align)
return false;
/* In the stack case we explicitly permit in-VMA alignment. */
if (pmc->for_stack && addr_masked >= vma->vm_start)
return true;
/*
* Make sure the realignment doesn't cause the address to fall on an
* existing mapping.
*/
return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
}
/*
* Determine if are in fact able to realign for efficiency to a higher page
* table boundary.
*/
static bool can_realign_addr(struct pagetable_move_control *pmc,
unsigned long pagetable_mask)
{
unsigned long align_mask = ~pagetable_mask;
unsigned long old_align = pmc->old_addr & align_mask;
unsigned long new_align = pmc->new_addr & align_mask;
unsigned long pagetable_size = align_mask + 1;
unsigned long old_align_next = pagetable_size - old_align;
/*
* We don't want to have to go hunting for VMAs from the end of the old
* VMA to the next page table boundary, also we want to make sure the
* operation is wortwhile.
*
* So ensure that we only perform this realignment if the end of the
* range being copied reaches or crosses the page table boundary.
*
* boundary boundary
* .<- old_align -> .
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* . <----------------.----------->
* . len_in
* <------------------------------->
* . pagetable_size .
* . <---------------->
* . old_align_next .
*/
if (pmc->len_in < old_align_next)
return false;
/* Skip if the addresses are already aligned. */
if (old_align == 0)
return false;
/* Only realign if the new and old addresses are mutually aligned. */
if (old_align != new_align)
return false;
/* Ensure realignment doesn't cause overlap with existing mappings. */
if (!can_align_down(pmc, pmc->old, pmc->old_addr, pagetable_mask) ||
!can_align_down(pmc, pmc->new, pmc->new_addr, pagetable_mask))
return false;
return true;
}
/*
* Opportunistically realign to specified boundary for faster copy.
*
* Consider an mremap() of a VMA with page table boundaries as below, and no
* preceding VMAs from the lower page table boundary to the start of the VMA,
* with the end of the range reaching or crossing the page table boundary.
*
* boundary boundary
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* . pmc->old_addr . pmc->old_end
* . <---------------------------->
* . move these page tables
*
* If we proceed with moving page tables in this scenario, we will have a lot of
* work to do traversing old page tables and establishing new ones in the
* destination across multiple lower level page tables.
*
* The idea here is simply to align pmc->old_addr, pmc->new_addr down to the
* page table boundary, so we can simply copy a single page table entry for the
* aligned portion of the VMA instead:
*
* boundary boundary
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* pmc->old_addr . pmc->old_end
* <------------------------------------------->
* . move these page tables
*/
static void try_realign_addr(struct pagetable_move_control *pmc,
unsigned long pagetable_mask)
{
if (!can_realign_addr(pmc, pagetable_mask))
return;
/*
* Simply align to page table boundaries. Note that we do NOT update the
* pmc->old_end value, and since the move_page_tables() operation spans
* from [old_addr, old_end) (offsetting new_addr as it is performed),
* this simply changes the start of the copy, not the end.
*/
pmc->old_addr &= pagetable_mask;
pmc->new_addr &= pagetable_mask;
}
/* Is the page table move operation done? */
static bool pmc_done(struct pagetable_move_control *pmc)
{
return pmc->old_addr >= pmc->old_end;
}
/* Advance to the next page table, offset by extent bytes. */
static void pmc_next(struct pagetable_move_control *pmc, unsigned long extent)
{
pmc->old_addr += extent;
pmc->new_addr += extent;
}
/*
* Determine how many bytes in the specified input range have had their page
* tables moved so far.
*/
static unsigned long pmc_progress(struct pagetable_move_control *pmc)
{
unsigned long orig_old_addr = pmc->old_end - pmc->len_in;
unsigned long old_addr = pmc->old_addr;
/*
* Prevent negative return values when {old,new}_addr was realigned but
* we broke out of the loop in move_page_tables() for the first PMD
* itself.
*/
return old_addr < orig_old_addr ? 0 : old_addr - orig_old_addr;
}
unsigned long move_page_tables(struct pagetable_move_control *pmc)
{
unsigned long extent;
struct mmu_notifier_range range;
pmd_t *old_pmd, *new_pmd;
pud_t *old_pud, *new_pud;
struct mm_struct *mm = pmc->old->vm_mm;
if (!pmc->len_in)
return 0;
if (is_vm_hugetlb_page(pmc->old))
return move_hugetlb_page_tables(pmc->old, pmc->new, pmc->old_addr,
pmc->new_addr, pmc->len_in);
/*
* If possible, realign addresses to PMD boundary for faster copy.
