mirror of
https://github.com/torvalds/linux.git
synced 2025-04-06 00:16:18 +00:00

Instead of mapping and unmapping the completion queues memory to the host PCI address space whenever nvmet_pci_epf_cq_work() is called, map a completion queue to the host PCI address space when the completion queue is created with nvmet_pci_epf_create_cq() and unmap it when the completion queue is deleted with nvmet_pci_epf_delete_cq(). This removes the completion queue mapping/unmapping from nvmet_pci_epf_cq_work() and significantly increases performance. For a single job 4K random read QD=1 workload, the IOPS is increased from 23 KIOPS to 25 KIOPS. Some significant throughput increasde for high queue depth and large IOs workloads can also be seen. Since the functions nvmet_pci_epf_map_queue() and nvmet_pci_epf_unmap_queue() are called respectively only from nvmet_pci_epf_create_cq() and nvmet_pci_epf_delete_cq(), these functions are removed and open-coded in their respective call sites. Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Keith Busch <kbusch@kernel.org>
2604 lines
63 KiB
C
2604 lines
63 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NVMe PCI Endpoint Function target driver.
|
|
*
|
|
* Copyright (c) 2024, Western Digital Corporation or its affiliates.
|
|
* Copyright (c) 2024, Rick Wertenbroek <rick.wertenbroek@gmail.com>
|
|
* REDS Institute, HEIG-VD, HES-SO, Switzerland
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/nvme.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/pci-epc.h>
|
|
#include <linux/pci-epf.h>
|
|
#include <linux/pci_regs.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "nvmet.h"
|
|
|
|
static LIST_HEAD(nvmet_pci_epf_ports);
|
|
static DEFINE_MUTEX(nvmet_pci_epf_ports_mutex);
|
|
|
|
/*
|
|
* Default and maximum allowed data transfer size. For the default,
|
|
* allow up to 128 page-sized segments. For the maximum allowed,
|
|
* use 4 times the default (which is completely arbitrary).
|
|
*/
|
|
#define NVMET_PCI_EPF_MAX_SEGS 128
|
|
#define NVMET_PCI_EPF_MDTS_KB \
|
|
(NVMET_PCI_EPF_MAX_SEGS << (PAGE_SHIFT - 10))
|
|
#define NVMET_PCI_EPF_MAX_MDTS_KB (NVMET_PCI_EPF_MDTS_KB * 4)
|
|
|
|
/*
|
|
* IRQ vector coalescing threshold: by default, post 8 CQEs before raising an
|
|
* interrupt vector to the host. This default 8 is completely arbitrary and can
|
|
* be changed by the host with a nvme_set_features command.
|
|
*/
|
|
#define NVMET_PCI_EPF_IV_THRESHOLD 8
|
|
|
|
/*
|
|
* BAR CC register and SQ polling intervals.
|
|
*/
|
|
#define NVMET_PCI_EPF_CC_POLL_INTERVAL msecs_to_jiffies(10)
|
|
#define NVMET_PCI_EPF_SQ_POLL_INTERVAL msecs_to_jiffies(5)
|
|
#define NVMET_PCI_EPF_SQ_POLL_IDLE msecs_to_jiffies(5000)
|
|
|
|
/*
|
|
* SQ arbitration burst default: fetch at most 8 commands at a time from an SQ.
|
|
*/
|
|
#define NVMET_PCI_EPF_SQ_AB 8
|
|
|
|
/*
|
|
* Handling of CQs is normally immediate, unless we fail to map a CQ or the CQ
|
|
* is full, in which case we retry the CQ processing after this interval.
|
|
*/
|
|
#define NVMET_PCI_EPF_CQ_RETRY_INTERVAL msecs_to_jiffies(1)
|
|
|
|
enum nvmet_pci_epf_queue_flags {
|
|
NVMET_PCI_EPF_Q_IS_SQ = 0, /* The queue is a submission queue */
|
|
NVMET_PCI_EPF_Q_LIVE, /* The queue is live */
|
|
NVMET_PCI_EPF_Q_IRQ_ENABLED, /* IRQ is enabled for this queue */
|
|
};
|
|
|
|
/*
|
|
* IRQ vector descriptor.
|
|
*/
|
|
struct nvmet_pci_epf_irq_vector {
|
|
unsigned int vector;
|
|
unsigned int ref;
|
|
bool cd;
|
|
int nr_irqs;
|
|
};
|
|
|
|
struct nvmet_pci_epf_queue {
|
|
union {
|
|
struct nvmet_sq nvme_sq;
|
|
struct nvmet_cq nvme_cq;
|
|
};
|
|
struct nvmet_pci_epf_ctrl *ctrl;
|
|
unsigned long flags;
|
|
|
|
u64 pci_addr;
|
|
size_t pci_size;
|
|
struct pci_epc_map pci_map;
|
|
|
|
u16 qid;
|
|
u16 depth;
|
|
u16 vector;
|
|
u16 head;
|
|
u16 tail;
|
|
u16 phase;
|
|
u32 db;
|
|
|
|
size_t qes;
|
|
|
|
struct nvmet_pci_epf_irq_vector *iv;
|
|
struct workqueue_struct *iod_wq;
|
|
struct delayed_work work;
|
|
spinlock_t lock;
|
|
struct list_head list;
|
|
};
|
|
|
|
/*
|
|
* PCI Root Complex (RC) address data segment for mapping an admin or
|
|
* I/O command buffer @buf of @length bytes to the PCI address @pci_addr.
|
|
*/
|
|
struct nvmet_pci_epf_segment {
|
|
void *buf;
|
|
u64 pci_addr;
|
|
u32 length;
|
|
};
|
|
|
|
/*
|
|
* Command descriptors.
|
|
*/
|
|
struct nvmet_pci_epf_iod {
|
|
struct list_head link;
|
|
|
|
struct nvmet_req req;
|
|
struct nvme_command cmd;
|
|
struct nvme_completion cqe;
|
|
unsigned int status;
|
|
|
|
struct nvmet_pci_epf_ctrl *ctrl;
|
|
|
|
struct nvmet_pci_epf_queue *sq;
|
|
struct nvmet_pci_epf_queue *cq;
|
|
|
|
/* Data transfer size and direction for the command. */
|
|
size_t data_len;
|
|
enum dma_data_direction dma_dir;
|
|
|
|
/*
|
|
* PCI Root Complex (RC) address data segments: if nr_data_segs is 1, we
|
|
* use only @data_seg. Otherwise, the array of segments @data_segs is
|
|
* allocated to manage multiple PCI address data segments. @data_sgl and
|
|
* @data_sgt are used to setup the command request for execution by the
|
|
* target core.
|
|
*/
|
|
unsigned int nr_data_segs;
|
|
struct nvmet_pci_epf_segment data_seg;
|
|
struct nvmet_pci_epf_segment *data_segs;
|
|
struct scatterlist data_sgl;
|
|
struct sg_table data_sgt;
|
|
|
|
struct work_struct work;
|
|
struct completion done;
|
|
};
|
|
|
|
/*
|
|
* PCI target controller private data.
|
|
*/
|
|
struct nvmet_pci_epf_ctrl {
|
|
struct nvmet_pci_epf *nvme_epf;
|
|
struct nvmet_port *port;
|
|
struct nvmet_ctrl *tctrl;
|
|
struct device *dev;
|
|
|
|
unsigned int nr_queues;
|
|
struct nvmet_pci_epf_queue *sq;
|
|
struct nvmet_pci_epf_queue *cq;
|
|
unsigned int sq_ab;
|
|
|
|
mempool_t iod_pool;
|
|
void *bar;
|
|
u64 cap;
|
|
u32 cc;
|
|
u32 csts;
|
|
|
|
size_t io_sqes;
|
|
size_t io_cqes;
|
|
|
|
size_t mps_shift;
|
|
size_t mps;
|
|
size_t mps_mask;
|
|
|
|
unsigned int mdts;
|
|
|
|
struct delayed_work poll_cc;
|
|
struct delayed_work poll_sqs;
|
|
|
|
struct mutex irq_lock;
|
|
struct nvmet_pci_epf_irq_vector *irq_vectors;
|
|
unsigned int irq_vector_threshold;
|
|
|
|
bool link_up;
|
|
bool enabled;
|
|
};
|
|
|
|
/*
|
|
* PCI EPF driver private data.
|
|
*/
|
|
struct nvmet_pci_epf {
|
|
struct pci_epf *epf;
|
|
|
|
const struct pci_epc_features *epc_features;
|
|
|
|
void *reg_bar;
|
|
size_t msix_table_offset;
|
|
|
|
unsigned int irq_type;
|
|
unsigned int nr_vectors;
|
|
|
|
struct nvmet_pci_epf_ctrl ctrl;
|
|
|
|
bool dma_enabled;
|
|
struct dma_chan *dma_tx_chan;
|
|
struct mutex dma_tx_lock;
|
|
struct dma_chan *dma_rx_chan;
|
|
struct mutex dma_rx_lock;
|
|
|
|
struct mutex mmio_lock;
|
|
|
|
/* PCI endpoint function configfs attributes. */
|
|
struct config_group group;
|
|
__le16 portid;
|
|
char subsysnqn[NVMF_NQN_SIZE];
|
|
unsigned int mdts_kb;
|
|
};
|
|
|
|
static inline u32 nvmet_pci_epf_bar_read32(struct nvmet_pci_epf_ctrl *ctrl,
|
|
u32 off)
|
|
{
|
|
__le32 *bar_reg = ctrl->bar + off;
|
|
|
|
return le32_to_cpu(READ_ONCE(*bar_reg));
|
|
}
|
|
|
|
static inline void nvmet_pci_epf_bar_write32(struct nvmet_pci_epf_ctrl *ctrl,
|
|
u32 off, u32 val)
|
|
{
|
|
__le32 *bar_reg = ctrl->bar + off;
|
|
|
|
WRITE_ONCE(*bar_reg, cpu_to_le32(val));
|
|
}
|
|
|
|
static inline u64 nvmet_pci_epf_bar_read64(struct nvmet_pci_epf_ctrl *ctrl,
|
|
u32 off)
|
|
{
|
|
return (u64)nvmet_pci_epf_bar_read32(ctrl, off) |
|
|
((u64)nvmet_pci_epf_bar_read32(ctrl, off + 4) << 32);
|
|
}
|
|
|
|
static inline void nvmet_pci_epf_bar_write64(struct nvmet_pci_epf_ctrl *ctrl,
|
|
u32 off, u64 val)
|
|
{
|
|
nvmet_pci_epf_bar_write32(ctrl, off, val & 0xFFFFFFFF);
|
|
nvmet_pci_epf_bar_write32(ctrl, off + 4, (val >> 32) & 0xFFFFFFFF);
|
|
}
|
|
|
|
static inline int nvmet_pci_epf_mem_map(struct nvmet_pci_epf *nvme_epf,
|
|
u64 pci_addr, size_t size, struct pci_epc_map *map)
|
|
{
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
|
|
return pci_epc_mem_map(epf->epc, epf->func_no, epf->vfunc_no,
|
|
pci_addr, size, map);
|
|
}
|
|
|
|
static inline void nvmet_pci_epf_mem_unmap(struct nvmet_pci_epf *nvme_epf,
|
|
struct pci_epc_map *map)
|
|
{
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
|
|
pci_epc_mem_unmap(epf->epc, epf->func_no, epf->vfunc_no, map);
|
|
}
|
|
|
|
struct nvmet_pci_epf_dma_filter {
|
|
struct device *dev;
|
|
u32 dma_mask;
|
|
};
|
|
|
|
static bool nvmet_pci_epf_dma_filter(struct dma_chan *chan, void *arg)
|
|
{
|
|
struct nvmet_pci_epf_dma_filter *filter = arg;
|
|
struct dma_slave_caps caps;
|
|
|
|
memset(&caps, 0, sizeof(caps));
|
|
dma_get_slave_caps(chan, &caps);
|
|
|
|
return chan->device->dev == filter->dev &&
|
|
(filter->dma_mask & caps.directions);
|
|
}
|
|
|
|
static void nvmet_pci_epf_init_dma(struct nvmet_pci_epf *nvme_epf)
|
|
{
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
struct device *dev = &epf->dev;
|
|
