package protoarray import ( "bytes" "context" "errors" "fmt" "math" "github.com/prysmaticlabs/prysm/shared/params" "go.opencensus.io/trace" ) // head starts from justified root and then follows the best descendant links // to find the best block for head. func (s *Store) head(ctx context.Context, justifiedRoot [32]byte) ([32]byte, error) { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.head") defer span.End() // Justified index has to be valid in node indices map, and can not be out of bound. justifiedIndex, ok := s.NodeIndices[justifiedRoot] if !ok { return [32]byte{}, errUnknownJustifiedRoot } if justifiedIndex >= uint64(len(s.Nodes)) { return [32]byte{}, errInvalidJustifiedIndex } justifiedNode := s.Nodes[justifiedIndex] bestDescendantIndex := justifiedNode.BestDescendent // If the justified node doesn't have a best descendent, // the best node is itself. if bestDescendantIndex == NonExistentNode { bestDescendantIndex = justifiedIndex } if bestDescendantIndex >= uint64(len(s.Nodes)) { return [32]byte{}, errInvalidBestDescendantIndex } bestNode := s.Nodes[bestDescendantIndex] if !s.viableForHead(bestNode) { return [32]byte{}, fmt.Errorf("head at slot %d with weight %d is not eligible, FinalizedEpoch %d != %d, JustifiedEpoch %d != %d", bestNode.Slot, bestNode.Weight/10e9, bestNode.FinalizedEpoch, s.FinalizedEpoch, bestNode.JustifiedEpoch, s.JustifiedEpoch) } // Update metrics. if bestNode.Root != lastHeadRoot { headChangesCount.Inc() headSlotNumber.Set(float64(bestNode.Slot)) lastHeadRoot = bestNode.Root } return bestNode.Root, nil } // insert registers a new block node to the fork choice store's node list. // It then updates the new node's parent with best child and descendant node. func (s *Store) insert(ctx context.Context, slot uint64, root [32]byte, parent [32]byte, graffiti [32]byte, justifiedEpoch uint64, finalizedEpoch uint64) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.insert") defer span.End() s.nodeIndicesLock.Lock() defer s.nodeIndicesLock.Unlock() // Return if the block has been inserted into Store before. if _, ok := s.NodeIndices[root]; ok { return nil } index := len(s.Nodes) parentIndex, ok := s.NodeIndices[parent] // Mark genesis block's parent as non existent. if !ok { parentIndex = NonExistentNode } n := &Node{ Slot: slot, Root: root, Graffiti: graffiti, Parent: parentIndex, JustifiedEpoch: justifiedEpoch, FinalizedEpoch: finalizedEpoch, BestChild: NonExistentNode, BestDescendent: NonExistentNode, Weight: 0, } s.NodeIndices[root] = uint64(index) s.Nodes = append(s.Nodes, n) // Update parent with the best child and descendent only if it's available. if n.Parent != NonExistentNode { if err := s.updateBestChildAndDescendant(parentIndex, uint64(index)); err != nil { return err } } // Update metrics. processedBlockCount.Inc() nodeCount.Set(float64(len(s.Nodes))) return nil } // applyWeightChanges iterates backwards through the Nodes in store. It checks all Nodes parent // and its best child. For each node, it updates the weight with input delta and // back propagate the Nodes delta to its parents delta. After scoring changes, // the best child is then updated along with best descendant. func (s *Store) applyWeightChanges(ctx context.Context, justifiedEpoch uint64, finalizedEpoch uint64, delta []int) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.applyWeightChanges") defer span.End() // The length of the Nodes can not be different than length of the delta. if len(s.Nodes) != len(delta) { return errInvalidDeltaLength } // Update the justified / finalized epochs in store if necessary. if s.JustifiedEpoch != justifiedEpoch || s.FinalizedEpoch != finalizedEpoch { s.JustifiedEpoch = justifiedEpoch s.FinalizedEpoch = finalizedEpoch } // Iterate backwards through all index to node in store. for i := len(s.Nodes) - 1; i >= 0; i-- { n := s.Nodes[i] // There is no need to adjust the balances or manage parent of the zero hash, it // is an alias to the genesis block. if n.Root == params.BeaconConfig().ZeroHash { continue } nodeDelta := delta[i] if nodeDelta < 0 { // A node's weight can not be negative but the delta can be negative. if int(n.Weight)+nodeDelta < 0 { n.Weight = 0 } else { // Subtract node's weight. n.Weight -= uint64(math.Abs(float64(nodeDelta))) } } else { // Add node's weight. n.Weight += uint64(nodeDelta) } s.Nodes[i] = n // Update parent's best child and descendent if the node has a known parent. if n.Parent != NonExistentNode { // Protection against node parent index out of bound. This should not happen. if int(n.Parent) >= len(delta) { return errInvalidParentDelta } // Back propagate the Nodes delta to its parent. delta[n.Parent] += nodeDelta if err := s.updateBestChildAndDescendant(n.Parent, uint64(i)); err != nil { return err } } } return nil } // updateBestChildAndDescendant updates parent node's best child and descendent. // It looks at input parent node and input child node and potentially modifies parent's best // child and best descendent indices. // There are four outcomes: // 1.) The child is already the best child but it's now invalid due to a FFG change and should be removed. // 2.) The child is already the best child and the parent is updated with the new best descendant. // 3.) The child is not the best child but becomes the best child. // 4.) The child is not the best child and does not become best child. func (s *Store) updateBestChildAndDescendant(parentIndex uint64, childIndex uint64) error { // Protection against parent index out of bound, this should not happen. if parentIndex >= uint64(len(s.Nodes)) { return errInvalidNodeIndex } parent := s.Nodes[parentIndex] // Protection against child index out of bound, again this should not happen. if childIndex >= uint64(len(s.Nodes)) { return errInvalidNodeIndex } child := s.Nodes[childIndex] // Is the child viable to become head? Based on justification and finalization rules. childLeadsToViableHead, err := s.leadsToViableHead(child) if err != nil { return err } // Define 3 variables for the 3 outcomes mentioned above. This is to // set `parent.BestChild` and `parent.bestDescendent` to. These // aliases are to assist readability. changeToNone := []uint64{NonExistentNode, NonExistentNode} bestDescendant := child.BestDescendent if bestDescendant == NonExistentNode { bestDescendant = childIndex } changeToChild := []uint64{childIndex, bestDescendant} noChange := []uint64{parent.BestChild, parent.BestDescendent} newParentChild := make([]uint64, 0) if parent.BestChild != NonExistentNode { if parent.BestChild == childIndex && !childLeadsToViableHead { // If the child is already the best child of the parent but it's not viable for head, // we should remove it. (Outcome 1) newParentChild = changeToNone } else if parent.BestChild == childIndex { // If the child is already the best child of the parent, set it again to ensure best // descendent of the parent is updated. (Outcome 2) newParentChild = changeToChild } else { // Protection against parent's best child going out of bound. if parent.BestChild > uint64(len(s.Nodes)) { return errInvalidBestDescendantIndex } bestChild := s.Nodes[parent.BestChild] // Is current parent's best child viable to be head? Based on justification and finalization rules. bestChildLeadsToViableHead, err := s.leadsToViableHead(bestChild) if err != nil { return err } if childLeadsToViableHead && !bestChildLeadsToViableHead { // The child leads to a viable head, but the current parent's best child doesnt. newParentChild = changeToChild } else if !childLeadsToViableHead && bestChildLeadsToViableHead { // The child doesn't lead to a viable head, the current parent's best child does. newParentChild = noChange } else if child.Weight == bestChild.Weight { // If both are viable, compare their weights. // Tie-breaker of equal weights by Root. if bytes.Compare(child.Root[:], bestChild.Root[:]) > 0 { newParentChild = changeToChild } else { newParentChild = noChange } } else { // Choose winner by weight. if