* Only realign if the mremap copying hits a PMD boundary.
*/
try_realign_addr(pmc, PMD_MASK);
flush_cache_range(pmc->old, pmc->old_addr, pmc->old_end);
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, mm,
pmc->old_addr, pmc->old_end);
mmu_notifier_invalidate_range_start(&range);
for (; !pmc_done(pmc); pmc_next(pmc, extent)) {
cond_resched();
/*
* If extent is PUD-sized try to speed up the move by moving at the
* PUD level if possible.
*/
extent = get_extent(NORMAL_PUD, pmc);
old_pud = get_old_pud(mm, pmc->old_addr);
if (!old_pud)
continue;
new_pud = alloc_new_pud(mm, pmc->new_addr);
if (!new_pud)
break;
if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
if (extent == HPAGE_PUD_SIZE) {
move_pgt_entry(pmc, HPAGE_PUD, old_pud, new_pud);
/* We ignore and continue on error? */
continue;
}
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
if (move_pgt_entry(pmc, NORMAL_PUD, old_pud, new_pud))
continue;
}
extent = get_extent(NORMAL_PMD, pmc);
old_pmd = get_old_pmd(mm, pmc->old_addr);
if (!old_pmd)
continue;
new_pmd = alloc_new_pmd(mm, pmc->new_addr);
if (!new_pmd)
break;
again:
if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
pmd_devmap(*old_pmd)) {
if (extent == HPAGE_PMD_SIZE &&
move_pgt_entry(pmc, HPAGE_PMD, old_pmd, new_pmd))
continue;
split_huge_pmd(pmc->old, old_pmd, pmc->old_addr);
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
extent == PMD_SIZE) {
/*
* If the extent is PMD-sized, try to speed the move by
* moving at the PMD level if possible.
*/
if (move_pgt_entry(pmc, NORMAL_PMD, old_pmd, new_pmd))
continue;
}
if (pmd_none(*old_pmd))
continue;
if (pte_alloc(pmc->new->vm_mm, new_pmd))
break;
if (move_ptes(pmc, extent, old_pmd, new_pmd) < 0)
goto again;
}
mmu_notifier_invalidate_range_end(&range);
return pmc_progress(pmc);
}
/* Set vrm->delta to the difference in VMA size specified by user. */
static void vrm_set_delta(struct vma_remap_struct *vrm)
{
vrm->delta = abs_diff(vrm->old_len, vrm->new_len);
}
/* Determine what kind of remap this is - shrink, expand or no resize at all. */
static enum mremap_type vrm_remap_type(struct vma_remap_struct *vrm)
{
if (vrm->delta == 0)
return MREMAP_NO_RESIZE;
if (vrm->old_len > vrm->new_len)
return MREMAP_SHRINK;
return MREMAP_EXPAND;
}
/*
* When moving a VMA to vrm->new_adr, does this result in the new and old VMAs
* overlapping?
*/
static bool vrm_overlaps(struct vma_remap_struct *vrm)
{
unsigned long start_old = vrm->addr;
unsigned long start_new = vrm->new_addr;
unsigned long end_old = vrm->addr + vrm->old_len;
unsigned long end_new = vrm->new_addr + vrm->new_len;
/*
* start_old end_old
* |-----------|
* | |
* |-----------|
* |-------------|
* | |
* |-------------|
* start_new end_new
*/
if (end_old > start_new && end_new > start_old)
return true;
return false;
}
/* Do the mremap() flags require that the new_addr parameter be specified? */
static bool vrm_implies_new_addr(struct vma_remap_struct *vrm)
{
return vrm->flags & (MREMAP_FIXED | MREMAP_DONTUNMAP);
}
/*
* Find an unmapped area for the requested vrm->new_addr.
*
* If MREMAP_FIXED then this is equivalent to a MAP_FIXED mmap() call. If only
* MREMAP_DONTUNMAP is set, then this is equivalent to providing a hint to
* mmap(), otherwise this is equivalent to mmap() specifying a NULL address.