struct nvmet_pci_epf_dma_filter filter;
|
|
struct dma_chan *chan;
|
|
dma_cap_mask_t mask;
|
|
|
|
mutex_init(&nvme_epf->dma_rx_lock);
|
|
mutex_init(&nvme_epf->dma_tx_lock);
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
filter.dev = epf->epc->dev.parent;
|
|
filter.dma_mask = BIT(DMA_DEV_TO_MEM);
|
|
|
|
chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter);
|
|
if (!chan)
|
|
goto out_dma_no_rx;
|
|
|
|
nvme_epf->dma_rx_chan = chan;
|
|
|
|
filter.dma_mask = BIT(DMA_MEM_TO_DEV);
|
|
chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter);
|
|
if (!chan)
|
|
goto out_dma_no_tx;
|
|
|
|
nvme_epf->dma_tx_chan = chan;
|
|
|
|
nvme_epf->dma_enabled = true;
|
|
|
|
dev_dbg(dev, "Using DMA RX channel %s, maximum segment size %u B\n",
|
|
dma_chan_name(chan),
|
|
dma_get_max_seg_size(dmaengine_get_dma_device(chan)));
|
|
|
|
dev_dbg(dev, "Using DMA TX channel %s, maximum segment size %u B\n",
|
|
dma_chan_name(chan),
|
|
dma_get_max_seg_size(dmaengine_get_dma_device(chan)));
|
|
|
|
return;
|
|
|
|
out_dma_no_tx:
|
|
dma_release_channel(nvme_epf->dma_rx_chan);
|
|
nvme_epf->dma_rx_chan = NULL;
|
|
|
|
out_dma_no_rx:
|
|
mutex_destroy(&nvme_epf->dma_rx_lock);
|
|
mutex_destroy(&nvme_epf->dma_tx_lock);
|
|
nvme_epf->dma_enabled = false;
|
|
|
|
dev_info(&epf->dev, "DMA not supported, falling back to MMIO\n");
|
|
}
|
|
|
|
static void nvmet_pci_epf_deinit_dma(struct nvmet_pci_epf *nvme_epf)
|
|
{
|
|
if (!nvme_epf->dma_enabled)
|
|
return;
|
|
|
|
dma_release_channel(nvme_epf->dma_tx_chan);
|
|
nvme_epf->dma_tx_chan = NULL;
|
|
dma_release_channel(nvme_epf->dma_rx_chan);
|
|
nvme_epf->dma_rx_chan = NULL;
|
|
mutex_destroy(&nvme_epf->dma_rx_lock);
|
|
mutex_destroy(&nvme_epf->dma_tx_lock);
|
|
nvme_epf->dma_enabled = false;
|
|
}
|
|
|
|
static int nvmet_pci_epf_dma_transfer(struct nvmet_pci_epf *nvme_epf,
|
|
struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir)
|
|
{
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct dma_slave_config sconf = {};
|
|
struct device *dev = &epf->dev;
|
|
struct device *dma_dev;
|
|
struct dma_chan *chan;
|
|
dma_cookie_t cookie;
|
|
dma_addr_t dma_addr;
|
|
struct mutex *lock;
|
|
int ret;
|
|
|
|
switch (dir) {
|
|
case DMA_FROM_DEVICE:
|
|
lock = &nvme_epf->dma_rx_lock;
|
|
chan = nvme_epf->dma_rx_chan;
|
|
sconf.direction = DMA_DEV_TO_MEM;
|
|
sconf.src_addr = seg->pci_addr;
|
|
break;
|
|
case DMA_TO_DEVICE:
|
|
lock = &nvme_epf->dma_tx_lock;
|
|
chan = nvme_epf->dma_tx_chan;
|
|
sconf.direction = DMA_MEM_TO_DEV;
|
|
sconf.dst_addr = seg->pci_addr;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(lock);
|
|
|
|
dma_dev = dmaengine_get_dma_device(chan);
|
|
dma_addr = dma_map_single(dma_dev, seg->buf, seg->length, dir);
|
|
ret = dma_mapping_error(dma_dev, dma_addr);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
ret = dmaengine_slave_config(chan, &sconf);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to configure DMA channel\n");
|
|
goto unmap;
|
|
}
|
|
|
|
desc = dmaengine_prep_slave_single(chan, dma_addr, seg->length,
|
|
sconf.direction, DMA_CTRL_ACK);
|
|
if (!desc) {
|
|
dev_err(dev, "Failed to prepare DMA\n");
|
|
ret = -EIO;
|
|
goto unmap;
|
|
}
|
|
|
|
cookie = dmaengine_submit(desc);
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to do DMA submit (err=%d)\n", ret);
|
|
goto unmap;
|
|
}
|
|
|
|
if (dma_sync_wait(chan, cookie) != DMA_COMPLETE) {
|
|
dev_err(dev, "DMA transfer failed\n");
|
|
ret = -EIO;
|
|
}
|
|
|
|
dmaengine_terminate_sync(chan);
|
|
|
|
unmap:
|
|
dma_unmap_single(dma_dev, dma_addr, seg->length, dir);
|
|
|
|
unlock:
|
|
mutex_unlock(lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nvmet_pci_epf_mmio_transfer(struct nvmet_pci_epf *nvme_epf,
|
|
struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir)
|
|
{
|
|
u64 pci_addr = seg->pci_addr;
|
|
u32 length = seg->length;
|
|
void *buf = seg->buf;
|
|
struct pci_epc_map map;
|
|
int ret = -EINVAL;
|
|
|
|
/*
|
|
* Note: MMIO transfers do not need serialization but this is a
|
|
* simple way to avoid using too many mapping windows.
|
|
*/
|
|
mutex_lock(&nvme_epf->mmio_lock);
|
|
|
|
while (length) {
|
|
ret = nvmet_pci_epf_mem_map(nvme_epf, pci_addr, length, &map);
|
|
if (ret)
|
|
break;
|
|
|
|
switch (dir) {
|
|
case DMA_FROM_DEVICE:
|
|
memcpy_fromio(buf, map.virt_addr, map.pci_size);
|
|
break;
|
|
case DMA_TO_DEVICE:
|
|
memcpy_toio(map.virt_addr, buf, map.pci_size);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
pci_addr += map.pci_size;
|
|
buf += map.pci_size;
|
|
length -= map.pci_size;
|
|
|
|
nvmet_pci_epf_mem_unmap(nvme_epf, &map);
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&nvme_epf->mmio_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int nvmet_pci_epf_transfer_seg(struct nvmet_pci_epf *nvme_epf,
|
|
struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir)
|
|
{
|
|
if (nvme_epf->dma_enabled)
|
|
return nvmet_pci_epf_dma_transfer(nvme_epf, seg, dir);
|
|
|
|
return nvmet_pci_epf_mmio_transfer(nvme_epf, seg, dir);
|
|
}
|
|
|
|
static inline int nvmet_pci_epf_transfer(struct nvmet_pci_epf_ctrl *ctrl,
|
|
void *buf, u64 pci_addr, u32 length,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct nvmet_pci_epf_segment seg = {
|
|
.buf = buf,
|
|
.pci_addr = pci_addr,
|
|
.length = length,
|
|
};
|
|
|
|
return nvmet_pci_epf_transfer_seg(ctrl->nvme_epf, &seg, dir);
|
|
}
|
|
|
|
static int nvmet_pci_epf_alloc_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
ctrl->irq_vectors = kcalloc(ctrl->nr_queues,
|
|
sizeof(struct nvmet_pci_epf_irq_vector),
|
|
GFP_KERNEL);
|
|
if (!ctrl->irq_vectors)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&ctrl->irq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvmet_pci_epf_free_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
if (ctrl->irq_vectors) {
|
|
mutex_destroy(&ctrl->irq_lock);
|
|
kfree(ctrl->irq_vectors);
|
|
ctrl->irq_vectors = NULL;
|
|
}
|
|
}
|
|
|
|
static struct nvmet_pci_epf_irq_vector *
|
|
nvmet_pci_epf_find_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector)
|
|
{
|
|
struct nvmet_pci_epf_irq_vector *iv;
|
|
int i;
|
|
|
|
lockdep_assert_held(&ctrl->irq_lock);
|
|
|
|
for (i = 0; i < ctrl->nr_queues; i++) {
|
|
iv = &ctrl->irq_vectors[i];
|
|
if (iv->ref && iv->vector == vector)
|
|
return iv;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct nvmet_pci_epf_irq_vector *
|
|
nvmet_pci_epf_add_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector)
|
|
{
|
|
struct nvmet_pci_epf_irq_vector *iv;
|
|
int i;
|
|
|
|
mutex_lock(&ctrl->irq_lock);
|
|
|
|
iv = nvmet_pci_epf_find_irq_vector(ctrl, vector);
|
|
if (iv) {
|
|
iv->ref++;
|
|
goto unlock;
|
|
}
|
|
|
|
for (i = 0; i < ctrl->nr_queues; i++) {
|
|
iv = &ctrl->irq_vectors[i];
|
|
if (!iv->ref)
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!iv))
|
|
goto unlock;
|
|
|
|
iv->ref = 1;
|
|
iv->vector = vector;
|
|
iv->nr_irqs = 0;
|
|
|
|
unlock:
|
|
mutex_unlock(&ctrl->irq_lock);
|
|
|
|
return iv;
|
|
}
|
|
|
|
static void nvmet_pci_epf_remove_irq_vector(struct nvmet_pci_epf_ctrl *ctrl,
|
|
u16 vector)
|
|
{
|
|
struct nvmet_pci_epf_irq_vector *iv;
|
|
|
|
mutex_lock(&ctrl->irq_lock);
|
|
|
|
iv = nvmet_pci_epf_find_irq_vector(ctrl, vector);
|
|
if (iv) {
|
|
iv->ref--;
|
|
if (!iv->ref) {
|
|
iv->vector = 0;
|
|
iv->nr_irqs = 0;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&ctrl->irq_lock);
|
|
}
|
|
|
|
static bool nvmet_pci_epf_should_raise_irq(struct nvmet_pci_epf_ctrl *ctrl,
|
|
struct nvmet_pci_epf_queue *cq, bool force)
|
|
{
|
|
struct nvmet_pci_epf_irq_vector *iv = cq->iv;
|
|
bool ret;
|
|
|
|
if (!test_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags))
|
|
return false;
|
|
|
|
/* IRQ coalescing for the admin queue is not allowed. */
|
|
if (!cq->qid)
|
|
return true;
|
|
|
|
if (iv->cd)
|
|
return true;
|
|
|
|
if (force) {
|
|
ret = iv->nr_irqs > 0;
|
|
} else {
|
|
iv->nr_irqs++;
|
|
ret = iv->nr_irqs >= ctrl->irq_vector_threshold;
|
|
}
|
|
if (ret)
|
|
iv->nr_irqs = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void nvmet_pci_epf_raise_irq(struct nvmet_pci_epf_ctrl *ctrl,
|
|
struct nvmet_pci_epf_queue *cq, bool force)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = ctrl->nvme_epf;
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
int ret = 0;
|
|
|
|
if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags))
|
|
return;
|
|
|
|
mutex_lock(&ctrl->irq_lock);
|
|
|
|
if (!nvmet_pci_epf_should_raise_irq(ctrl, cq, force))
|
|
goto unlock;
|
|
|
|
switch (nvme_epf->irq_type) {
|
|
case PCI_IRQ_MSIX:
|
|
case PCI_IRQ_MSI:
|
|
ret = pci_epc_raise_irq(epf->epc, epf->func_no, epf->vfunc_no,
|
|
nvme_epf->irq_type, cq->vector + 1);
|
|
if (!ret)
|
|
break;
|
|
/*
|
|
* If we got an error, it is likely because the host is using
|
|
* legacy IRQs (e.g. BIOS, grub).
