package slice import ( "strings" types "github.com/prysmaticlabs/eth2-types" ) // SubsetUint64 returns true if the first array is // completely contained in the second array with time // complexity of approximately o(n). func SubsetUint64(a, b []uint64) bool { if len(a) > len(b) { return false } set := make(map[uint64]uint64, len(b)) for _, v := range b { set[v]++ } for _, v := range a { if count, found := set[v]; !found { return false } else if count < 1 { return false } else { set[v] = count - 1 } } return true } // IntersectionUint64 of any number of uint64 slices with time // complexity of approximately O(n) leveraging a map to // check for element existence off by a constant factor // of underlying map efficiency. func IntersectionUint64(s ...[]uint64) []uint64 { if len(s) == 0 { return []uint64{} } if len(s) == 1 { return s[0] } intersect := make([]uint64, 0) m := make(map[uint64]int) for _, k := range s[0] { m[k] = 1 } for i, num := 1, len(s); i < num; i++ { for _, k := range s[i] { // Increment and check only if item is present in both, and no increment has happened yet. if _, found := m[k]; found && i == m[k] { m[k]++ if m[k] == num { intersect = append(intersect, k) } } } } return intersect } // UnionUint64 of any number of uint64 slices with time // complexity of approximately O(n) leveraging a map to // check for element existence off by a constant factor // of underlying map efficiency. func UnionUint64(s ...[]uint64) []uint64 { if len(s) == 0 { return []uint64{} } if len(s) == 1 { return s[0] } set := s[0] m := make(map[uint64]bool) for i := 1; i < len(s); i++ { a := s[i-1] b := s[i] for j := 0; j < len(a); j++ { m[a[j]] = true } for j := 0; j < len(b); j++ { if _, found := m[b[j]]; !found { set = append(set, b[j]) } } } return set } // SetUint64 returns a slice with only unique // values from the provided list of indices. func SetUint64(a []uint64) []uint64 { // Remove duplicates indices. intMap := map[uint64]bool{} cleanedIndices := make([]uint64, 0, len(a)) for _, idx := range a { if intMap[idx] { continue } intMap[idx] = true cleanedIndices = append(cleanedIndices, idx) } return cleanedIndices } // IsUint64Sorted verifies if a uint64 slice is sorted in ascending order. func IsUint64Sorted(a []uint64) bool { if len(a) == 0 || len(a) == 1 { return true } for i := 1; i < len(a); i++ { if a[i-1] > a[i] { return false } } return true } // NotUint64 returns the uint64 in slice b that are // not in slice a with time complexity of approximately // O(n) leveraging a map to check for element existence // off by a constant factor of underlying map efficiency. func NotUint64(a, b []uint64) []uint64 { set := make([]uint64, 0) m := make(map[uint64]bool) for i := 0; i < len(a); i++ { m[a[i]] = true } for i := 0; i < len(b); i++ { if _, found := m[b[i]]; !found { set = append(set, b[i]) } } return set } // IsInUint64 returns true if a is in b and False otherwise. func IsInUint64(a uint64, b []uint64) bool { for _, v := range b { if a == v { return true } } return false } // IntersectionInt64 of any number of int64 slices with time // complexity of approximately O(n) leveraging a map to // check for element existence off by a constant factor // of underlying map efficiency. func IntersectionInt64(s ...[]int64) []int64 { if len(s) == 0 { return []int64{} } if len(s) == 1 { return s[0] } intersect := make([]int64, 0) m := make(map[int64]int) for _, k := range s[0] { m[k] = 1 } for i, num := 1, len(s); i < num; i++ { for _, k := range s[i] { if _, found := m[k]; found && i == m[k] { m[k]++ if m[k] == num { intersect = append(intersect, k) } } } } return intersect } // UnionInt64 of any number of int64 slices with time // complexity of approximately O(n) leveraging a map to // check for element existence off by a constant factor // of underlying map efficiency. func UnionInt64(s ...