*
* Returns 0 on success (with vrm->new_addr updated), or an error code upon
* failure.
*/
static unsigned long vrm_set_new_addr(struct vma_remap_struct *vrm)
{
struct vm_area_struct *vma = vrm->vma;
unsigned long map_flags = 0;
/* Page Offset _into_ the VMA. */
pgoff_t internal_pgoff = (vrm->addr - vma->vm_start) >> PAGE_SHIFT;
pgoff_t pgoff = vma->vm_pgoff + internal_pgoff;
unsigned long new_addr = vrm_implies_new_addr(vrm) ? vrm->new_addr : 0;
unsigned long res;
if (vrm->flags & MREMAP_FIXED)
map_flags |= MAP_FIXED;
if (vma->vm_flags & VM_MAYSHARE)
map_flags |= MAP_SHARED;
res = get_unmapped_area(vma->vm_file, new_addr, vrm->new_len, pgoff,
map_flags);
if (IS_ERR_VALUE(res))
return res;
vrm->new_addr = res;
return 0;
}
/*
* Keep track of pages which have been added to the memory mapping. If the VMA
* is accounted, also check to see if there is sufficient memory.
*
* Returns true on success, false if insufficient memory to charge.
*/
static bool vrm_charge(struct vma_remap_struct *vrm)
{
unsigned long charged;
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
return true;
/*
* If we don't unmap the old mapping, then we account the entirety of
* the length of the new one. Otherwise it's just the delta in size.
*/
if (vrm->flags & MREMAP_DONTUNMAP)
charged = vrm->new_len >> PAGE_SHIFT;
else
charged = vrm->delta >> PAGE_SHIFT;
/* This accounts 'charged' pages of memory. */
if (security_vm_enough_memory_mm(current->mm, charged))
return false;
vrm->charged = charged;
return true;
}
/*
* an error has occurred so we will not be using vrm->charged memory. Unaccount
* this memory if the VMA is accounted.
*/
static void vrm_uncharge(struct vma_remap_struct *vrm)
{
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
return;
vm_unacct_memory(vrm->charged);
vrm->charged = 0;
}
/*
* Update mm exec_vm, stack_vm, data_vm, and locked_vm fields as needed to
* account for 'bytes' memory used, and if locked, indicate this in the VRM so
* we can handle this correctly later.
*/
static void vrm_stat_account(struct vma_remap_struct *vrm,
unsigned long bytes)
{
unsigned long pages = bytes >> PAGE_SHIFT;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
vm_stat_account(mm, vma->vm_flags, pages);
if (vma->vm_flags & VM_LOCKED) {
mm->locked_vm += pages;
vrm->mlocked = true;
}
}
/*
* Perform checks before attempting to write a VMA prior to it being
* moved.
*/
static unsigned long prep_move_vma(struct vma_remap_struct *vrm)
{
unsigned long err = 0;
struct vm_area_struct *vma = vrm->vma;
unsigned long old_addr = vrm->addr;
unsigned long old_len = vrm->old_len;
unsigned long dummy = vma->vm_flags;
/*
* We'd prefer to avoid failure later on in do_munmap:
* which may split one vma into three before unmapping.
*/
if (current->mm->map_count >= sysctl_max_map_count - 3)
return -ENOMEM;
if (vma->vm_ops && vma->vm_ops->may_split) {
if (vma->vm_start != old_addr)
err = vma->vm_ops->may_split(vma, old_addr);
if (!err && vma->vm_end != old_addr + old_len)
err = vma->vm_ops->may_split(vma, old_addr + old_len);
if (err)
return err;
}
/*
* Advise KSM to break any KSM pages in the area to be moved:
* it would be confusing if they were to turn up at the new
* location, where they happen to coincide with different KSM
* pages recently unmapped. But leave vma->vm_flags as it was,
* so KSM can come around to merge on vma and new_vma afterwards.
*/
err = ksm_madvise(vma, old_addr, old_addr + old_len,
MADV_UNMERGEABLE, &dummy);
if (err)
return err;
return 0;
}
/*
* Unmap source VMA for VMA move, turning it from a copy to a move, being
* careful to ensure we do not underflow memory account while doing so if an
* accountable move.
*
* This is best effort, if we fail to unmap then we simply try to correct
* accounting and exit.