|
|
*/
|
|
fallthrough;
|
|
case PCI_IRQ_INTX:
|
|
ret = pci_epc_raise_irq(epf->epc, epf->func_no, epf->vfunc_no,
|
|
PCI_IRQ_INTX, 0);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
dev_err(ctrl->dev, "Failed to raise IRQ (err=%d)\n", ret);
|
|
|
|
unlock:
|
|
mutex_unlock(&ctrl->irq_lock);
|
|
}
|
|
|
|
static inline const char *nvmet_pci_epf_iod_name(struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
return nvme_opcode_str(iod->sq->qid, iod->cmd.common.opcode);
|
|
}
|
|
|
|
static void nvmet_pci_epf_exec_iod_work(struct work_struct *work);
|
|
|
|
static struct nvmet_pci_epf_iod *
|
|
nvmet_pci_epf_alloc_iod(struct nvmet_pci_epf_queue *sq)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = sq->ctrl;
|
|
struct nvmet_pci_epf_iod *iod;
|
|
|
|
iod = mempool_alloc(&ctrl->iod_pool, GFP_KERNEL);
|
|
if (unlikely(!iod))
|
|
return NULL;
|
|
|
|
memset(iod, 0, sizeof(*iod));
|
|
iod->req.cmd = &iod->cmd;
|
|
iod->req.cqe = &iod->cqe;
|
|
iod->req.port = ctrl->port;
|
|
iod->ctrl = ctrl;
|
|
iod->sq = sq;
|
|
iod->cq = &ctrl->cq[sq->qid];
|
|
INIT_LIST_HEAD(&iod->link);
|
|
iod->dma_dir = DMA_NONE;
|
|
INIT_WORK(&iod->work, nvmet_pci_epf_exec_iod_work);
|
|
init_completion(&iod->done);
|
|
|
|
return iod;
|
|
}
|
|
|
|
/*
|
|
* Allocate or grow a command table of PCI segments.
|
|
*/
|
|
static int nvmet_pci_epf_alloc_iod_data_segs(struct nvmet_pci_epf_iod *iod,
|
|
int nsegs)
|
|
{
|
|
struct nvmet_pci_epf_segment *segs;
|
|
int nr_segs = iod->nr_data_segs + nsegs;
|
|
|
|
segs = krealloc(iod->data_segs,
|
|
nr_segs * sizeof(struct nvmet_pci_epf_segment),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!segs)
|
|
return -ENOMEM;
|
|
|
|
iod->nr_data_segs = nr_segs;
|
|
iod->data_segs = segs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvmet_pci_epf_free_iod(struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
int i;
|
|
|
|
if (iod->data_segs) {
|
|
for (i = 0; i < iod->nr_data_segs; i++)
|
|
kfree(iod->data_segs[i].buf);
|
|
if (iod->data_segs != &iod->data_seg)
|
|
kfree(iod->data_segs);
|
|
}
|
|
if (iod->data_sgt.nents > 1)
|
|
sg_free_table(&iod->data_sgt);
|
|
mempool_free(iod, &iod->ctrl->iod_pool);
|
|
}
|
|
|
|
static int nvmet_pci_epf_transfer_iod_data(struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = iod->ctrl->nvme_epf;
|
|
struct nvmet_pci_epf_segment *seg = &iod->data_segs[0];
|
|
int i, ret;
|
|
|
|
/* Split the data transfer according to the PCI segments. */
|
|
for (i = 0; i < iod->nr_data_segs; i++, seg++) {
|
|
ret = nvmet_pci_epf_transfer_seg(nvme_epf, seg, iod->dma_dir);
|
|
if (ret) {
|
|
iod->status = NVME_SC_DATA_XFER_ERROR | NVME_STATUS_DNR;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 nvmet_pci_epf_prp_ofst(struct nvmet_pci_epf_ctrl *ctrl,
|
|
u64 prp)
|
|
{
|
|
return prp & ctrl->mps_mask;
|
|
}
|
|
|
|
static inline size_t nvmet_pci_epf_prp_size(struct nvmet_pci_epf_ctrl *ctrl,
|
|
u64 prp)
|
|
{
|
|
return ctrl->mps - nvmet_pci_epf_prp_ofst(ctrl, prp);
|
|
}
|
|
|
|
/*
|
|
* Transfer a PRP list from the host and return the number of prps.
|
|
*/
|
|
static int nvmet_pci_epf_get_prp_list(struct nvmet_pci_epf_ctrl *ctrl, u64 prp,
|
|
size_t xfer_len, __le64 *prps)
|
|
{
|
|
size_t nr_prps = (xfer_len + ctrl->mps_mask) >> ctrl->mps_shift;
|
|
u32 length;
|
|
int ret;
|
|
|
|
/*
|
|
* Compute the number of PRPs required for the number of bytes to
|
|
* transfer (xfer_len). If this number overflows the memory page size
|
|
* with the PRP list pointer specified, only return the space available
|
|
* in the memory page, the last PRP in there will be a PRP list pointer
|
|
* to the remaining PRPs.
|
|
*/
|
|
length = min(nvmet_pci_epf_prp_size(ctrl, prp), nr_prps << 3);
|
|
ret = nvmet_pci_epf_transfer(ctrl, prps, prp, length, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return length >> 3;
|
|
}
|
|
|
|
static int nvmet_pci_epf_iod_parse_prp_list(struct nvmet_pci_epf_ctrl *ctrl,
|
|
struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvme_command *cmd = &iod->cmd;
|
|
struct nvmet_pci_epf_segment *seg;
|
|
size_t size = 0, ofst, prp_size, xfer_len;
|
|
size_t transfer_len = iod->data_len;
|
|
int nr_segs, nr_prps = 0;
|
|
u64 pci_addr, prp;
|
|
int i = 0, ret;
|
|
__le64 *prps;
|
|
|
|
prps = kzalloc(ctrl->mps, GFP_KERNEL);
|
|
if (!prps)
|
|
goto err_internal;
|
|
|
|
/*
|
|
* Allocate PCI segments for the command: this considers the worst case
|
|
* scenario where all prps are discontiguous, so get as many segments
|
|
* as we can have prps. In practice, most of the time, we will have
|
|
* far less PCI segments than prps.
|
|
*/
|
|
prp = le64_to_cpu(cmd->common.dptr.prp1);
|
|
if (!prp)
|
|
goto err_invalid_field;
|
|
|
|
ofst = nvmet_pci_epf_prp_ofst(ctrl, prp);
|
|
nr_segs = (transfer_len + ofst + ctrl->mps - 1) >> ctrl->mps_shift;
|
|
|
|
ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_segs);
|
|
if (ret)
|
|
goto err_internal;
|
|
|
|
/* Set the first segment using prp1. */
|
|
seg = &iod->data_segs[0];
|
|
seg->pci_addr = prp;
|
|
seg->length = nvmet_pci_epf_prp_size(ctrl, prp);
|
|
|
|
size = seg->length;
|
|
pci_addr = prp + size;
|
|
nr_segs = 1;
|
|
|
|
/*
|
|
* Now build the PCI address segments using the PRP lists, starting
|
|
* from prp2.
|
|
*/
|
|
prp = le64_to_cpu(cmd->common.dptr.prp2);
|
|
if (!prp)
|
|
goto err_invalid_field;
|
|
|
|
while (size < transfer_len) {
|
|
xfer_len = transfer_len - size;
|
|
|
|
if (!nr_prps) {
|
|
nr_prps = nvmet_pci_epf_get_prp_list(ctrl, prp,
|
|
xfer_len, prps);
|
|
if (nr_prps < 0)
|
|
goto err_internal;
|
|
|
|
i = 0;
|
|
ofst = 0;
|
|
}
|
|
|
|
/* Current entry */
|
|
prp = le64_to_cpu(prps[i]);
|
|
if (!prp)
|
|
goto err_invalid_field;
|
|
|
|
/* Did we reach the last PRP entry of the list? */
|
|
if (xfer_len > ctrl->mps && i == nr_prps - 1) {
|
|
/* We need more PRPs: PRP is a list pointer. */
|
|
nr_prps = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Only the first PRP is allowed to have an offset. */
|
|
if (nvmet_pci_epf_prp_ofst(ctrl, prp))
|
|
goto err_invalid_offset;
|
|
|
|
if (prp != pci_addr) {
|
|
/* Discontiguous prp: new segment. */
|
|
nr_segs++;
|
|
if (WARN_ON_ONCE(nr_segs > iod->nr_data_segs))
|
|
goto err_internal;
|
|
|
|
seg++;
|
|
seg->pci_addr = prp;
|
|
seg->length = 0;
|
|
pci_addr = prp;
|
|
}
|
|
|
|
prp_size = min_t(size_t, ctrl->mps, xfer_len);
|
|
seg->length += prp_size;
|
|
pci_addr += prp_size;
|
|
size += prp_size;
|
|
|
|
i++;
|
|
}
|
|
|
|
iod->nr_data_segs = nr_segs;
|
|
ret = 0;
|
|
|
|
if (size != transfer_len) {
|
|
dev_err(ctrl->dev,
|
|
"PRPs transfer length mismatch: got %zu B, need %zu B\n",
|
|
size, transfer_len);
|
|
goto err_internal;
|
|
}
|
|
|
|
kfree(prps);
|
|
|
|
return 0;
|
|
|
|
err_invalid_offset:
|
|
dev_err(ctrl->dev, "PRPs list invalid offset\n");
|
|
iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR;
|
|
goto err;
|
|
|
|
err_invalid_field:
|
|
dev_err(ctrl->dev, "PRPs list invalid field\n");
|
|
iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
|
|
goto err;
|
|
|
|
err_internal:
|
|
dev_err(ctrl->dev, "PRPs list internal error\n");
|
|
iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
|
|
err:
|
|
kfree(prps);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int nvmet_pci_epf_iod_parse_prp_simple(struct nvmet_pci_epf_ctrl *ctrl,
|
|
struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvme_command *cmd = &iod->cmd;
|
|
size_t transfer_len = iod->data_len;
|
|
int ret, nr_segs = 1;
|
|
u64 prp1, prp2 = 0;
|
|
size_t prp1_size;
|
|
|
|
prp1 = le64_to_cpu(cmd->common.dptr.prp1);
|
|
prp1_size = nvmet_pci_epf_prp_size(ctrl, prp1);
|
|
|
|
/* For commands crossing a page boundary, we should have prp2. */
|
|
if (transfer_len > prp1_size) {
|
|
prp2 = le64_to_cpu(cmd->common.dptr.prp2);
|
|
if (!prp2) {
|
|
iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
|
|
return -EINVAL;
|
|
}
|
|
if (nvmet_pci_epf_prp_ofst(ctrl, prp2)) {
|
|
iod->status =
|
|
NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR;
|
|
return -EINVAL;
|
|
}
|
|
if (prp2 != prp1 + prp1_size)
|
|
nr_segs = 2;
|
|
}
|
|
|
|
if (nr_segs == 1) {
|
|
iod->nr_data_segs = 1;
|
|
iod->data_segs = &iod->data_seg;
|
|
iod->data_segs[0].pci_addr = prp1;
|
|
iod->data_segs[0].length = transfer_len;
|
|
return 0;
|
|
}
|
|
|
|
ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_segs);
|
|
if (ret) {
|
|
iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
return ret;
|
|
}
|
|
|
|
iod->data_segs[0].pci_addr = prp1;
|
|
iod->data_segs[0].length = prp1_size;
|
|
iod->data_segs[1].pci_addr = prp2;
|
|
iod->data_segs[1].length = transfer_len - prp1_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvmet_pci_epf_iod_parse_prps(struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl;
|
|
u64 prp1 = le64_to_cpu(iod->cmd.common.dptr.prp1);
|
|
size_t ofst;
|
|
|
|
/* Get the PCI address segments for the command using its PRPs. */
|
|
ofst = nvmet_pci_epf_prp_ofst(ctrl, prp1);
|
|
if (ofst & 0x3) {
|
|
iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (iod->data_len + ofst <= ctrl->mps * 2)
|
|
return nvmet_pci_epf_iod_parse_prp_simple(ctrl, iod);
|
|
|
|
return nvmet_pci_epf_iod_parse_prp_list(ctrl, iod);
|
|
}
|
|
|
|
/*
|
|
* Transfer an SGL segment from the host and return the number of data
|
|
* descriptors and the next segment descriptor, if any.
|
|
*/
|
|
static struct nvme_sgl_desc *
|
|
nvmet_pci_epf_get_sgl_segment(struct nvmet_pci_epf_ctrl *ctrl,
|
|
struct nvme_sgl_desc *desc, unsigned int *nr_sgls)
|
|
{
|
|
struct nvme_sgl_desc *sgls;
|
|
u32 length = le32_to_cpu(desc->length);
|
|
int nr_descs, ret;
|
|
void *buf;
|
|
|
|
buf = kmalloc(length, GFP_KERNEL);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
ret = nvmet_pci_epf_transfer(ctrl, buf, le64_to_cpu(desc->addr), length,
|
|
DMA_FROM_DEVICE);
|
|
if (ret) {
|
|
kfree(buf);
|
|
return NULL;
|
|
}
|
|
|
|
sgls = buf;
|
|
nr_descs = length / sizeof(struct nvme_sgl_desc);
|
|
if (sgls[nr_descs - 1].type == (NVME_SGL_FMT_SEG_DESC << 4) ||
|
|
sgls[nr_descs - 1].type == (NVME_SGL_FMT_LAST_SEG_DESC << 4)) {
|
|
/*
|
|
* We have another SGL segment following this one: do not count
|
|
* it as a regular data SGL descriptor and return it to the
|
|
* caller.