child.Weight > bestChild.Weight { newParentChild = changeToChild } else { newParentChild = noChange } } } } else { if childLeadsToViableHead { // If parent doesn't have a best child and the child is viable. newParentChild = changeToChild } else { // If parent doesn't have a best child and the child is not viable. newParentChild = noChange } } // Update parent with the outcome. parent.BestChild = newParentChild[0] parent.BestDescendent = newParentChild[1] s.Nodes[parentIndex] = parent return nil } // prune prunes the store with the new finalized root. The tree is only // pruned if the input finalized root are different than the one in stored and // the number of the Nodes in store has met prune threshold. func (s *Store) prune(ctx context.Context, finalizedRoot [32]byte) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.prune") defer span.End() s.nodeIndicesLock.Lock() defer s.nodeIndicesLock.Unlock() // The node would have seen finalized root or else it'd // be able to prune it. finalizedIndex, ok := s.NodeIndices[finalizedRoot] if !ok { return errUnknownFinalizedRoot } // The number of the Nodes has not met the prune threshold. // Pruning at small numbers incurs more cost than benefit. if finalizedIndex < s.PruneThreshold { return nil } // Remove the key/values from indices mapping on to be pruned Nodes. // These Nodes are before the finalized index. for i := uint64(0); i < finalizedIndex; i++ { if int(i) >= len(s.Nodes) { return errInvalidNodeIndex } delete(s.NodeIndices, s.Nodes[i].Root) } // Finalized index can not be greater than the length of the node. if int(finalizedIndex) >= len(s.Nodes) { return errors.New("invalid finalized index") } s.Nodes = s.Nodes[finalizedIndex:] // Adjust indices to node mapping. for k, v := range s.NodeIndices { s.NodeIndices[k] = v - finalizedIndex } // Iterate through existing Nodes and adjust its parent/child indices with the newly pruned layout. for i, node := range s.Nodes { if node.Parent != NonExistentNode { // If the node's parent is less than finalized index, set it to non existent. if node.Parent >= finalizedIndex { node.Parent -= finalizedIndex } else { node.Parent = NonExistentNode } } if node.BestChild != NonExistentNode { if node.BestChild < finalizedIndex { return errInvalidBestChildIndex } node.BestChild -= finalizedIndex } if node.BestDescendent != NonExistentNode { if node.BestDescendent < finalizedIndex { return errInvalidBestDescendantIndex } node.BestDescendent -= finalizedIndex } s.Nodes[i] = node } prunedCount.Inc() return nil } // leadsToViableHead returns true if the node or the best descendent of the node is viable for head. // Any node with diff finalized or justified epoch than the ones in fork choice store // should not be viable to head. func (s *Store) leadsToViableHead(node *Node) (bool, error) { var bestDescendentViable bool bestDescendentIndex := node.BestDescendent // If the best descendant is not part of the leaves. if bestDescendentIndex != NonExistentNode { // Protection against out of bound, best descendent index can not be // exceeds length of Nodes list. if bestDescendentIndex >= uint64(len(s.Nodes)) { return false, errInvalidBestDescendantIndex } bestDescendentNode := s.Nodes[bestDescendentIndex] bestDescendentViable = s.viableForHead(bestDescendentNode) } // The node is viable as long as the best descendent is viable. return bestDescendentViable || s.viableForHead(node), nil } // viableForHead returns true if the node is viable to head. // Any node with diff finalized or justified epoch than the ones in fork choice store // should not be viable to head. func (s *Store) viableForHead(node *Node) bool { // `node` is viable if its justified epoch and finalized epoch are the same as the one in `Store`. // It's also viable if we are in genesis epoch. justified := s.JustifiedEpoch == node.JustifiedEpoch || s.JustifiedEpoch == 0 finalized := s.FinalizedEpoch == node.FinalizedEpoch || s.FinalizedEpoch == 0 return justified && finalized }