*/
static void unmap_source_vma(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
unsigned long addr = vrm->addr;
unsigned long len = vrm->old_len;
struct vm_area_struct *vma = vrm->vma;
VMA_ITERATOR(vmi, mm, addr);
int err;
unsigned long vm_start;
unsigned long vm_end;
/*
* It might seem odd that we check for MREMAP_DONTUNMAP here, given this
* function implies that we unmap the original VMA, which seems
* contradictory.
*
* However, this occurs when this operation was attempted and an error
* arose, in which case we _do_ wish to unmap the _new_ VMA, which means
* we actually _do_ want it be unaccounted.
*/
bool accountable_move = (vma->vm_flags & VM_ACCOUNT) &&
!(vrm->flags & MREMAP_DONTUNMAP);
/*
* So we perform a trick here to prevent incorrect accounting. Any merge
* or new VMA allocation performed in copy_vma() does not adjust
* accounting, it is expected that callers handle this.
*
* And indeed we already have, accounting appropriately in the case of
* both in vrm_charge().
*
* However, when we unmap the existing VMA (to effect the move), this
* code will, if the VMA has VM_ACCOUNT set, attempt to unaccount
* removed pages.
*
* To avoid this we temporarily clear this flag, reinstating on any
* portions of the original VMA that remain.
*/
if (accountable_move) {
vm_flags_clear(vma, VM_ACCOUNT);
/* We are about to split vma, so store the start/end. */
vm_start = vma->vm_start;
vm_end = vma->vm_end;
}
err = do_vmi_munmap(&vmi, mm, addr, len, vrm->uf_unmap, /* unlock= */false);
vrm->vma = NULL; /* Invalidated. */
if (err) {
/* OOM: unable to split vma, just get accounts right */
vm_acct_memory(len >> PAGE_SHIFT);
return;
}
/*
* If we mremap() from a VMA like this:
*
* addr end
* | |
* v v
* |-------------|
* | |
* |-------------|
*
* Having cleared VM_ACCOUNT from the whole VMA, after we unmap above
* we'll end up with:
*
* addr end
* | |
* v v
* |---| |---|
* | A | | B |
* |---| |---|
*
* The VMI is still pointing at addr, so vma_prev() will give us A, and
* a subsequent or lone vma_next() will give as B.
*
* do_vmi_munmap() will have restored the VMI back to addr.
*/
if (accountable_move) {
unsigned long end = addr + len;
if (vm_start < addr) {
struct vm_area_struct *prev = vma_prev(&vmi);
vm_flags_set(prev, VM_ACCOUNT); /* Acquires VMA lock. */
}
if (vm_end > end) {
struct vm_area_struct *next = vma_next(&vmi);
vm_flags_set(next, VM_ACCOUNT); /* Acquires VMA lock. */
}
}
}
/*
* Copy vrm->vma over to vrm->new_addr possibly adjusting size as part of the
* process. Additionally handle an error occurring on moving of page tables,
* where we reset vrm state to cause unmapping of the new VMA.
*
* Outputs the newly installed VMA to new_vma_ptr. Returns 0 on success or an
* error code.
*/
static int copy_vma_and_data(struct vma_remap_struct *vrm,
struct vm_area_struct **new_vma_ptr)
{
unsigned long internal_offset = vrm->addr - vrm->vma->vm_start;
unsigned long internal_pgoff = internal_offset >> PAGE_SHIFT;
unsigned long new_pgoff = vrm->vma->vm_pgoff + internal_pgoff;
unsigned long moved_len;
struct vm_area_struct *vma = vrm->vma;
struct vm_area_struct *new_vma;
int err = 0;
PAGETABLE_MOVE(pmc, NULL, NULL, vrm->addr, vrm->new_addr, vrm->old_len);
new_vma = copy_vma(&vma, vrm->new_addr, vrm->new_len, new_pgoff,
&pmc.need_rmap_locks);
if (!new_vma) {
vrm_uncharge(vrm);
*new_vma_ptr = NULL;
return -ENOMEM;
}
vrm->vma = vma;
pmc.old = vma;
pmc.new = new_vma;
moved_len = move_page_tables(&pmc);
if (moved_len < vrm->old_len)
err = -ENOMEM;
else if (vma->vm_ops && vma->vm_ops->mremap)
err = vma->vm_ops->mremap(new_vma);
if (unlikely(err)) {
PAGETABLE_MOVE(pmc_revert, new_vma, vma, vrm->new_addr,
vrm->addr, moved_len);
/*
* On error, move entries back from new area to old,
* which will succeed since page tables still there,
* and then proceed to unmap new area instead of old.