|
|
*/
|
|
*desc = sgls[nr_descs - 1];
|
|
nr_descs--;
|
|
} else {
|
|
/* We do not have another SGL segment after this one. */
|
|
desc->length = 0;
|
|
}
|
|
|
|
*nr_sgls = nr_descs;
|
|
|
|
return sgls;
|
|
}
|
|
|
|
static int nvmet_pci_epf_iod_parse_sgl_segments(struct nvmet_pci_epf_ctrl *ctrl,
|
|
struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvme_command *cmd = &iod->cmd;
|
|
struct nvme_sgl_desc seg = cmd->common.dptr.sgl;
|
|
struct nvme_sgl_desc *sgls = NULL;
|
|
int n = 0, i, nr_sgls;
|
|
int ret;
|
|
|
|
/*
|
|
* We do not support inline data nor keyed SGLs, so we should be seeing
|
|
* only segment descriptors.
|
|
*/
|
|
if (seg.type != (NVME_SGL_FMT_SEG_DESC << 4) &&
|
|
seg.type != (NVME_SGL_FMT_LAST_SEG_DESC << 4)) {
|
|
iod->status = NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR;
|
|
return -EIO;
|
|
}
|
|
|
|
while (seg.length) {
|
|
sgls = nvmet_pci_epf_get_sgl_segment(ctrl, &seg, &nr_sgls);
|
|
if (!sgls) {
|
|
iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
return -EIO;
|
|
}
|
|
|
|
/* Grow the PCI segment table as needed. */
|
|
ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_sgls);
|
|
if (ret) {
|
|
iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Parse the SGL descriptors to build the PCI segment table,
|
|
* checking the descriptor type as we go.
|
|
*/
|
|
for (i = 0; i < nr_sgls; i++) {
|
|
if (sgls[i].type != (NVME_SGL_FMT_DATA_DESC << 4)) {
|
|
iod->status = NVME_SC_SGL_INVALID_TYPE |
|
|
NVME_STATUS_DNR;
|
|
goto out;
|
|
}
|
|
iod->data_segs[n].pci_addr = le64_to_cpu(sgls[i].addr);
|
|
iod->data_segs[n].length = le32_to_cpu(sgls[i].length);
|
|
n++;
|
|
}
|
|
|
|
kfree(sgls);
|
|
}
|
|
|
|
out:
|
|
if (iod->status != NVME_SC_SUCCESS) {
|
|
kfree(sgls);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvmet_pci_epf_iod_parse_sgls(struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl;
|
|
struct nvme_sgl_desc *sgl = &iod->cmd.common.dptr.sgl;
|
|
|
|
if (sgl->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
|
|
/* Single data descriptor case. */
|
|
iod->nr_data_segs = 1;
|
|
iod->data_segs = &iod->data_seg;
|
|
iod->data_seg.pci_addr = le64_to_cpu(sgl->addr);
|
|
iod->data_seg.length = le32_to_cpu(sgl->length);
|
|
return 0;
|
|
}
|
|
|
|
return nvmet_pci_epf_iod_parse_sgl_segments(ctrl, iod);
|
|
}
|
|
|
|
static int nvmet_pci_epf_alloc_iod_data_buf(struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl;
|
|
struct nvmet_req *req = &iod->req;
|
|
struct nvmet_pci_epf_segment *seg;
|
|
struct scatterlist *sg;
|
|
int ret, i;
|
|
|
|
if (iod->data_len > ctrl->mdts) {
|
|
iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Get the PCI address segments for the command data buffer using either
|
|
* its SGLs or PRPs.
|
|
*/
|
|
if (iod->cmd.common.flags & NVME_CMD_SGL_ALL)
|
|
ret = nvmet_pci_epf_iod_parse_sgls(iod);
|
|
else
|
|
ret = nvmet_pci_epf_iod_parse_prps(iod);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Get a command buffer using SGLs matching the PCI segments. */
|
|
if (iod->nr_data_segs == 1) {
|
|
sg_init_table(&iod->data_sgl, 1);
|
|
iod->data_sgt.sgl = &iod->data_sgl;
|
|
iod->data_sgt.nents = 1;
|
|
iod->data_sgt.orig_nents = 1;
|
|
} else {
|
|
ret = sg_alloc_table(&iod->data_sgt, iod->nr_data_segs,
|
|
GFP_KERNEL);
|
|
if (ret)
|
|
goto err_nomem;
|
|
}
|
|
|
|
for_each_sgtable_sg(&iod->data_sgt, sg, i) {
|
|
seg = &iod->data_segs[i];
|
|
seg->buf = kmalloc(seg->length, GFP_KERNEL);
|
|
if (!seg->buf)
|
|
goto err_nomem;
|
|
sg_set_buf(sg, seg->buf, seg->length);
|
|
}
|
|
|
|
req->transfer_len = iod->data_len;
|
|
req->sg = iod->data_sgt.sgl;
|
|
req->sg_cnt = iod->data_sgt.nents;
|
|
|
|
return 0;
|
|
|
|
err_nomem:
|
|
iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void nvmet_pci_epf_complete_iod(struct nvmet_pci_epf_iod *iod)
|
|
{
|
|
struct nvmet_pci_epf_queue *cq = iod->cq;
|
|
unsigned long flags;
|
|
|
|
/* Print an error message for failed commands, except AENs. */
|
|
iod->status = le16_to_cpu(iod->cqe.status) >> 1;
|
|
if (iod->status && iod->cmd.common.opcode != nvme_admin_async_event)
|
|
dev_err(iod->ctrl->dev,
|
|
"CQ[%d]: Command %s (0x%x) status 0x%0x\n",
|
|
iod->sq->qid, nvmet_pci_epf_iod_name(iod),
|
|
iod->cmd.common.opcode, iod->status);
|
|
|
|
/*
|
|
* Add the command to the list of completed commands and schedule the
|
|
* CQ work.
|
|
*/
|
|
spin_lock_irqsave(&cq->lock, flags);
|
|
list_add_tail(&iod->link, &cq->list);
|
|
queue_delayed_work(system_highpri_wq, &cq->work, 0);
|
|
spin_unlock_irqrestore(&cq->lock, flags);
|
|
}
|
|
|
|
static void nvmet_pci_epf_drain_queue(struct nvmet_pci_epf_queue *queue)
|
|
{
|
|
struct nvmet_pci_epf_iod *iod;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&queue->lock, flags);
|
|
while (!list_empty(&queue->list)) {
|
|
iod = list_first_entry(&queue->list, struct nvmet_pci_epf_iod,
|
|
link);
|
|
list_del_init(&iod->link);
|
|
nvmet_pci_epf_free_iod(iod);
|
|
}
|
|
spin_unlock_irqrestore(&queue->lock, flags);
|
|
}
|
|
|
|
static int nvmet_pci_epf_add_port(struct nvmet_port *port)
|
|
{
|
|
mutex_lock(&nvmet_pci_epf_ports_mutex);
|
|
list_add_tail(&port->entry, &nvmet_pci_epf_ports);
|
|
mutex_unlock(&nvmet_pci_epf_ports_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static void nvmet_pci_epf_remove_port(struct nvmet_port *port)
|
|
{
|
|
mutex_lock(&nvmet_pci_epf_ports_mutex);
|
|
list_del_init(&port->entry);
|
|
mutex_unlock(&nvmet_pci_epf_ports_mutex);
|
|
}
|
|
|
|
static struct nvmet_port *
|
|
nvmet_pci_epf_find_port(struct nvmet_pci_epf_ctrl *ctrl, __le16 portid)
|
|
{
|
|
struct nvmet_port *p, *port = NULL;
|
|
|
|
mutex_lock(&nvmet_pci_epf_ports_mutex);
|
|
list_for_each_entry(p, &nvmet_pci_epf_ports, entry) {
|
|
if (p->disc_addr.portid == portid) {
|
|
port = p;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&nvmet_pci_epf_ports_mutex);
|
|
|
|
return port;
|
|
}
|
|
|
|
static void nvmet_pci_epf_queue_response(struct nvmet_req *req)
|
|
{
|
|
struct nvmet_pci_epf_iod *iod =
|
|
container_of(req, struct nvmet_pci_epf_iod, req);
|
|
|
|
iod->status = le16_to_cpu(req->cqe->status) >> 1;
|
|
|
|
/* If we have no data to transfer, directly complete the command. */
|
|
if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE) {
|
|
nvmet_pci_epf_complete_iod(iod);
|
|
return;
|
|
}
|
|
|
|
complete(&iod->done);
|
|
}
|
|
|
|
static u8 nvmet_pci_epf_get_mdts(const struct nvmet_ctrl *tctrl)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata;
|
|
int page_shift = NVME_CAP_MPSMIN(tctrl->cap) + 12;
|
|
|
|
return ilog2(ctrl->mdts) - page_shift;
|
|
}
|
|
|
|
static u16 nvmet_pci_epf_create_cq(struct nvmet_ctrl *tctrl,
|
|
u16 cqid, u16 flags, u16 qsize, u64 pci_addr, u16 vector)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata;
|
|
struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid];
|
|
u16 status;
|
|
int ret;
|
|
|
|
if (test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags))
|
|
return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
|
|
|
|
if (!(flags & NVME_QUEUE_PHYS_CONTIG))
|
|
return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR;
|
|
|
|
cq->pci_addr = pci_addr;
|
|
cq->qid = cqid;
|
|
cq->depth = qsize + 1;
|
|
cq->vector = vector;
|
|
cq->head = 0;
|
|
cq->tail = 0;
|
|
cq->phase = 1;
|
|
cq->db = NVME_REG_DBS + (((cqid * 2) + 1) * sizeof(u32));
|
|
nvmet_pci_epf_bar_write32(ctrl, cq->db, 0);
|
|
|
|
if (!cqid)
|
|
cq->qes = sizeof(struct nvme_completion);
|
|
else
|
|
cq->qes = ctrl->io_cqes;
|
|
cq->pci_size = cq->qes * cq->depth;
|
|
|
|
if (flags & NVME_CQ_IRQ_ENABLED) {
|
|
cq->iv = nvmet_pci_epf_add_irq_vector(ctrl, vector);
|
|
if (!cq->iv)
|
|
return NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
set_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags);
|
|
}
|
|
|
|
status = nvmet_cq_create(tctrl, &cq->nvme_cq, cqid, cq->depth);
|
|
if (status != NVME_SC_SUCCESS)
|
|
goto err;
|
|
|
|
/*
|
|
* Map the CQ PCI address space and since PCI endpoint controllers may
|
|
* return a partial mapping, check that the mapping is large enough.
