package sync import ( "context" "encoding/hex" "sort" "sync" "time" "github.com/pkg/errors" "github.com/prysmaticlabs/prysm/v3/async" "github.com/prysmaticlabs/prysm/v3/beacon-chain/blockchain" p2ptypes "github.com/prysmaticlabs/prysm/v3/beacon-chain/p2p/types" "github.com/prysmaticlabs/prysm/v3/config/params" "github.com/prysmaticlabs/prysm/v3/consensus-types/blocks" "github.com/prysmaticlabs/prysm/v3/consensus-types/interfaces" types "github.com/prysmaticlabs/prysm/v3/consensus-types/primitives" "github.com/prysmaticlabs/prysm/v3/crypto/rand" "github.com/prysmaticlabs/prysm/v3/encoding/bytesutil" "github.com/prysmaticlabs/prysm/v3/encoding/ssz/equality" "github.com/prysmaticlabs/prysm/v3/monitoring/tracing" "github.com/prysmaticlabs/prysm/v3/time/slots" "github.com/sirupsen/logrus" "github.com/trailofbits/go-mutexasserts" "go.opencensus.io/trace" ) var processPendingBlocksPeriod = slots.DivideSlotBy(3 /* times per slot */) const maxPeerRequest = 50 const numOfTries = 5 const maxBlocksPerSlot = 3 // processes pending blocks queue on every processPendingBlocksPeriod func (s *Service) processPendingBlocksQueue() { // Prevents multiple queue processing goroutines (invoked by RunEvery) from contending for data. locker := new(sync.Mutex) async.RunEvery(s.ctx, processPendingBlocksPeriod, func() { // Don't process the pending blocks if genesis time has not been set. The chain is not ready. if !s.isGenesisTimeSet() { return } locker.Lock() if err := s.processPendingBlocks(s.ctx); err != nil { log.WithError(err).Debug("Could not process pending blocks") } locker.Unlock() }) } // processes the block tree inside the queue func (s *Service) processPendingBlocks(ctx context.Context) error { ctx, span := trace.StartSpan(ctx, "processPendingBlocks") defer span.End() pids := s.cfg.p2p.Peers().Connected() if err := s.validatePendingSlots(); err != nil { return errors.Wrap(err, "could not validate pending slots") } ss := s.sortedPendingSlots() var parentRoots [][32]byte span.AddAttributes( trace.Int64Attribute("numSlots", int64(len(ss))), trace.Int64Attribute("numPeers", int64(len(pids))), ) randGen := rand.NewGenerator() for _, slot := range ss { // process the blocks during their respective slot. // otherwise wait for the right slot to process the block. if slot > s.cfg.chain.CurrentSlot() { continue } ctx, span := trace.StartSpan(ctx, "processPendingBlocks.InnerLoop") span.AddAttributes(trace.Int64Attribute("slot", int64(slot))) // lint:ignore uintcast -- This conversion is OK for tracing. s.pendingQueueLock.RLock() bs := s.pendingBlocksInCache(slot) // Skip if there's no block in the queue. if len(bs) == 0 { s.pendingQueueLock.RUnlock() span.End() continue } s.pendingQueueLock.RUnlock() // Loop through the pending queue and mark the potential parent blocks as seen. for _, b := range bs { if b == nil || b.IsNil() || b.Block().IsNil() { span.End() continue } blkRoot, err := b.Block().HashTreeRoot() if err != nil { tracing.AnnotateError(span, err) span.End() return err } inDB := s.cfg.beaconDB.HasBlock(ctx, blkRoot) // No need to process the same block twice. if inDB { s.pendingQueueLock.Lock() if err = s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil { s.pendingQueueLock.Unlock() return err } s.pendingQueueLock.Unlock() span.End() continue } s.pendingQueueLock.RLock() inPendingQueue := s.seenPendingBlocks[b.Block().ParentRoot()] s.pendingQueueLock.RUnlock() keepProcessing, err := s.checkIfBlockIsBad(ctx, span, slot, b, blkRoot) if err != nil { return err } if !keepProcessing { continue } parentInDb := s.cfg.beaconDB.HasBlock(ctx, b.Block().ParentRoot()) hasPeer := len(pids) != 0 // Only request for missing parent block if it's not in beaconDB, not in pending cache // and has peer in the peer list. parentRoot := b.Block().ParentRoot() if !inPendingQueue && !parentInDb && hasPeer { log.WithFields(logrus.Fields{ "currentSlot": b.Block().Slot(), "parentRoot": hex.EncodeToString(bytesutil.Trunc(parentRoot[:])), }).Debug("Requesting parent block") parentRoots = append(parentRoots, b.Block().ParentRoot()) span.End() continue } if !parentInDb { span.End() continue } err = s.validateBeaconBlock(ctx, b, blkRoot) switch { case errors.Is(ErrOptimisticParent, err): // Ok to continue process block with parent that is an optimistic candidate. case err != nil: log.WithError(err).WithField("slot", b.Block().Slot()).Debug("Could not validate block") s.setBadBlock(ctx, blkRoot) tracing.AnnotateError(span, err) span.End() continue default: } if err := s.cfg.chain.ReceiveBlock(ctx, b, blkRoot); err != nil { if blockchain.IsInvalidBlock(err) { r := blockchain.InvalidBlockRoot(err) if r != [32]byte{} { s.setBadBlock(ctx, r) // Setting head block as bad. } else { s.setBadBlock(ctx, blkRoot) } } log.WithError(err).WithField("slot", b.Block().Slot()).Debug("Could not process block") // In the next iteration of the queue, this block will be removed from // the pending queue as it has been marked as a 'bad' block. span.End() continue } s.setSeenBlockIndexSlot(b.Block().Slot(), b.Block().ProposerIndex()) // Broadcasting the block again once a node is able to process it. pb, err := b.Proto() if err != nil { log.WithError(err).Debug("Could not get protobuf block") } else { if err := s.cfg.p2p.Broadcast(ctx, pb); err != nil { log.WithError(err).Debug("Could not broadcast block") } } s.pendingQueueLock.Lock() if err := s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil { s.pendingQueueLock.Unlock() return err } s.pendingQueueLock.Unlock() log.WithFields(logrus.Fields{ "slot": slot, "blockRoot": hex.EncodeToString(bytesutil.Trunc(blkRoot[:])), }).Debug("Processed pending block and cleared it in cache") span.End() } } return s.sendBatchRootRequest(ctx, parentRoots, randGen) } func (s *Service) checkIfBlockIsBad( ctx context.Context, span *trace.Span, slot types.Slot, b interfaces.SignedBeaconBlock, blkRoot [32]byte, ) (keepProcessing bool, err error) { parentIsBad := s.hasBadBlock(b.Block().ParentRoot()) blockIsBad := s.hasBadBlock(blkRoot) // Check if parent is a bad block. if parentIsBad || blockIsBad { // Set block as bad if its parent block is bad too. if parentIsBad { s.setBadBlock(ctx, blkRoot) } // Remove block from queue. s.pendingQueueLock.Lock() if err = s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil { s.pendingQueueLock.Unlock() return false, err } s.pendingQueueLock.Unlock() span.End() return false, nil } return true, nil } func (s *Service) sendBatchRootRequest(ctx context.Context, roots [][32]byte, randGen *rand.Rand) error { ctx, span := trace.StartSpan(ctx, "sendBatchRootRequest") defer span.End() if len(roots) == 0 { return nil } cp := s.cfg.chain.FinalizedCheckpt() _, bestPeers := s.cfg.p2p.Peers().BestFinalized(maxPeerRequest, cp.Epoch) if len(bestPeers) == 0 { return nil } roots = s.dedupRoots(roots) // Randomly choose a peer to query from our best peers. If that peer cannot return // all the requested blocks, we randomly select another peer. pid := bestPeers[randGen.Int()%len(bestPeers)] for i := 0; i < numOfTries; i++ { req := p2ptypes.BeaconBlockByRootsReq(roots) if len(roots) > int(params.BeaconNetworkConfig().MaxRequestBlocks) { req = roots[:params.BeaconNetworkConfig().MaxRequestBlocks] } if err := s.sendRecentBeaconBlocksRequest(ctx, &req, pid); err != nil { tracing.AnnotateError(span, err) log.WithError(err).Debug("Could not send recent block request") } newRoots := make([][32]byte, 0, len(roots)) s.pendingQueueLock.RLock() for _, rt := range roots { if !s.seenPendingBlocks[rt] { newRoots = append(newRoots, rt) } } s.pendingQueueLock.RUnlock() if len(newRoots) == 0 { break } // Choosing a new peer with the leftover set of // roots to request. roots = newRoots pid = bestPeers[randGen.Int()%len(bestPeers)] } return nil } func (s *Service) sortedPendingSlots() []types.Slot { s.pendingQueueLock.RLock() defer s.pendingQueueLock.RUnlock() items := s.slotToPendingBlocks.Items() ss := make([]types.Slot, 0, len(items)) for k := range items { slot := cacheKeyToSlot(k) ss = append(ss, slot) } sort.Slice(ss, func(i, j int) bool { return ss[i] < ss[j] }) return ss } // validatePendingSlots validates the pending blocks // by their slot. If they are before the current finalized // checkpoint, these blocks are removed from the queue. func (s *Service) validatePendingSlots() error { s.pendingQueueLock.Lock() defer s.pendingQueueLock.Unlock() oldBlockRoots := make(map[[32]byte]bool) cp := s.cfg.chain.FinalizedCheckpt() finalizedEpoch := cp.Epoch if s.slotToPendingBlocks == nil { return errors.New("slotToPendingBlocks cache can't be nil") } items := s.slotToPendingBlocks.Items() for k := range items { slot := cacheKeyToSlot(k) blks := s.pendingBlocksInCache(slot) for _, b := range blks { epoch := slots.ToEpoch(slot) // remove all descendant blocks of old blocks if oldBlockRoots[b.Block().ParentRoot()] { root, err := b.Block().HashTreeRoot() if err != nil { return err } oldBlockRoots[root] = true if err := s.deleteBlockFromPendingQueue(slot, b, root); err != nil { return err } continue } // don't process old blocks if finalizedEpoch > 0 && epoch <= finalizedEpoch { blkRoot, err := b.Block().HashTreeRoot() if err != nil { return err } oldBlockRoots[blkRoot] = true if err := s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil { return err } } } } return nil } func (s *Service) clearPendingSlots() { s.pendingQueueLock.Lock() defer s.pendingQueueLock.Unlock() s.slotToPendingBlocks.Flush() s.seenPendingBlocks = make(map[[32]byte]bool) } // Delete block from the list from the pending queue using the slot as key. // Note: this helper is not thread safe. func (s *Service) deleteBlockFromPendingQueue(slot types.Slot, b interfaces.SignedBeaconBlock, r [32]byte) error { mutexasserts.AssertRWMutexLocked(&s.pendingQueueLock) blks := s.pendingBlocksInCache(slot) if len(blks) == 0 { return nil } // Defensive check to ignore nil blocks if err := blocks.BeaconBlockIsNil(b); err != nil { return err } newBlks := make([]interfaces.SignedBeaconBlock, 0, len(blks)) for _, blk := range blks { blkPb, err := blk.Proto() if err != nil { return err } bPb, err := b.Proto() if err != nil { return err } if equality.DeepEqual(blkPb, bPb) { continue } newBlks = append(newBlks, blk) } if len(newBlks) == 0 { s.slotToPendingBlocks.Delete(slotToCacheKey(slot)) delete(s.seenPendingBlocks, r) return nil } // Decrease exp time in proportion to how many blocks are still in the cache for slot key. d := pendingBlockExpTime / time.Duration(len(newBlks)) if err := s.slotToPendingBlocks.Replace(slotToCacheKey(slot), newBlks, d); err != nil { return err } delete(s.seenPendingBlocks, r) return nil } // Insert block to the list in the pending queue using the slot as key. // Note: this helper is not thread safe. func (s *Service) insertBlockToPendingQueue(_ types.Slot, b interfaces.SignedBeaconBlock, r [32]byte) error { mutexasserts.AssertRWMutexLocked(&s.pendingQueueLock) if s.seenPendingBlocks[r] { return nil } if err := s.addPendingBlockToCache(b); err != nil { return err } s.seenPendingBlocks[r] = true return nil } // This returns signed beacon blocks given input key from slotToPendingBlocks. func (s *Service) pendingBlocksInCache(slot types.Slot) []interfaces.SignedBeaconBlock { k := slotToCacheKey(slot) value, ok := s.slotToPendingBlocks.Get(k) if !ok { return []interfaces.SignedBeaconBlock{} } blks, ok := value.([]interfaces.SignedBeaconBlock) if !ok { return []interfaces.SignedBeaconBlock{} } return blks } // This adds input signed beacon block to slotToPendingBlocks cache. func (s *Service) addPendingBlockToCache(b interfaces.SignedBeaconBlock) error { if err := blocks.BeaconBlockIsNil(b); err != nil { return err } blks := s.pendingBlocksInCache(b.Block().Slot()) if len(blks) >= maxBlocksPerSlot { return nil } blks = append(blks, b) k := slotToCacheKey(b.Block().Slot()) s.slotToPendingBlocks.Set(k, blks, pendingBlockExpTime) return nil } // Returns true if the genesis time has been set in chain service. // Without the genesis time, the chain does not start. func (s *Service) isGenesisTimeSet() bool { return s.cfg.chain.GenesisTime().Unix() != 0 } // This converts input string to slot. func cacheKeyToSlot(s string) types.Slot { b := []byte(s) return bytesutil.BytesToSlotBigEndian(b) } // This converts input slot to a key to be used for slotToPendingBlocks cache. func slotToCacheKey(s types.Slot) string { b := bytesutil.SlotToBytesBigEndian(s) return string(b) }