*/
pmc_revert.need_rmap_locks = true;
move_page_tables(&pmc_revert);
vrm->vma = new_vma;
vrm->old_len = vrm->new_len;
vrm->addr = vrm->new_addr;
} else {
mremap_userfaultfd_prep(new_vma, vrm->uf);
}
if (is_vm_hugetlb_page(vma))
clear_vma_resv_huge_pages(vma);
/* Tell pfnmap has moved from this vma */
if (unlikely(vma->vm_flags & VM_PFNMAP))
untrack_pfn_clear(vma);
*new_vma_ptr = new_vma;
return err;
}
/*
* Perform final tasks for MADV_DONTUNMAP operation, clearing mlock() and
* account flags on remaining VMA by convention (it cannot be mlock()'d any
* longer, as pages in range are no longer mapped), and removing anon_vma_chain
* links from it (if the entire VMA was copied over).
*/
static void dontunmap_complete(struct vma_remap_struct *vrm,
struct vm_area_struct *new_vma)
{
unsigned long start = vrm->addr;
unsigned long end = vrm->addr + vrm->old_len;
unsigned long old_start = vrm->vma->vm_start;
unsigned long old_end = vrm->vma->vm_end;
/*
* We always clear VM_LOCKED[ONFAULT] | VM_ACCOUNT on the old
* vma.
*/
vm_flags_clear(vrm->vma, VM_LOCKED_MASK | VM_ACCOUNT);
/*
* anon_vma links of the old vma is no longer needed after its page
* table has been moved.
*/
if (new_vma != vrm->vma && start == old_start && end == old_end)
unlink_anon_vmas(vrm->vma);
/* Because we won't unmap we don't need to touch locked_vm. */
}
static unsigned long move_vma(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *new_vma;
unsigned long hiwater_vm;
int err;
err = prep_move_vma(vrm);
if (err)
return err;
/* If accounted, charge the number of bytes the operation will use. */
if (!vrm_charge(vrm))
return -ENOMEM;
/* We don't want racing faults. */
vma_start_write(vrm->vma);
/* Perform copy step. */
err = copy_vma_and_data(vrm, &new_vma);
/*
* If we established the copied-to VMA, we attempt to recover from the
* error by setting the destination VMA to the source VMA and unmapping
* it below.
*/
if (err && !new_vma)
return err;
/*
* If we failed to move page tables we still do total_vm increment
* since do_munmap() will decrement it by old_len == new_len.
*
* Since total_vm is about to be raised artificially high for a
* moment, we need to restore high watermark afterwards: if stats
* are taken meanwhile, total_vm and hiwater_vm appear too high.
* If this were a serious issue, we'd add a flag to do_munmap().
*/
hiwater_vm = mm->hiwater_vm;
vrm_stat_account(vrm, vrm->new_len);
if (unlikely(!err && (vrm->flags & MREMAP_DONTUNMAP)))
dontunmap_complete(vrm, new_vma);
else
unmap_source_vma(vrm);
mm->hiwater_vm = hiwater_vm;
return err ? (unsigned long)err : vrm->new_addr;
}
/*
* resize_is_valid() - Ensure the vma can be resized to the new length at the give
* address.
*
* Return 0 on success, error otherwise.
*/
static int resize_is_valid(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
unsigned long addr = vrm->addr;
unsigned long old_len = vrm->old_len;
unsigned long new_len = vrm->new_len;
unsigned long pgoff;
/*
* !old_len is a special case where an attempt is made to 'duplicate'
* a mapping. This makes no sense for private mappings as it will
* instead create a fresh/new mapping unrelated to the original. This
* is contrary to the basic idea of mremap which creates new mappings
* based on the original. There are no known use cases for this
* behavior. As a result, fail such attempts.