|
|
*/
|
|
ret = nvmet_pci_epf_mem_map(ctrl->nvme_epf, cq->pci_addr, cq->pci_size,
|
|
&cq->pci_map);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "Failed to map CQ %u (err=%d)\n",
|
|
cq->qid, ret);
|
|
goto err_internal;
|
|
}
|
|
|
|
if (cq->pci_map.pci_size < cq->pci_size) {
|
|
dev_err(ctrl->dev, "Invalid partial mapping of queue %u\n",
|
|
cq->qid);
|
|
goto err_unmap_queue;
|
|
}
|
|
|
|
set_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags);
|
|
|
|
dev_dbg(ctrl->dev, "CQ[%u]: %u entries of %zu B, IRQ vector %u\n",
|
|
cqid, qsize, cq->qes, cq->vector);
|
|
|
|
return NVME_SC_SUCCESS;
|
|
|
|
err_unmap_queue:
|
|
nvmet_pci_epf_mem_unmap(ctrl->nvme_epf, &cq->pci_map);
|
|
err_internal:
|
|
status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
err:
|
|
if (test_and_clear_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags))
|
|
nvmet_pci_epf_remove_irq_vector(ctrl, cq->vector);
|
|
return status;
|
|
}
|
|
|
|
static u16 nvmet_pci_epf_delete_cq(struct nvmet_ctrl *tctrl, u16 cqid)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata;
|
|
struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid];
|
|
|
|
if (!test_and_clear_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags))
|
|
return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
|
|
|
|
cancel_delayed_work_sync(&cq->work);
|
|
nvmet_pci_epf_drain_queue(cq);
|
|
nvmet_pci_epf_remove_irq_vector(ctrl, cq->vector);
|
|
nvmet_pci_epf_mem_unmap(ctrl->nvme_epf, &cq->pci_map);
|
|
|
|
return NVME_SC_SUCCESS;
|
|
}
|
|
|
|
static u16 nvmet_pci_epf_create_sq(struct nvmet_ctrl *tctrl,
|
|
u16 sqid, u16 flags, u16 qsize, u64 pci_addr)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata;
|
|
struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid];
|
|
u16 status;
|
|
|
|
if (test_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags))
|
|
return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
|
|
|
|
if (!(flags & NVME_QUEUE_PHYS_CONTIG))
|
|
return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR;
|
|
|
|
sq->pci_addr = pci_addr;
|
|
sq->qid = sqid;
|
|
sq->depth = qsize + 1;
|
|
sq->head = 0;
|
|
sq->tail = 0;
|
|
sq->phase = 0;
|
|
sq->db = NVME_REG_DBS + (sqid * 2 * sizeof(u32));
|
|
nvmet_pci_epf_bar_write32(ctrl, sq->db, 0);
|
|
if (!sqid)
|
|
sq->qes = 1UL << NVME_ADM_SQES;
|
|
else
|
|
sq->qes = ctrl->io_sqes;
|
|
sq->pci_size = sq->qes * sq->depth;
|
|
|
|
status = nvmet_sq_create(tctrl, &sq->nvme_sq, sqid, sq->depth);
|
|
if (status != NVME_SC_SUCCESS)
|
|
return status;
|
|
|
|
sq->iod_wq = alloc_workqueue("sq%d_wq", WQ_UNBOUND,
|
|
min_t(int, sq->depth, WQ_MAX_ACTIVE), sqid);
|
|
if (!sq->iod_wq) {
|
|
dev_err(ctrl->dev, "Failed to create SQ %d work queue\n", sqid);
|
|
status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
|
|
goto out_destroy_sq;
|
|
}
|
|
|
|
set_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags);
|
|
|
|
dev_dbg(ctrl->dev, "SQ[%u]: %u entries of %zu B\n",
|
|
sqid, qsize, sq->qes);
|
|
|
|
return NVME_SC_SUCCESS;
|
|
|
|
out_destroy_sq:
|
|
nvmet_sq_destroy(&sq->nvme_sq);
|
|
return status;
|
|
}
|
|
|
|
static u16 nvmet_pci_epf_delete_sq(struct nvmet_ctrl *tctrl, u16 sqid)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata;
|
|
struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid];
|
|
|
|
if (!test_and_clear_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags))
|
|
return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
|
|
|
|
destroy_workqueue(sq->iod_wq);
|
|
sq->iod_wq = NULL;
|
|
|
|
nvmet_pci_epf_drain_queue(sq);
|
|
|
|
if (sq->nvme_sq.ctrl)
|
|
nvmet_sq_destroy(&sq->nvme_sq);
|
|
|
|
return NVME_SC_SUCCESS;
|
|
}
|
|
|
|
static u16 nvmet_pci_epf_get_feat(const struct nvmet_ctrl *tctrl,
|
|
u8 feat, void *data)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata;
|
|
struct nvmet_feat_arbitration *arb;
|
|
struct nvmet_feat_irq_coalesce *irqc;
|
|
struct nvmet_feat_irq_config *irqcfg;
|
|
struct nvmet_pci_epf_irq_vector *iv;
|
|
u16 status;
|
|
|
|
switch (feat) {
|
|
case NVME_FEAT_ARBITRATION:
|
|
arb = data;
|
|
if (!ctrl->sq_ab)
|
|
arb->ab = 0x7;
|
|
else
|
|
arb->ab = ilog2(ctrl->sq_ab);
|
|
return NVME_SC_SUCCESS;
|
|
|
|
case NVME_FEAT_IRQ_COALESCE:
|
|
irqc = data;
|
|
irqc->thr = ctrl->irq_vector_threshold;
|
|
irqc->time = 0;
|
|
return NVME_SC_SUCCESS;
|
|
|
|
case NVME_FEAT_IRQ_CONFIG:
|
|
irqcfg = data;
|
|
mutex_lock(&ctrl->irq_lock);
|
|
iv = nvmet_pci_epf_find_irq_vector(ctrl, irqcfg->iv);
|
|
if (iv) {
|
|
irqcfg->cd = iv->cd;
|
|
status = NVME_SC_SUCCESS;
|
|
} else {
|
|
status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
|
|
}
|
|
mutex_unlock(&ctrl->irq_lock);
|
|
return status;
|
|
|
|
default:
|
|
return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
|
|
}
|
|
}
|
|
|
|
static u16 nvmet_pci_epf_set_feat(const struct nvmet_ctrl *tctrl,
|
|
u8 feat, void *data)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata;
|
|
struct nvmet_feat_arbitration *arb;
|
|
struct nvmet_feat_irq_coalesce *irqc;
|
|
struct nvmet_feat_irq_config *irqcfg;
|
|
struct nvmet_pci_epf_irq_vector *iv;
|
|
u16 status;
|
|
|
|
switch (feat) {
|
|
case NVME_FEAT_ARBITRATION:
|
|
arb = data;
|
|
if (arb->ab == 0x7)
|
|
ctrl->sq_ab = 0;
|
|
else
|
|
ctrl->sq_ab = 1 << arb->ab;
|
|
return NVME_SC_SUCCESS;
|
|
|
|
case NVME_FEAT_IRQ_COALESCE:
|
|
/*
|
|
* Since we do not implement precise IRQ coalescing timing,
|
|
* ignore the time field.
|
|
*/
|
|
irqc = data;
|
|
ctrl->irq_vector_threshold = irqc->thr + 1;
|
|
return NVME_SC_SUCCESS;
|
|
|
|
case NVME_FEAT_IRQ_CONFIG:
|
|
irqcfg = data;
|
|
mutex_lock(&ctrl->irq_lock);
|
|
iv = nvmet_pci_epf_find_irq_vector(ctrl, irqcfg->iv);
|
|
if (iv) {
|
|
iv->cd = irqcfg->cd;
|
|
status = NVME_SC_SUCCESS;
|
|
} else {
|
|
status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
|
|
}
|
|
mutex_unlock(&ctrl->irq_lock);
|
|
return status;
|
|
|
|
default:
|
|
return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
|
|
}
|
|
}
|
|
|
|
static const struct nvmet_fabrics_ops nvmet_pci_epf_fabrics_ops = {
|
|
.owner = THIS_MODULE,
|
|
.type = NVMF_TRTYPE_PCI,
|
|
.add_port = nvmet_pci_epf_add_port,
|
|
.remove_port = nvmet_pci_epf_remove_port,
|
|
.queue_response = nvmet_pci_epf_queue_response,
|
|
.get_mdts = nvmet_pci_epf_get_mdts,
|
|
.create_cq = nvmet_pci_epf_create_cq,
|
|
.delete_cq = nvmet_pci_epf_delete_cq,
|
|
.create_sq = nvmet_pci_epf_create_sq,
|
|
.delete_sq = nvmet_pci_epf_delete_sq,
|
|
.get_feature = nvmet_pci_epf_get_feat,
|
|
.set_feature = nvmet_pci_epf_set_feat,
|
|
};
|
|
|
|
static void nvmet_pci_epf_cq_work(struct work_struct *work);
|
|
|
|
static void nvmet_pci_epf_init_queue(struct nvmet_pci_epf_ctrl *ctrl,
|
|
unsigned int qid, bool sq)
|
|
{
|
|
struct nvmet_pci_epf_queue *queue;
|
|
|
|
if (sq) {
|
|
queue = &ctrl->sq[qid];
|
|
set_bit(NVMET_PCI_EPF_Q_IS_SQ, &queue->flags);
|
|
} else {
|
|
queue = &ctrl->cq[qid];
|
|
INIT_DELAYED_WORK(&queue->work, nvmet_pci_epf_cq_work);
|
|
}
|
|
queue->ctrl = ctrl;
|
|
queue->qid = qid;
|
|
spin_lock_init(&queue->lock);
|
|
INIT_LIST_HEAD(&queue->list);
|
|
}
|
|
|
|
static int nvmet_pci_epf_alloc_queues(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
unsigned int qid;
|
|
|
|
ctrl->sq = kcalloc(ctrl->nr_queues,
|
|
sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL);
|
|
if (!ctrl->sq)
|
|
return -ENOMEM;
|
|
|
|
ctrl->cq = kcalloc(ctrl->nr_queues,
|
|
sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL);
|
|
if (!ctrl->cq) {
|
|
kfree(ctrl->sq);
|
|
ctrl->sq = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (qid = 0; qid < ctrl->nr_queues; qid++) {
|
|
nvmet_pci_epf_init_queue(ctrl, qid, true);
|
|
nvmet_pci_epf_init_queue(ctrl, qid, false);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvmet_pci_epf_free_queues(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
kfree(ctrl->sq);
|
|
ctrl->sq = NULL;
|
|
kfree(ctrl->cq);
|
|
ctrl->cq = NULL;
|
|
}
|
|
|
|
static void nvmet_pci_epf_exec_iod_work(struct work_struct *work)
|
|
{
|
|
struct nvmet_pci_epf_iod *iod =
|
|
container_of(work, struct nvmet_pci_epf_iod, work);
|
|
struct nvmet_req *req = &iod->req;
|
|
int ret;
|
|
|
|
if (!iod->ctrl->link_up) {
|
|
nvmet_pci_epf_free_iod(iod);
|
|
return;
|
|
}
|
|
|
|
if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &iod->sq->flags)) {
|
|
iod->status = NVME_SC_QID_INVALID | NVME_STATUS_DNR;
|
|
goto complete;
|
|
}
|
|
|
|
if (!nvmet_req_init(req, &iod->cq->nvme_cq, &iod->sq->nvme_sq,
|
|
&nvmet_pci_epf_fabrics_ops))
|
|
goto complete;
|
|
|
|
iod->data_len = nvmet_req_transfer_len(req);
|
|
if (iod->data_len) {
|
|
/*
|
|
* Get the data DMA transfer direction. Here "device" means the
|
|
* PCI root-complex host.
|
|
*/
|
|
if (nvme_is_write(&iod->cmd))
|
|
iod->dma_dir = DMA_FROM_DEVICE;
|
|
else
|
|
iod->dma_dir = DMA_TO_DEVICE;
|
|
|
|
/*
|
|
* Setup the command data buffer and get the command data from
|
|
* the host if needed.
|
|
*/
|
|
ret = nvmet_pci_epf_alloc_iod_data_buf(iod);
|
|
if (!ret && iod->dma_dir == DMA_FROM_DEVICE)
|
|
ret = nvmet_pci_epf_transfer_iod_data(iod);
|
|
if (ret) {
|
|
nvmet_req_uninit(req);
|
|
goto complete;
|
|
}
|
|
}
|
|
|
|
req->execute(req);
|
|
|
|
/*
|
|
* If we do not have data to transfer after the command execution
|
|
* finishes, nvmet_pci_epf_queue_response() will complete the command
|
|
* directly. No need to wait for the completion in this case.
