// Package mputil contains useful helpers for converting // multi-processor computation. package async import ( "errors" "runtime" "sync" ) // WorkerResults are the results of a scatter worker. type WorkerResults struct { Offset int Extent interface{} } // Scatter scatters a computation across multiple goroutines. // This breaks the task in to a number of chunks and executes those chunks in parallel with the function provided. // Results returned are collected and presented a a set of WorkerResults, which can be reassembled by the calling function. // Any error that occurs in the workers will be passed back to the calling function. func Scatter(inputLen int, sFunc func(int, int, *sync.RWMutex) (interface{}, error)) ([]*WorkerResults, error) { if inputLen <= 0 { return nil, errors.New("input length must be greater than 0") } chunkSize := calculateChunkSize(inputLen) workers := inputLen / chunkSize if inputLen%chunkSize != 0 { workers++ } resultCh := make(chan *WorkerResults, workers) defer close(resultCh) errorCh := make(chan error, workers) defer close(errorCh) mutex := new(sync.RWMutex) for worker := 0; worker < workers; worker++ { offset := worker * chunkSize entries := chunkSize if offset+entries > inputLen { entries = inputLen - offset } go func(offset int, entries int) { extent, err := sFunc(offset, entries, mutex) if err != nil { errorCh <- err } else { resultCh <- &WorkerResults{ Offset: offset, Extent: extent, } } }(offset, entries) } // Collect results from workers results := make([]*WorkerResults, workers) for i := 0; i < workers; i++ { select { case result := <-resultCh: results[i] = result case err := <-errorCh: return nil, err } } return results, nil } // calculateChunkSize calculates a suitable chunk size for the purposes of parallelisation. func calculateChunkSize(items int) int { // Start with a simple even split chunkSize := items / runtime.GOMAXPROCS(0) // Add 1 if we have leftovers (or if we have fewer items than processors). if chunkSize == 0 || items%chunkSize != 0 { chunkSize++ } return chunkSize }