*/
if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n",
current->comm, current->pid);
return -EINVAL;
}
if ((vrm->flags & MREMAP_DONTUNMAP) &&
(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
return -EINVAL;
/* We can't remap across vm area boundaries */
if (old_len > vma->vm_end - addr)
return -EFAULT;
if (new_len == old_len)
return 0;
/* Need to be careful about a growing mapping */
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
return -EINVAL;
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
return -EFAULT;
if (!mlock_future_ok(mm, vma->vm_flags, vrm->delta))
return -EAGAIN;
if (!may_expand_vm(mm, vma->vm_flags, vrm->delta >> PAGE_SHIFT))
return -ENOMEM;
return 0;
}
/*
* The user has requested that the VMA be shrunk (i.e., old_len > new_len), so
* execute this, optionally dropping the mmap lock when we do so.
*
* In both cases this invalidates the VMA, however if we don't drop the lock,
* then load the correct VMA into vrm->vma afterwards.
*/
static unsigned long shrink_vma(struct vma_remap_struct *vrm,
bool drop_lock)
{
struct mm_struct *mm = current->mm;
unsigned long unmap_start = vrm->addr + vrm->new_len;
unsigned long unmap_bytes = vrm->delta;
unsigned long res;
VMA_ITERATOR(vmi, mm, unmap_start);
VM_BUG_ON(vrm->remap_type != MREMAP_SHRINK);
res = do_vmi_munmap(&vmi, mm, unmap_start, unmap_bytes,
vrm->uf_unmap, drop_lock);
vrm->vma = NULL; /* Invalidated. */
if (res)
return res;
/*
* If we've not dropped the lock, then we should reload the VMA to
* replace the invalidated VMA with the one that may have now been
* split.
*/
if (drop_lock) {
vrm->mmap_locked = false;
} else {
vrm->vma = vma_lookup(mm, vrm->addr);
if (!vrm->vma)
return -EFAULT;
}
return 0;
}
/*
* mremap_to() - remap a vma to a new location.
* Returns: The new address of the vma or an error.
*/
static unsigned long mremap_to(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
unsigned long err;
/* Is the new length or address silly? */
if (vrm->new_len > TASK_SIZE ||
vrm->new_addr > TASK_SIZE - vrm->new_len)
return -EINVAL;
if (vrm_overlaps(vrm))
return -EINVAL;
if (vrm->flags & MREMAP_FIXED) {
/*
* In mremap_to().
* VMA is moved to dst address, and munmap dst first.
* do_munmap will check if dst is sealed.
*/
err = do_munmap(mm, vrm->new_addr, vrm->new_len,
vrm->uf_unmap_early);
vrm->vma = NULL; /* Invalidated. */
if (err)
return err;
/*
* If we remap a portion of a VMA elsewhere in the same VMA,
* this can invalidate the old VMA. Reset.
*/
vrm->vma = vma_lookup(mm, vrm->addr);
if (!vrm->vma)
return -EFAULT;
}
if (vrm->remap_type == MREMAP_SHRINK) {
err = shrink_vma(vrm, /* drop_lock= */false);
if (err)
return err;
/* Set up for the move now shrink has been executed. */
vrm->old_len = vrm->new_len;
}
err = resize_is_valid(vrm);
if (err)
return err;
/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
if (vrm->flags & MREMAP_DONTUNMAP) {
vm_flags_t vm_flags = vrm->vma->vm_flags;
unsigned long pages = vrm->old_len >> PAGE_SHIFT;
if (!may_expand_vm(mm, vm_flags, pages))
return -ENOMEM;
}
err = vrm_set_new_addr(vrm);
if (err)
return err;
return move_vma(vrm);
}
static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
{
unsigned long end = vma->vm_end + delta;
if (end < vma->vm_end) /* overflow */
return 0;
if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
return 0;
if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
0, MAP_FIXED) & ~PAGE_MASK)
return 0;
return 1;
}
/* Determine whether we are actually able to execute an in-place expansion. */
static bool vrm_can_expand_in_place(struct vma_remap_struct *vrm)
{
/* Number of bytes from vrm->addr to end of VMA. */
unsigned long suffix_bytes = vrm->vma->vm_end - vrm->addr;
/* If end of range aligns to end of VMA, we can just expand in-place. */
if (suffix_bytes != vrm->old_len)
return false;
/* Check whether this is feasible. */
if (!vma_expandable(vrm->vma, vrm->delta))
return false;
return true;
}
/*
* Are the parameters passed to mremap() valid? If so return 0, otherwise return
* error.