|
|
*/
|
|
if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE)
|
|
return;
|
|
|
|
wait_for_completion(&iod->done);
|
|
|
|
if (iod->status == NVME_SC_SUCCESS) {
|
|
WARN_ON_ONCE(!iod->data_len || iod->dma_dir != DMA_TO_DEVICE);
|
|
nvmet_pci_epf_transfer_iod_data(iod);
|
|
}
|
|
|
|
complete:
|
|
nvmet_pci_epf_complete_iod(iod);
|
|
}
|
|
|
|
static int nvmet_pci_epf_process_sq(struct nvmet_pci_epf_ctrl *ctrl,
|
|
struct nvmet_pci_epf_queue *sq)
|
|
{
|
|
struct nvmet_pci_epf_iod *iod;
|
|
int ret, n = 0;
|
|
|
|
sq->tail = nvmet_pci_epf_bar_read32(ctrl, sq->db);
|
|
while (sq->head != sq->tail && (!ctrl->sq_ab || n < ctrl->sq_ab)) {
|
|
iod = nvmet_pci_epf_alloc_iod(sq);
|
|
if (!iod)
|
|
break;
|
|
|
|
/* Get the NVMe command submitted by the host. */
|
|
ret = nvmet_pci_epf_transfer(ctrl, &iod->cmd,
|
|
sq->pci_addr + sq->head * sq->qes,
|
|
sq->qes, DMA_FROM_DEVICE);
|
|
if (ret) {
|
|
/* Not much we can do... */
|
|
nvmet_pci_epf_free_iod(iod);
|
|
break;
|
|
}
|
|
|
|
dev_dbg(ctrl->dev, "SQ[%u]: head %u, tail %u, command %s\n",
|
|
sq->qid, sq->head, sq->tail,
|
|
nvmet_pci_epf_iod_name(iod));
|
|
|
|
sq->head++;
|
|
if (sq->head == sq->depth)
|
|
sq->head = 0;
|
|
n++;
|
|
|
|
queue_work_on(WORK_CPU_UNBOUND, sq->iod_wq, &iod->work);
|
|
|
|
sq->tail = nvmet_pci_epf_bar_read32(ctrl, sq->db);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static void nvmet_pci_epf_poll_sqs_work(struct work_struct *work)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl =
|
|
container_of(work, struct nvmet_pci_epf_ctrl, poll_sqs.work);
|
|
struct nvmet_pci_epf_queue *sq;
|
|
unsigned long limit = jiffies;
|
|
unsigned long last = 0;
|
|
int i, nr_sqs;
|
|
|
|
while (ctrl->link_up && ctrl->enabled) {
|
|
nr_sqs = 0;
|
|
/* Do round-robin arbitration. */
|
|
for (i = 0; i < ctrl->nr_queues; i++) {
|
|
sq = &ctrl->sq[i];
|
|
if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags))
|
|
continue;
|
|
if (nvmet_pci_epf_process_sq(ctrl, sq))
|
|
nr_sqs++;
|
|
}
|
|
|
|
/*
|
|
* If we have been running for a while, reschedule to let other
|
|
* tasks run and to avoid RCU stalls.
|
|
*/
|
|
if (time_is_before_jiffies(limit + secs_to_jiffies(1))) {
|
|
cond_resched();
|
|
limit = jiffies;
|
|
continue;
|
|
}
|
|
|
|
if (nr_sqs) {
|
|
last = jiffies;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we have not received any command on any queue for more
|
|
* than NVMET_PCI_EPF_SQ_POLL_IDLE, assume we are idle and
|
|
* reschedule. This avoids "burning" a CPU when the controller
|
|
* is idle for a long time.
|
|
*/
|
|
if (time_is_before_jiffies(last + NVMET_PCI_EPF_SQ_POLL_IDLE))
|
|
break;
|
|
|
|
cpu_relax();
|
|
}
|
|
|
|
schedule_delayed_work(&ctrl->poll_sqs, NVMET_PCI_EPF_SQ_POLL_INTERVAL);
|
|
}
|
|
|
|
static void nvmet_pci_epf_cq_work(struct work_struct *work)
|
|
{
|
|
struct nvmet_pci_epf_queue *cq =
|
|
container_of(work, struct nvmet_pci_epf_queue, work.work);
|
|
struct nvmet_pci_epf_ctrl *ctrl = cq->ctrl;
|
|
struct nvme_completion *cqe;
|
|
struct nvmet_pci_epf_iod *iod;
|
|
unsigned long flags;
|
|
int ret = 0, n = 0;
|
|
|
|
while (test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags) && ctrl->link_up) {
|
|
|
|
/* Check that the CQ is not full. */
|
|
cq->head = nvmet_pci_epf_bar_read32(ctrl, cq->db);
|
|
if (cq->head == cq->tail + 1) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
spin_lock_irqsave(&cq->lock, flags);
|
|
iod = list_first_entry_or_null(&cq->list,
|
|
struct nvmet_pci_epf_iod, link);
|
|
if (iod)
|
|
list_del_init(&iod->link);
|
|
spin_unlock_irqrestore(&cq->lock, flags);
|
|
|
|
if (!iod)
|
|
break;
|
|
|
|
/* Post the IOD completion entry. */
|
|
cqe = &iod->cqe;
|
|
cqe->status = cpu_to_le16((iod->status << 1) | cq->phase);
|
|
|
|
dev_dbg(ctrl->dev,
|
|
"CQ[%u]: %s status 0x%x, result 0x%llx, head %u, tail %u, phase %u\n",
|
|
cq->qid, nvmet_pci_epf_iod_name(iod), iod->status,
|
|
le64_to_cpu(cqe->result.u64), cq->head, cq->tail,
|
|
cq->phase);
|
|
|
|
memcpy_toio(cq->pci_map.virt_addr + cq->tail * cq->qes,
|
|
cqe, cq->qes);
|
|
|
|
cq->tail++;
|
|
if (cq->tail >= cq->depth) {
|
|
cq->tail = 0;
|
|
cq->phase ^= 1;
|
|
}
|
|
|
|
nvmet_pci_epf_free_iod(iod);
|
|
|
|
/* Signal the host. */
|
|
nvmet_pci_epf_raise_irq(ctrl, cq, false);
|
|
n++;
|
|
}
|
|
|
|
/*
|
|
* We do not support precise IRQ coalescing time (100ns units as per
|
|
* NVMe specifications). So if we have posted completion entries without
|
|
* reaching the interrupt coalescing threshold, raise an interrupt.
|
|
*/
|
|
if (n)
|
|
nvmet_pci_epf_raise_irq(ctrl, cq, true);
|
|
|
|
if (ret < 0)
|
|
queue_delayed_work(system_highpri_wq, &cq->work,
|
|
NVMET_PCI_EPF_CQ_RETRY_INTERVAL);
|
|
}
|
|
|
|
static int nvmet_pci_epf_enable_ctrl(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
u64 pci_addr, asq, acq;
|
|
u32 aqa;
|
|
u16 status, qsize;
|
|
|
|
if (ctrl->enabled)
|
|
return 0;
|
|
|
|
dev_info(ctrl->dev, "Enabling controller\n");
|
|
|
|
ctrl->mps_shift = nvmet_cc_mps(ctrl->cc) + 12;
|
|
ctrl->mps = 1UL << ctrl->mps_shift;
|
|
ctrl->mps_mask = ctrl->mps - 1;
|
|
|
|
ctrl->io_sqes = 1UL << nvmet_cc_iosqes(ctrl->cc);
|
|
if (ctrl->io_sqes < sizeof(struct nvme_command)) {
|
|
dev_err(ctrl->dev, "Unsupported I/O SQES %zu (need %zu)\n",
|
|
ctrl->io_sqes, sizeof(struct nvme_command));
|
|
goto err;
|
|
}
|
|
|
|
ctrl->io_cqes = 1UL << nvmet_cc_iocqes(ctrl->cc);
|
|
if (ctrl->io_cqes < sizeof(struct nvme_completion)) {
|
|
dev_err(ctrl->dev, "Unsupported I/O CQES %zu (need %zu)\n",
|
|
ctrl->io_sqes, sizeof(struct nvme_completion));
|
|
goto err;
|
|
}
|
|
|
|
/* Create the admin queue. */
|
|
aqa = nvmet_pci_epf_bar_read32(ctrl, NVME_REG_AQA);
|
|
asq = nvmet_pci_epf_bar_read64(ctrl, NVME_REG_ASQ);
|
|
acq = nvmet_pci_epf_bar_read64(ctrl, NVME_REG_ACQ);
|
|
|
|
qsize = (aqa & 0x0fff0000) >> 16;
|
|
pci_addr = acq & GENMASK_ULL(63, 12);
|
|
status = nvmet_pci_epf_create_cq(ctrl->tctrl, 0,
|
|
NVME_CQ_IRQ_ENABLED | NVME_QUEUE_PHYS_CONTIG,
|
|
qsize, pci_addr, 0);
|
|
if (status != NVME_SC_SUCCESS) {
|
|
dev_err(ctrl->dev, "Failed to create admin completion queue\n");
|
|
goto err;
|
|
}
|
|
|
|
qsize = aqa & 0x00000fff;
|
|
pci_addr = asq & GENMASK_ULL(63, 12);
|
|
status = nvmet_pci_epf_create_sq(ctrl->tctrl, 0, NVME_QUEUE_PHYS_CONTIG,
|
|
qsize, pci_addr);
|
|
if (status != NVME_SC_SUCCESS) {
|
|
dev_err(ctrl->dev, "Failed to create admin submission queue\n");
|
|
nvmet_pci_epf_delete_cq(ctrl->tctrl, 0);
|
|
goto err;
|
|
}
|
|
|
|
ctrl->sq_ab = NVMET_PCI_EPF_SQ_AB;
|
|
ctrl->irq_vector_threshold = NVMET_PCI_EPF_IV_THRESHOLD;
|
|
ctrl->enabled = true;
|
|
ctrl->csts = NVME_CSTS_RDY;
|
|
|
|
/* Start polling the controller SQs. */
|
|
schedule_delayed_work(&ctrl->poll_sqs, 0);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
ctrl->csts = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void nvmet_pci_epf_disable_ctrl(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
int qid;
|
|
|
|
if (!ctrl->enabled)
|
|
return;
|
|
|
|
dev_info(ctrl->dev, "Disabling controller\n");
|
|
|
|
ctrl->enabled = false;
|
|
cancel_delayed_work_sync(&ctrl->poll_sqs);
|
|
|
|
/* Delete all I/O queues first. */
|
|
for (qid = 1; qid < ctrl->nr_queues; qid++)
|
|
nvmet_pci_epf_delete_sq(ctrl->tctrl, qid);
|
|
|
|
for (qid = 1; qid < ctrl->nr_queues; qid++)
|
|
nvmet_pci_epf_delete_cq(ctrl->tctrl, qid);
|
|
|
|
/* Delete the admin queue last. */
|
|
nvmet_pci_epf_delete_sq(ctrl->tctrl, 0);
|
|
nvmet_pci_epf_delete_cq(ctrl->tctrl, 0);
|
|
|
|
ctrl->csts &= ~NVME_CSTS_RDY;
|
|
}
|
|
|
|
static void nvmet_pci_epf_poll_cc_work(struct work_struct *work)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl =
|
|
container_of(work, struct nvmet_pci_epf_ctrl, poll_cc.work);
|
|
u32 old_cc, new_cc;
|
|
int ret;
|
|
|
|
if (!ctrl->tctrl)
|
|
return;
|
|
|
|
old_cc = ctrl->cc;
|
|
new_cc = nvmet_pci_epf_bar_read32(ctrl, NVME_REG_CC);
|
|
if (new_cc == old_cc)
|
|
goto reschedule_work;
|
|
|
|
ctrl->cc = new_cc;
|
|
|
|
if (nvmet_cc_en(new_cc) && !nvmet_cc_en(old_cc)) {
|
|
ret = nvmet_pci_epf_enable_ctrl(ctrl);
|
|
if (ret)
|
|
goto reschedule_work;
|
|
}
|
|
|
|
if (!nvmet_cc_en(new_cc) && nvmet_cc_en(old_cc))
|
|
nvmet_pci_epf_disable_ctrl(ctrl);
|
|
|
|
if (nvmet_cc_shn(new_cc) && !nvmet_cc_shn(old_cc)) {
|
|
nvmet_pci_epf_disable_ctrl(ctrl);
|
|
ctrl->csts |= NVME_CSTS_SHST_CMPLT;
|
|
}
|
|
|
|
if (!nvmet_cc_shn(new_cc) && nvmet_cc_shn(old_cc))
|
|
ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
|
|
|
|
nvmet_update_cc(ctrl->tctrl, ctrl->cc);
|
|
nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CSTS, ctrl->csts);
|
|
|
|
reschedule_work:
|
|
schedule_delayed_work(&ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL);
|
|
}
|
|
|
|
static void nvmet_pci_epf_init_bar(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
struct nvmet_ctrl *tctrl = ctrl->tctrl;
|
|
|
|
ctrl->bar = ctrl->nvme_epf->reg_bar;
|
|
|
|
/* Copy the target controller capabilities as a base. */
|
|
ctrl->cap = tctrl->cap;
|
|
|
|
/* Contiguous Queues Required (CQR). */
|
|
ctrl->cap |= 0x1ULL << 16;
|
|
|
|
/* Set Doorbell stride to 4B (DSTRB). */
|
|
