prysm-pulse/beacon-chain/state/stateutil/field_root_validator.go

113 lines
3.5 KiB
Go
Raw Normal View History

package stateutil
import (
"bytes"
"encoding/binary"
"github.com/pkg/errors"
"github.com/prysmaticlabs/prysm/config/features"
fieldparams "github.com/prysmaticlabs/prysm/config/fieldparams"
"github.com/prysmaticlabs/prysm/crypto/hash"
"github.com/prysmaticlabs/prysm/crypto/hash/htr"
"github.com/prysmaticlabs/prysm/encoding/ssz"
ethpb "github.com/prysmaticlabs/prysm/proto/prysm/v1alpha1"
)
const (
// number of field roots for the validator object.
validatorFieldRoots = 8
// Depth of tree representation of an individual
// validator.
// NumOfRoots = 2 ^ (TreeDepth)
// 8 = 2 ^ 3
validatorTreeDepth = 3
)
// ValidatorRegistryRoot computes the HashTreeRoot Merkleization of
// a list of validator structs according to the Ethereum
// Simple Serialize specification.
func ValidatorRegistryRoot(vals []*ethpb.Validator) ([32]byte, error) {
return validatorRegistryRoot(vals)
}
func validatorRegistryRoot(validators []*ethpb.Validator) ([32]byte, error) {
hasher := hash.CustomSHA256Hasher()
var err error
var roots [][32]byte
if features.Get().EnableVectorizedHTR {
roots, err = optimizedValidatorRoots(validators)
if err != nil {
return [32]byte{}, err
}
} else {
roots, err = validatorRoots(hasher, validators)
if err != nil {
return [32]byte{}, err
}
}
validatorsRootsRoot, err := ssz.BitwiseMerkleize(hasher, roots, uint64(len(roots)), fieldparams.ValidatorRegistryLimit)
if err != nil {
return [32]byte{}, errors.Wrap(err, "could not compute validator registry merkleization")
}
validatorsRootsBuf := new(bytes.Buffer)
if err := binary.Write(validatorsRootsBuf, binary.LittleEndian, uint64(len(validators))); err != nil {
return [32]byte{}, errors.Wrap(err, "could not marshal validator registry length")
}
// We need to mix in the length of the slice.
var validatorsRootsBufRoot [32]byte
copy(validatorsRootsBufRoot[:], validatorsRootsBuf.Bytes())
res := ssz.MixInLength(validatorsRootsRoot, validatorsRootsBufRoot[:])
return res, nil
}
func validatorRoots(hasher func([]byte) [32]byte, validators []*ethpb.Validator) ([][32]byte, error) {
roots := make([][32]byte, len(validators))
for i := 0; i < len(validators); i++ {
val, err := validatorRoot(hasher, validators[i])
if err != nil {
return [][32]byte{}, errors.Wrap(err, "could not compute validators merkleization")
}
roots[i] = val
}
return roots, nil
}
func optimizedValidatorRoots(validators []*ethpb.Validator) ([][32]byte, error) {
// Exit early if no validators are provided.
if len(validators) == 0 {
return [][32]byte{}, nil
}
roots := make([][32]byte, 0, len(validators)*validatorFieldRoots)
hasher := hash.CustomSHA256Hasher()
for i := 0; i < len(validators); i++ {
fRoots, err := ValidatorFieldRoots(hasher, validators[i])
if err != nil {
return [][32]byte{}, errors.Wrap(err, "could not compute validators merkleization")
}
roots = append(roots, fRoots...)
}
// A validator's tree can represented with a depth of 3. As log2(8) = 3
// Using this property we can lay out all the individual fields of a
// validator and hash them in single level using our vectorized routine.
for i := 0; i < validatorTreeDepth; i++ {
// Overwrite input lists as we are hashing by level
// and only need the highest level to proceed.
outputLen := len(roots) / 2
htr.VectorizedSha256(roots, roots)
roots = roots[:outputLen]
}
return roots, nil
}
func validatorRoot(hasher ssz.HashFn, validator *ethpb.Validator) ([32]byte, error) {
if validator == nil {
return [32]byte{}, errors.New("nil validator")
}
return ValidatorRootWithHasher(hasher, validator)
}