*/
static unsigned long check_mremap_params(struct vma_remap_struct *vrm)
{
unsigned long addr = vrm->addr;
unsigned long flags = vrm->flags;
/* Ensure no unexpected flag values. */
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
return -EINVAL;
/* Start address must be page-aligned. */
if (offset_in_page(addr))
return -EINVAL;
/*
* We allow a zero old-len as a special case
* for DOS-emu "duplicate shm area" thing. But
* a zero new-len is nonsensical.
*/
if (!PAGE_ALIGN(vrm->new_len))
return -EINVAL;
/* Remainder of checks are for cases with specific new_addr. */
if (!vrm_implies_new_addr(vrm))
return 0;
/* The new address must be page-aligned. */
if (offset_in_page(vrm->new_addr))
return -EINVAL;
/* A fixed address implies a move. */
if (!(flags & MREMAP_MAYMOVE))
return -EINVAL;
/* MREMAP_DONTUNMAP does not allow resizing in the process. */
if (flags & MREMAP_DONTUNMAP && vrm->old_len != vrm->new_len)
return -EINVAL;
/*
* move_vma() need us to stay 4 maps below the threshold, otherwise
* it will bail out at the very beginning.
* That is a problem if we have already unmaped the regions here
* (new_addr, and old_addr), because userspace will not know the
* state of the vma's after it gets -ENOMEM.
* So, to avoid such scenario we can pre-compute if the whole
* operation has high chances to success map-wise.
* Worst-scenario case is when both vma's (new_addr and old_addr) get
* split in 3 before unmapping it.
* That means 2 more maps (1 for each) to the ones we already hold.
* Check whether current map count plus 2 still leads us to 4 maps below
* the threshold, otherwise return -ENOMEM here to be more safe.
*/
if ((current->mm->map_count + 2) >= sysctl_max_map_count - 3)
return -ENOMEM;
return 0;
}
/*
* We know we can expand the VMA in-place by delta pages, so do so.
*
* If we discover the VMA is locked, update mm_struct statistics accordingly and
* indicate so to the caller.
*/
static unsigned long expand_vma_in_place(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
VMA_ITERATOR(vmi, mm, vma->vm_end);
if (!vrm_charge(vrm))
return -ENOMEM;
/*
* Function vma_merge_extend() is called on the
* extension we are adding to the already existing vma,
* vma_merge_extend() will merge this extension with the
* already existing vma (expand operation itself) and
* possibly also with the next vma if it becomes
* adjacent to the expanded vma and otherwise
* compatible.
*/
vma = vma_merge_extend(&vmi, vma, vrm->delta);
if (!vma) {
vrm_uncharge(vrm);
return -ENOMEM;
}
vrm->vma = vma;
vrm_stat_account(vrm, vrm->delta);
return 0;
}
static bool align_hugetlb(struct vma_remap_struct *vrm)
{
struct hstate *h __maybe_unused = hstate_vma(vrm->vma);
vrm->old_len = ALIGN(vrm->old_len, huge_page_size(h));
vrm->new_len = ALIGN(vrm->new_len, huge_page_size(h));
/* addrs must be huge page aligned */
if (vrm->addr & ~huge_page_mask(h))
return false;
if (vrm->new_addr & ~huge_page_mask(h))
return false;
/*
* Don't allow remap expansion, because the underlying hugetlb
* reservation is not yet capable to handle split reservation.
*/
if (vrm->new_len > vrm->old_len)
return false;
vrm_set_delta(vrm);
return true;
}
/*
* We are mremap()'ing without specifying a fixed address to move to, but are
* requesting that the VMA's size be increased.
*
* Try to do so in-place, if this fails, then move the VMA to a new location to
* action the change.
*/
static unsigned long expand_vma(struct vma_remap_struct *vrm)
{
unsigned long err;
unsigned long addr = vrm->addr;
err = resize_is_valid(vrm);
if (err)
return err;
/*
* [addr, old_len) spans precisely to the end of the VMA, so try to
* expand it in-place.