ctrl->cap &= ~GENMASK_ULL(35, 32);
|
|
|
|
/* Clear NVM Subsystem Reset Supported (NSSRS). */
|
|
ctrl->cap &= ~(0x1ULL << 36);
|
|
|
|
/* Clear Boot Partition Support (BPS). */
|
|
ctrl->cap &= ~(0x1ULL << 45);
|
|
|
|
/* Clear Persistent Memory Region Supported (PMRS). */
|
|
ctrl->cap &= ~(0x1ULL << 56);
|
|
|
|
/* Clear Controller Memory Buffer Supported (CMBS). */
|
|
ctrl->cap &= ~(0x1ULL << 57);
|
|
|
|
/* Controller configuration. */
|
|
ctrl->cc = tctrl->cc & (~NVME_CC_ENABLE);
|
|
|
|
/* Controller status. */
|
|
ctrl->csts = ctrl->tctrl->csts;
|
|
|
|
nvmet_pci_epf_bar_write64(ctrl, NVME_REG_CAP, ctrl->cap);
|
|
nvmet_pci_epf_bar_write32(ctrl, NVME_REG_VS, tctrl->subsys->ver);
|
|
nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CSTS, ctrl->csts);
|
|
nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CC, ctrl->cc);
|
|
}
|
|
|
|
static int nvmet_pci_epf_create_ctrl(struct nvmet_pci_epf *nvme_epf,
|
|
unsigned int max_nr_queues)
|
|
{
|
|
struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl;
|
|
struct nvmet_alloc_ctrl_args args = {};
|
|
char hostnqn[NVMF_NQN_SIZE];
|
|
uuid_t id;
|
|
int ret;
|
|
|
|
memset(ctrl, 0, sizeof(*ctrl));
|
|
ctrl->dev = &nvme_epf->epf->dev;
|
|
mutex_init(&ctrl->irq_lock);
|
|
ctrl->nvme_epf = nvme_epf;
|
|
ctrl->mdts = nvme_epf->mdts_kb * SZ_1K;
|
|
INIT_DELAYED_WORK(&ctrl->poll_cc, nvmet_pci_epf_poll_cc_work);
|
|
INIT_DELAYED_WORK(&ctrl->poll_sqs, nvmet_pci_epf_poll_sqs_work);
|
|
|
|
ret = mempool_init_kmalloc_pool(&ctrl->iod_pool,
|
|
max_nr_queues * NVMET_MAX_QUEUE_SIZE,
|
|
sizeof(struct nvmet_pci_epf_iod));
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "Failed to initialize IOD mempool\n");
|
|
return ret;
|
|
}
|
|
|
|
ctrl->port = nvmet_pci_epf_find_port(ctrl, nvme_epf->portid);
|
|
if (!ctrl->port) {
|
|
dev_err(ctrl->dev, "Port not found\n");
|
|
ret = -EINVAL;
|
|
goto out_mempool_exit;
|
|
}
|
|
|
|
/* Create the target controller. */
|
|
uuid_gen(&id);
|
|
snprintf(hostnqn, NVMF_NQN_SIZE,
|
|
"nqn.2014-08.org.nvmexpress:uuid:%pUb", &id);
|
|
args.port = ctrl->port;
|
|
args.subsysnqn = nvme_epf->subsysnqn;
|
|
memset(&id, 0, sizeof(uuid_t));
|
|
args.hostid = &id;
|
|
args.hostnqn = hostnqn;
|
|
args.ops = &nvmet_pci_epf_fabrics_ops;
|
|
|
|
ctrl->tctrl = nvmet_alloc_ctrl(&args);
|
|
if (!ctrl->tctrl) {
|
|
dev_err(ctrl->dev, "Failed to create target controller\n");
|
|
ret = -ENOMEM;
|
|
goto out_mempool_exit;
|
|
}
|
|
ctrl->tctrl->drvdata = ctrl;
|
|
|
|
/* We do not support protection information for now. */
|
|
if (ctrl->tctrl->pi_support) {
|
|
dev_err(ctrl->dev,
|
|
"Protection information (PI) is not supported\n");
|
|
ret = -ENOTSUPP;
|
|
goto out_put_ctrl;
|
|
}
|
|
|
|
/* Allocate our queues, up to the maximum number. */
|
|
ctrl->nr_queues = min(ctrl->tctrl->subsys->max_qid + 1, max_nr_queues);
|
|
ret = nvmet_pci_epf_alloc_queues(ctrl);
|
|
if (ret)
|
|
goto out_put_ctrl;
|
|
|
|
/*
|
|
* Allocate the IRQ vectors descriptors. We cannot have more than the
|
|
* maximum number of queues.
|
|
*/
|
|
ret = nvmet_pci_epf_alloc_irq_vectors(ctrl);
|
|
if (ret)
|
|
goto out_free_queues;
|
|
|
|
dev_info(ctrl->dev,
|
|
"New PCI ctrl \"%s\", %u I/O queues, mdts %u B\n",
|
|
ctrl->tctrl->subsys->subsysnqn, ctrl->nr_queues - 1,
|
|
ctrl->mdts);
|
|
|
|
/* Initialize BAR 0 using the target controller CAP. */
|
|
nvmet_pci_epf_init_bar(ctrl);
|
|
|
|
return 0;
|
|
|
|
out_free_queues:
|
|
nvmet_pci_epf_free_queues(ctrl);
|
|
out_put_ctrl:
|
|
nvmet_ctrl_put(ctrl->tctrl);
|
|
ctrl->tctrl = NULL;
|
|
out_mempool_exit:
|
|
mempool_exit(&ctrl->iod_pool);
|
|
return ret;
|
|
}
|
|
|
|
static void nvmet_pci_epf_start_ctrl(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
schedule_delayed_work(&ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL);
|
|
}
|
|
|
|
static void nvmet_pci_epf_stop_ctrl(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
cancel_delayed_work_sync(&ctrl->poll_cc);
|
|
|
|
nvmet_pci_epf_disable_ctrl(ctrl);
|
|
}
|
|
|
|
static void nvmet_pci_epf_destroy_ctrl(struct nvmet_pci_epf_ctrl *ctrl)
|
|
{
|
|
if (!ctrl->tctrl)
|
|
return;
|
|
|
|
dev_info(ctrl->dev, "Destroying PCI ctrl \"%s\"\n",
|
|
ctrl->tctrl->subsys->subsysnqn);
|
|
|
|
nvmet_pci_epf_stop_ctrl(ctrl);
|
|
|
|
nvmet_pci_epf_free_queues(ctrl);
|
|
nvmet_pci_epf_free_irq_vectors(ctrl);
|
|
|
|
nvmet_ctrl_put(ctrl->tctrl);
|
|
ctrl->tctrl = NULL;
|
|
|
|
mempool_exit(&ctrl->iod_pool);
|
|
}
|
|
|
|
static int nvmet_pci_epf_configure_bar(struct nvmet_pci_epf *nvme_epf)
|
|
{
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
const struct pci_epc_features *epc_features = nvme_epf->epc_features;
|
|
size_t reg_size, reg_bar_size;
|
|
size_t msix_table_size = 0;
|
|
|
|
/*
|
|
* The first free BAR will be our register BAR and per NVMe
|
|
* specifications, it must be BAR 0.
|
|
*/
|
|
if (pci_epc_get_first_free_bar(epc_features) != BAR_0) {
|
|
dev_err(&epf->dev, "BAR 0 is not free\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* While NVMe PCIe Transport Specification 1.1, section 2.1.10, claims
|
|
* that the BAR0 type is Implementation Specific, in NVMe 1.1, the type
|
|
* is required to be 64-bit. Thus, for interoperability, always set the
|
|
* type to 64-bit. In the rare case that the PCI EPC does not support
|
|
* configuring BAR0 as 64-bit, the call to pci_epc_set_bar() will fail,
|
|
* and we will return failure back to the user.
|
|
*/
|
|
epf->bar[BAR_0].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
|
|
|
|
/*
|
|
* Calculate the size of the register bar: NVMe registers first with
|
|
* enough space for the doorbells, followed by the MSI-X table
|
|
* if supported.
|
|
*/
|
|
reg_size = NVME_REG_DBS + (NVMET_NR_QUEUES * 2 * sizeof(u32));
|
|
reg_size = ALIGN(reg_size, 8);
|
|
|
|
if (epc_features->msix_capable) {
|
|
size_t pba_size;
|
|
|
|
msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
|
|
nvme_epf->msix_table_offset = reg_size;
|
|
pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
|
|
|
|
reg_size += msix_table_size + pba_size;
|
|
}
|
|
|
|
if (epc_features->bar[BAR_0].type == BAR_FIXED) {
|
|
if (reg_size > epc_features->bar[BAR_0].fixed_size) {
|
|
dev_err(&epf->dev,
|
|
"BAR 0 size %llu B too small, need %zu B\n",
|
|
epc_features->bar[BAR_0].fixed_size,
|
|
reg_size);
|
|
return -ENOMEM;
|
|
}
|
|
reg_bar_size = epc_features->bar[BAR_0].fixed_size;
|
|
} else {
|
|
reg_bar_size = ALIGN(reg_size, max(epc_features->align, 4096));
|
|
}
|
|
|
|
nvme_epf->reg_bar = pci_epf_alloc_space(epf, reg_bar_size, BAR_0,
|
|
epc_features, PRIMARY_INTERFACE);
|
|
if (!nvme_epf->reg_bar) {
|
|
dev_err(&epf->dev, "Failed to allocate BAR 0\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(nvme_epf->reg_bar, 0, reg_bar_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvmet_pci_epf_free_bar(struct nvmet_pci_epf *nvme_epf)
|
|
{
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
|
|
if (!nvme_epf->reg_bar)
|
|
return;
|
|
|
|
pci_epf_free_space(epf, nvme_epf->reg_bar, BAR_0, PRIMARY_INTERFACE);
|
|
nvme_epf->reg_bar = NULL;
|
|
}
|
|
|
|
static void nvmet_pci_epf_clear_bar(struct nvmet_pci_epf *nvme_epf)
|
|
{
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
|
|
pci_epc_clear_bar(epf->epc, epf->func_no, epf->vfunc_no,
|
|
&epf->bar[BAR_0]);
|
|
}
|
|
|
|
static int nvmet_pci_epf_init_irq(struct nvmet_pci_epf *nvme_epf)
|
|
{
|
|
const struct pci_epc_features *epc_features = nvme_epf->epc_features;
|
|
struct pci_epf *epf = nvme_epf->epf;
|
|
int ret;
|
|
|
|
/* Enable MSI-X if supported, otherwise, use MSI. */
|
|
if (epc_features->msix_capable && epf->msix_interrupts) {
|
|
ret = pci_epc_set_msix(epf->epc, epf->func_no, epf->vfunc_no,
|
|
epf->msix_interrupts, BAR_0,
|
|
nvme_epf->msix_table_offset);
|
|
if (ret) {
|
|
dev_err(&epf->dev, "Failed to configure MSI-X\n");
|
|
return ret;
|
|
}
|
|
|
|
nvme_epf->nr_vectors = epf->msix_interrupts;
|
|
nvme_epf->irq_type = PCI_IRQ_MSIX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (epc_features->msi_capable && epf->msi_interrupts) {
|
|
ret = pci_epc_set_msi(epf->epc, epf->func_no, epf->vfunc_no,
|
|
epf->msi_interrupts);
|
|
if (ret) {
|
|
dev_err(&epf->dev, "Failed to configure MSI\n");
|
|
return ret;
|
|
}
|
|
|
|
nvme_epf->nr_vectors = epf->msi_interrupts;
|
|
nvme_epf->irq_type = PCI_IRQ_MSI;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* MSI and MSI-X are not supported: fall back to INTx. */
|
|
nvme_epf->nr_vectors = 1;
|
|
nvme_epf->irq_type = PCI_IRQ_INTX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvmet_pci_epf_epc_init(struct pci_epf *epf)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf);
|
|
const struct pci_epc_features *epc_features = nvme_epf->epc_features;
|
|
struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl;
|
|
unsigned int max_nr_queues = NVMET_NR_QUEUES;
|
|
int ret;
|
|
|
|
/* For now, do not support virtual functions. */
|
|
if (epf->vfunc_no > 0) {
|
|
dev_err(&epf->dev, "Virtual functions are not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Cap the maximum number of queues we can support on the controller
|
|
* with the number of IRQs we can use.