[]int64) []int64 { if len(s) == 0 { return []int64{} } if len(s) == 1 { return s[0] } set := s[0] m := make(map[int64]bool) for i := 1; i < len(s); i++ { a := s[i-1] b := s[i] for j := 0; j < len(a); j++ { m[a[j]] = true } for j := 0; j < len(b); j++ { if _, found := m[b[j]]; !found { set = append(set, b[j]) } } } return set } // NotInt64 returns the int64 in slice a that are // not in slice b with time complexity of approximately // O(n) leveraging a map to check for element existence // off by a constant factor of underlying map efficiency. func NotInt64(a, b []int64) []int64 { set := make([]int64, 0) m := make(map[int64]bool) for i := 0; i < len(a); i++ { m[a[i]] = true } for i := 0; i < len(b); i++ { if _, found := m[b[i]]; !found { set = append(set, b[i]) } } return set } // IsInInt64 returns true if a is in b and False otherwise. func IsInInt64(a int64, b []int64) bool { for _, v := range b { if a == v { return true } } return false } // UnionByteSlices returns the all elements between sets of byte slices. func UnionByteSlices(s ...[][]byte) [][]byte { if len(s) == 0 { return [][]byte{} } if len(s) == 1 { return s[0] } set := s[0] m := make(map[string]bool) for i := 1; i < len(s); i++ { for j := 0; j < len(s[i-1]); j++ { m[string(s[i-1][j])] = true } for j := 0; j < len(s[i]); j++ { if _, found := m[string(s[i][j])]; !found { set = append(set, s[i][j]) } } } return set } // IntersectionByteSlices returns the common elements between sets of byte slices. func IntersectionByteSlices(s ...[][]byte) [][]byte { if len(s) == 0 { return [][]byte{} } if len(s) == 1 { return s[0] } inter := make([][]byte, 0) m := make(map[string]int) for _, k := range s[0] { m[string(k)] = 1 } for i, num := 1, len(s); i < num; i++ { for _, k := range s[i] { if _, found := m[string(k)]; found && i == m[string(k)] { m[string(k)]++ if m[string(k)] == num { inter = append(inter, k) } } } } return inter } // SplitCommaSeparated values from the list. Example: []string{"a,b", "c,d"} becomes []string{"a", "b", "c", "d"}. func SplitCommaSeparated(arr []string) []string { var result []string for _, val := range arr { result = append(result, strings.Split(val, ",")...) } return result } // SplitOffset returns the start index of a given list splits into chunks, // it computes (listsize * index) / chunks. // // Spec pseudocode definition: // def get_split_offset(list_size: int, chunks: int, index: int) -> int: // """ // Returns a value such that for a list L, chunk count k and index i, // split(L, k)[i] == L[get_split_offset(len(L), k, i): get_split_offset(len(L), k, i+1)] // """ // return (list_size * index) // chunks func SplitOffset(listSize, chunks, index uint64) uint64 { return (listSize * index) / chunks } // IntersectionSlot of any number of types.Slot slices with time // complexity of approximately O(n) leveraging a map to // check for element existence off by a constant factor // of underlying map efficiency. func IntersectionSlot(s ...[]types.Slot) []types.Slot { if len(s) == 0 { return []types.Slot{} } if len(s) == 1 { return s[0] } intersect := make([]types.Slot, 0) m := make(map[types.Slot]int) for _, k := range s[0] { m[k] = 1 } for i, num := 1, len(s); i < num; i++ { for _, k := range s[i] { // Increment and check only if item is present in both, and no increment has happened yet. if _, found := m[k]; found && i == m[k] { m[k]++ if m[k] == num { intersect = append(intersect, k) } } } } return intersect } // NotSlot returns the types.Slot in slice b that are // not in slice a with time complexity of approximately // O(n) leveraging a map to check for element existence // off by a constant factor of underlying map efficiency. func NotSlot(a, b []types.Slot) []types.Slot { set := make([]types.Slot, 0) m := make(map[types.Slot]bool) for i := 0; i < len(a); i++ { m[a[i]] = true } for i := 0; i < len(b); i++ { if _, found := m[b[i]]; !found { set = append(set, b[i]) } } return set } // IsInSlots returns true if a is in b and False otherwise. func IsInSlots(a types.Slot, b []types.Slot) bool { for _, v := range b { if a == v { return true } } return false }