*/
if (vrm_can_expand_in_place(vrm)) {
err = expand_vma_in_place(vrm);
if (err)
return err;
/*
* We want to populate the newly expanded portion of the VMA to
* satisfy the expectation that mlock()'ing a VMA maintains all
* of its pages in memory.
*/
if (vrm->mlocked)
vrm->new_addr = addr;
/* OK we're done! */
return addr;
}
/*
* We weren't able to just expand or shrink the area,
* we need to create a new one and move it.
*/
/* We're not allowed to move the VMA, so error out. */
if (!(vrm->flags & MREMAP_MAYMOVE))
return -ENOMEM;
/* Find a new location to move the VMA to. */
err = vrm_set_new_addr(vrm);
if (err)
return err;
return move_vma(vrm);
}
/*
* Attempt to resize the VMA in-place, if we cannot, then move the VMA to the
* first available address to perform the operation.
*/
static unsigned long mremap_at(struct vma_remap_struct *vrm)
{
unsigned long res;
switch (vrm->remap_type) {
case MREMAP_INVALID:
break;
case MREMAP_NO_RESIZE:
/* NO-OP CASE - resizing to the same size. */
return vrm->addr;
case MREMAP_SHRINK:
/*
* SHRINK CASE. Can always be done in-place.
*
* Simply unmap the shrunken portion of the VMA. This does all
* the needed commit accounting, and we indicate that the mmap
* lock should be dropped.
*/
res = shrink_vma(vrm, /* drop_lock= */true);
if (res)
return res;
return vrm->addr;
case MREMAP_EXPAND:
return expand_vma(vrm);
}
BUG();
}
static unsigned long do_mremap(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long ret;
ret = check_mremap_params(vrm);
if (ret)
return ret;
vrm->old_len = PAGE_ALIGN(vrm->old_len);
vrm->new_len = PAGE_ALIGN(vrm->new_len);
vrm_set_delta(vrm);
if (mmap_write_lock_killable(mm))
return -EINTR;
vrm->mmap_locked = true;
vma = vrm->vma = vma_lookup(mm, vrm->addr);
if (!vma) {
ret = -EFAULT;
goto out;
}
/* If mseal()'d, mremap() is prohibited. */
if (!can_modify_vma(vma)) {
ret = -EPERM;
goto out;
}
/* Align to hugetlb page size, if required. */
if (is_vm_hugetlb_page(vma) && !align_hugetlb(vrm)) {
ret = -EINVAL;
goto out;
}
vrm->remap_type = vrm_remap_type(vrm);
/* Actually execute mremap. */
ret = vrm_implies_new_addr(vrm) ? mremap_to(vrm) : mremap_at(vrm);
out:
if (vrm->mmap_locked) {
mmap_write_unlock(mm);
vrm->mmap_locked = false;
if (!offset_in_page(ret) && vrm->mlocked && vrm->new_len > vrm->old_len)
mm_populate(vrm->new_addr + vrm->old_len, vrm->delta);
}
userfaultfd_unmap_complete(mm, vrm->uf_unmap_early);
mremap_userfaultfd_complete(vrm->uf, vrm->addr, ret, vrm->old_len);
userfaultfd_unmap_complete(mm, vrm->uf_unmap);
return ret;
}
/*
* Expand (or shrink) an existing mapping, potentially moving it at the
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
*
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
* This option implies MREMAP_MAYMOVE.
*/
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
unsigned long, new_len, unsigned long, flags,
unsigned long, new_addr)
{
struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
LIST_HEAD(uf_unmap_early);
LIST_HEAD(uf_unmap);
/*
* There is a deliberate asymmetry here: we strip the pointer tag
* from the old address but leave the new address alone. This is
* for consistency with mmap(), where we prevent the creation of
* aliasing mappings in userspace by leaving the tag bits of the
* mapping address intact. A non-zero tag will cause the subsequent
* range checks to reject the address as invalid.
*
* See Documentation/arch/arm64/tagged-address-abi.rst for more
* information.
*/
struct vma_remap_struct vrm = {
.addr = untagged_addr(addr),
.old_len = old_len,
.new_len = new_len,
.flags = flags,
.new_addr = new_addr,
.uf = &uf,
.uf_unmap_early = &uf_unmap_early,
.uf_unmap = &uf_unmap,
.remap_type = MREMAP_INVALID, /* We set later. */
};
return do_mremap(&vrm);
}