|
|
*/
|
|
if (epc_features->msix_capable && epf->msix_interrupts) {
|
|
dev_info(&epf->dev,
|
|
"PCI endpoint controller supports MSI-X, %u vectors\n",
|
|
epf->msix_interrupts);
|
|
max_nr_queues = min(max_nr_queues, epf->msix_interrupts);
|
|
} else if (epc_features->msi_capable && epf->msi_interrupts) {
|
|
dev_info(&epf->dev,
|
|
"PCI endpoint controller supports MSI, %u vectors\n",
|
|
epf->msi_interrupts);
|
|
max_nr_queues = min(max_nr_queues, epf->msi_interrupts);
|
|
}
|
|
|
|
if (max_nr_queues < 2) {
|
|
dev_err(&epf->dev, "Invalid maximum number of queues %u\n",
|
|
max_nr_queues);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Create the target controller. */
|
|
ret = nvmet_pci_epf_create_ctrl(nvme_epf, max_nr_queues);
|
|
if (ret) {
|
|
dev_err(&epf->dev,
|
|
"Failed to create NVMe PCI target controller (err=%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Set device ID, class, etc. */
|
|
epf->header->vendorid = ctrl->tctrl->subsys->vendor_id;
|
|
epf->header->subsys_vendor_id = ctrl->tctrl->subsys->subsys_vendor_id;
|
|
ret = pci_epc_write_header(epf->epc, epf->func_no, epf->vfunc_no,
|
|
epf->header);
|
|
if (ret) {
|
|
dev_err(&epf->dev,
|
|
"Failed to write configuration header (err=%d)\n", ret);
|
|
goto out_destroy_ctrl;
|
|
}
|
|
|
|
ret = pci_epc_set_bar(epf->epc, epf->func_no, epf->vfunc_no,
|
|
&epf->bar[BAR_0]);
|
|
if (ret) {
|
|
dev_err(&epf->dev, "Failed to set BAR 0 (err=%d)\n", ret);
|
|
goto out_destroy_ctrl;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts and start polling the controller BAR if we do not
|
|
* have a link up notifier.
|
|
*/
|
|
ret = nvmet_pci_epf_init_irq(nvme_epf);
|
|
if (ret)
|
|
goto out_clear_bar;
|
|
|
|
if (!epc_features->linkup_notifier) {
|
|
ctrl->link_up = true;
|
|
nvmet_pci_epf_start_ctrl(&nvme_epf->ctrl);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_clear_bar:
|
|
nvmet_pci_epf_clear_bar(nvme_epf);
|
|
out_destroy_ctrl:
|
|
nvmet_pci_epf_destroy_ctrl(&nvme_epf->ctrl);
|
|
return ret;
|
|
}
|
|
|
|
static void nvmet_pci_epf_epc_deinit(struct pci_epf *epf)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf);
|
|
struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl;
|
|
|
|
ctrl->link_up = false;
|
|
nvmet_pci_epf_destroy_ctrl(ctrl);
|
|
|
|
nvmet_pci_epf_deinit_dma(nvme_epf);
|
|
nvmet_pci_epf_clear_bar(nvme_epf);
|
|
}
|
|
|
|
static int nvmet_pci_epf_link_up(struct pci_epf *epf)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf);
|
|
struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl;
|
|
|
|
ctrl->link_up = true;
|
|
nvmet_pci_epf_start_ctrl(ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvmet_pci_epf_link_down(struct pci_epf *epf)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf);
|
|
struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl;
|
|
|
|
ctrl->link_up = false;
|
|
nvmet_pci_epf_stop_ctrl(ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct pci_epc_event_ops nvmet_pci_epf_event_ops = {
|
|
.epc_init = nvmet_pci_epf_epc_init,
|
|
.epc_deinit = nvmet_pci_epf_epc_deinit,
|
|
.link_up = nvmet_pci_epf_link_up,
|
|
.link_down = nvmet_pci_epf_link_down,
|
|
};
|
|
|
|
static int nvmet_pci_epf_bind(struct pci_epf *epf)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf);
|
|
const struct pci_epc_features *epc_features;
|
|
struct pci_epc *epc = epf->epc;
|
|
int ret;
|
|
|
|
if (WARN_ON_ONCE(!epc))
|
|
return -EINVAL;
|
|
|
|
epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
|
|
if (!epc_features) {
|
|
dev_err(&epf->dev, "epc_features not implemented\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
nvme_epf->epc_features = epc_features;
|
|
|
|
ret = nvmet_pci_epf_configure_bar(nvme_epf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nvmet_pci_epf_init_dma(nvme_epf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvmet_pci_epf_unbind(struct pci_epf *epf)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf);
|
|
struct pci_epc *epc = epf->epc;
|
|
|
|
nvmet_pci_epf_destroy_ctrl(&nvme_epf->ctrl);
|
|
|
|
if (epc->init_complete) {
|
|
nvmet_pci_epf_deinit_dma(nvme_epf);
|
|
nvmet_pci_epf_clear_bar(nvme_epf);
|
|
}
|
|
|
|
nvmet_pci_epf_free_bar(nvme_epf);
|
|
}
|
|
|
|
static struct pci_epf_header nvme_epf_pci_header = {
|
|
.vendorid = PCI_ANY_ID,
|
|
.deviceid = PCI_ANY_ID,
|
|
.progif_code = 0x02, /* NVM Express */
|
|
.baseclass_code = PCI_BASE_CLASS_STORAGE,
|
|
.subclass_code = 0x08, /* Non-Volatile Memory controller */
|
|
.interrupt_pin = PCI_INTERRUPT_INTA,
|
|
};
|
|
|
|
static int nvmet_pci_epf_probe(struct pci_epf *epf,
|
|
const struct pci_epf_device_id *id)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf;
|
|
int ret;
|
|
|
|
nvme_epf = devm_kzalloc(&epf->dev, sizeof(*nvme_epf), GFP_KERNEL);
|
|
if (!nvme_epf)
|
|
return -ENOMEM;
|
|
|
|
ret = devm_mutex_init(&epf->dev, &nvme_epf->mmio_lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nvme_epf->epf = epf;
|
|
nvme_epf->mdts_kb = NVMET_PCI_EPF_MDTS_KB;
|
|
|
|
epf->event_ops = &nvmet_pci_epf_event_ops;
|
|
epf->header = &nvme_epf_pci_header;
|
|
epf_set_drvdata(epf, nvme_epf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define to_nvme_epf(epf_group) \
|
|
container_of(epf_group, struct nvmet_pci_epf, group)
|
|
|
|
static ssize_t nvmet_pci_epf_portid_show(struct config_item *item, char *page)
|
|
{
|
|
struct config_group *group = to_config_group(item);
|
|
struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group);
|
|
|
|
return sysfs_emit(page, "%u\n", le16_to_cpu(nvme_epf->portid));
|
|
}
|
|
|
|
static ssize_t nvmet_pci_epf_portid_store(struct config_item *item,
|
|
const char *page, size_t len)
|
|
{
|
|
struct config_group *group = to_config_group(item);
|
|
struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group);
|
|
u16 portid;
|
|
|
|
/* Do not allow setting this when the function is already started. */
|
|
if (nvme_epf->ctrl.tctrl)
|
|
return -EBUSY;
|
|
|
|
if (!len)
|
|
return -EINVAL;
|
|
|
|
if (kstrtou16(page, 0, &portid))
|
|
return -EINVAL;
|
|
|
|
nvme_epf->portid = cpu_to_le16(portid);
|
|
|
|
return len;
|
|
}
|
|
|
|
CONFIGFS_ATTR(nvmet_pci_epf_, portid);
|
|
|
|
static ssize_t nvmet_pci_epf_subsysnqn_show(struct config_item *item,
|
|
char *page)
|
|
{
|
|
struct config_group *group = to_config_group(item);
|
|
struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group);
|
|
|
|
return sysfs_emit(page, "%s\n", nvme_epf->subsysnqn);
|
|
}
|
|
|
|
static ssize_t nvmet_pci_epf_subsysnqn_store(struct config_item *item,
|
|
const char *page, size_t len)
|
|
{
|
|
struct config_group *group = to_config_group(item);
|
|
struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group);
|
|
|
|
/* Do not allow setting this when the function is already started. */
|
|
if (nvme_epf->ctrl.tctrl)
|
|
return -EBUSY;
|
|
|
|
if (!len)
|
|
return -EINVAL;
|
|
|
|
strscpy(nvme_epf->subsysnqn, page, len);
|
|
|
|
return len;
|
|
}
|
|
|
|
CONFIGFS_ATTR(nvmet_pci_epf_, subsysnqn);
|
|
|
|
static ssize_t nvmet_pci_epf_mdts_kb_show(struct config_item *item, char *page)
|
|
{
|
|
struct config_group *group = to_config_group(item);
|
|
struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group);
|
|
|
|
return sysfs_emit(page, "%u\n", nvme_epf->mdts_kb);
|
|
}
|
|
|
|
static ssize_t nvmet_pci_epf_mdts_kb_store(struct config_item *item,
|
|
const char *page, size_t len)
|
|
{
|
|
struct config_group *group = to_config_group(item);
|
|
struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group);
|
|
unsigned long mdts_kb;
|
|
int ret;
|
|
|
|
if (nvme_epf->ctrl.tctrl)
|
|
return -EBUSY;
|
|
|
|
ret = kstrtoul(page, 0, &mdts_kb);
|
|
if (ret)
|
|
return ret;
|
|
if (!mdts_kb)
|
|
mdts_kb = NVMET_PCI_EPF_MDTS_KB;
|
|
else if (mdts_kb > NVMET_PCI_EPF_MAX_MDTS_KB)
|
|
mdts_kb = NVMET_PCI_EPF_MAX_MDTS_KB;
|
|
|
|
if (!is_power_of_2(mdts_kb))
|
|
return -EINVAL;
|
|
|
|
nvme_epf->mdts_kb = mdts_kb;
|
|
|
|
return len;
|
|
}
|
|
|
|
CONFIGFS_ATTR(nvmet_pci_epf_, mdts_kb);
|
|
|
|
static struct configfs_attribute *nvmet_pci_epf_attrs[] = {
|
|
&nvmet_pci_epf_attr_portid,
|
|
&nvmet_pci_epf_attr_subsysnqn,
|
|
&nvmet_pci_epf_attr_mdts_kb,
|
|
NULL,
|
|
};
|
|
|
|
static const struct config_item_type nvmet_pci_epf_group_type = {
|
|
.ct_attrs = nvmet_pci_epf_attrs,
|
|
.ct_owner = THIS_MODULE,
|
|
};
|
|
|
|
static struct config_group *nvmet_pci_epf_add_cfs(struct pci_epf *epf,
|
|
struct config_group *group)
|
|
{
|
|
struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf);
|
|
|
|
config_group_init_type_name(&nvme_epf->group, "nvme",
|
|
&nvmet_pci_epf_group_type);
|
|
|
|
return &nvme_epf->group;
|
|
}
|
|
|
|
static const struct pci_epf_device_id nvmet_pci_epf_ids[] = {
|
|
{ .name = "nvmet_pci_epf" },
|
|
{},
|
|
};
|
|
|
|
static struct pci_epf_ops nvmet_pci_epf_ops = {
|
|
.bind = nvmet_pci_epf_bind,
|
|
.unbind = nvmet_pci_epf_unbind,
|
|
.add_cfs = nvmet_pci_epf_add_cfs,
|
|
};
|
|
|
|
static struct pci_epf_driver nvmet_pci_epf_driver = {
|
|
.driver.name = "nvmet_pci_epf",
|
|
.probe = nvmet_pci_epf_probe,
|
|
.id_table = nvmet_pci_epf_ids,
|
|
.ops = &nvmet_pci_epf_ops,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init nvmet_pci_epf_init_module(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = pci_epf_register_driver(&nvmet_pci_epf_driver);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvmet_register_transport(&nvmet_pci_epf_fabrics_ops);
|
|
if (ret) {
|
|
pci_epf_unregister_driver(&nvmet_pci_epf_driver);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit nvmet_pci_epf_cleanup_module(void)
|
|
{
|
|
nvmet_unregister_transport(&nvmet_pci_epf_fabrics_ops);
|
|
pci_epf_unregister_driver(&nvmet_pci_epf_driver);
|
|
}
|
|
|
|
module_init(nvmet_pci_epf_init_module);
|
|
module_exit(nvmet_pci_epf_cleanup_module);
|
|
|
|
MODULE_DESCRIPTION("NVMe PCI Endpoint Function target driver");
|
|
MODULE_AUTHOR("Damien Le Moal <dlemoal@kernel.org>");
|
|
MODULE_LICENSE("GPL");
|