prysm-pulse/validator/rpc/auth.go

95 lines
3.8 KiB
Go
Raw Normal View History

package rpc
import (
"context"
"time"
"github.com/dgrijalva/jwt-go"
"github.com/pkg/errors"
pb "github.com/prysmaticlabs/prysm/proto/validator/accounts/v2"
"github.com/prysmaticlabs/prysm/shared/promptutil"
"github.com/prysmaticlabs/prysm/shared/roughtime"
"golang.org/x/crypto/bcrypt"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
)
var (
tokenExpiryLength = 20 * time.Minute
hashCost = 8
)
// Signup to authenticate access to the validator RPC API using bcrypt and
// a sufficiently strong password check.
func (s *Server) Signup(ctx context.Context, req *pb.AuthRequest) (*pb.AuthResponse, error) {
// First, we check if the validator already has a password. In this case,
// the user should NOT be able to signup and the function will return an error.
existingPassword, err := s.valDB.HashedPasswordForAPI(ctx)
if err != nil {
return nil, status.Error(codes.Internal, "Could not retrieve hashed password from database")
}
if len(existingPassword) != 0 {
return nil, status.Error(codes.PermissionDenied, "Validator already has a password set, cannot signup")
}
// We check the strength of the password to ensure it is high-entropy,
// has the required character count, and contains only unicode characters.
if err := promptutil.ValidatePasswordInput(req.Password); err != nil {
return nil, status.Error(codes.InvalidArgument, "Could not validate password input")
}
// Salt and hash the password using the bcrypt algorithm
// The second argument is the cost of hashing, which we arbitrarily set as 8
// (this value can be more or less, depending on the computing power you wish to utilize)
hashedPassword, err := bcrypt.GenerateFromPassword([]byte(req.Password), hashCost)
if err != nil {
return nil, status.Error(codes.Internal, "Could not generate hashed password")
}
// We store the hashed password to disk.
if err := s.valDB.SaveHashedPasswordForAPI(ctx, hashedPassword); err != nil {
return nil, status.Error(codes.Internal, "Could not save hashed password to database")
}
return s.sendAuthResponse()
}
// Login to authenticate with the validator RPC API using a password.
func (s *Server) Login(ctx context.Context, req *pb.AuthRequest) (*pb.AuthResponse, error) {
// We retrieve the hashed password for the validator API from disk.
hashedPassword, err := s.valDB.HashedPasswordForAPI(ctx)
if err != nil {
return nil, status.Error(codes.Internal, "Could not retrieve hashed password from database")
}
// Compare the stored hashed password, with the hashed version of the password that was received.
if err := bcrypt.CompareHashAndPassword(hashedPassword, []byte(req.Password)); err != nil {
return nil, status.Error(codes.Unauthenticated, "Incorrect password")
}
return s.sendAuthResponse()
}
// Sends an auth response via gRPC containing a new JWT token.
func (s *Server) sendAuthResponse() (*pb.AuthResponse, error) {
// If everything is fine here, construct the auth token.
tokenString, expirationTime, err := s.createTokenString()
if err != nil {
return nil, status.Error(codes.Internal, "Could not create jwt token string")
}
return &pb.AuthResponse{
Token: []byte(tokenString),
TokenExpiration: expirationTime,
}, nil
}
// Creates a JWT token string using the JWT key with an expiration timestamp.
func (s *Server) createTokenString() (string, uint64, error) {
expirationTime := roughtime.Now().Add(tokenExpiryLength)
claims := &jwt.StandardClaims{
// In JWT, the expiry time is expressed as unix milliseconds.
ExpiresAt: expirationTime.Unix(),
}
// Declare the token with the algorithm used for signing, and the claims.
token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)
tokenString, err := token.SignedString(s.jwtKey)
if err != nil {
return "", 0, errors.Wrap(err, "could not sign token")
}
return tokenString, uint64(claims.ExpiresAt), nil
}