package beacon import ( "context" "errors" "fmt" "io" "math/big" "sort" "sync" "time" "github.com/patrickmn/go-cache" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" "github.com/prysmaticlabs/eth2-types" ethpb "github.com/prysmaticlabs/ethereumapis/eth/v1alpha1" "github.com/prysmaticlabs/prysm/beacon-chain/blockchain" "github.com/prysmaticlabs/prysm/beacon-chain/cache/depositcache" "github.com/prysmaticlabs/prysm/beacon-chain/core/feed" statefeed "github.com/prysmaticlabs/prysm/beacon-chain/core/feed/state" "github.com/prysmaticlabs/prysm/beacon-chain/core/helpers" "github.com/prysmaticlabs/prysm/beacon-chain/db" "github.com/prysmaticlabs/prysm/beacon-chain/powchain" "github.com/prysmaticlabs/prysm/beacon-chain/state" "github.com/prysmaticlabs/prysm/shared/bytesutil" "github.com/prysmaticlabs/prysm/shared/event" "github.com/prysmaticlabs/prysm/shared/params" "google.golang.org/grpc/codes" "google.golang.org/grpc/status" ) // infostream is a struct for each instance of the infostream created by a client connection. type infostream struct { ctx context.Context headFetcher blockchain.HeadFetcher depositFetcher depositcache.DepositFetcher blockFetcher powchain.POWBlockFetcher beaconDB db.ReadOnlyDatabase pubKeys [][]byte pubKeysMutex *sync.RWMutex stateChannel chan *feed.Event stateSub event.Subscription eth1Deposits *cache.Cache eth1DepositsMutex *sync.RWMutex eth1Blocktimes *cache.Cache eth1BlocktimesMutex *sync.RWMutex currentEpoch types.Epoch stream ethpb.BeaconChain_StreamValidatorsInfoServer genesisTime uint64 } // eth1Deposit contains information about a deposit made on the Ethereum 1 chain. type eth1Deposit struct { block *big.Int data *ethpb.Deposit_Data } var ( eth1DepositCacheHits = promauto.NewCounter( prometheus.CounterOpts{ Name: "infostream_eth1_deposit_cache_hits", Help: "The number of times the infostream Ethereum 1 deposit cache is hit.", }, ) eth1DepositCacheMisses = promauto.NewCounter( prometheus.CounterOpts{ Name: "infostream_eth1_deposit_cache_misses", Help: "The number of times the infostream Ethereum 1 deposit cache is missed.", }, ) eth1BlocktimeCacheHits = promauto.NewCounter( prometheus.CounterOpts{ Name: "infostream_eth1_blocktime_cache_hits", Help: "The number of times the infostream Ethereum 1 block time cache is hit.", }, ) eth1BlocktimeCacheMisses = promauto.NewCounter( prometheus.CounterOpts{ Name: "infostream_eth1_blocktime_cache_misses", Help: "The number of times the infostream Ethereum 1 block time cache is missed.", }, ) ) // StreamValidatorsInfo returns a stream of information for given validators. // Validators are supplied dynamically by the client, and can be added, removed and reset at any time. // Information about the current set of validators is supplied as soon as the end-of-epoch accounting has been processed, // providing a near real-time view of the state of the validators. // Note that this will stream information whilst syncing; this is intended, to allow for complete validator state capture // over time. If this is not required then the client can either wait until the beacon node is synced, or filter results // based on the epoch value in the returned validator info. func (bs *Server) StreamValidatorsInfo(stream ethpb.BeaconChain_StreamValidatorsInfoServer) error { stateChannel := make(chan *feed.Event, params.BeaconConfig().SlotsPerEpoch) epochDuration := time.Duration(params.BeaconConfig().SecondsPerSlot*params.BeaconConfig().SlotsPerEpoch) * time.Second // Fetch our current epoch. headState, err := bs.HeadFetcher.HeadState(bs.Ctx) if err != nil { return status.Error(codes.Internal, "Could not access head state") } if headState == nil { return status.Error(codes.Internal, "Not ready to serve information") } // Create an infostream struct. This will track relevant state for the stream. infostream := &infostream{ ctx: bs.Ctx, headFetcher: bs.HeadFetcher, depositFetcher: bs.DepositFetcher, blockFetcher: bs.BlockFetcher, beaconDB: bs.BeaconDB, pubKeys: make([][]byte, 0), pubKeysMutex: &sync.RWMutex{}, stateChannel: stateChannel, stateSub: bs.StateNotifier.StateFeed().Subscribe(stateChannel), eth1Deposits: cache.New(epochDuration, epochDuration*2), eth1DepositsMutex: &sync.RWMutex{}, eth1Blocktimes: cache.New(epochDuration*12, epochDuration*24), eth1BlocktimesMutex: &sync.RWMutex{}, currentEpoch: types.Epoch(headState.Slot() / params.BeaconConfig().SlotsPerEpoch), stream: stream, genesisTime: headState.GenesisTime(), } defer infostream.stateSub.Unsubscribe() return infostream.handleConnection() } // handleConnection handles the two-way connection between client and server. func (is *infostream) handleConnection() error { // Handle messages from client. go func() { for { msg, err := is.stream.Recv() if errors.Is(err, io.EOF) { return } if err != nil { // Errors handle elsewhere select { case <-is.stream.Context().Done(): return case <-is.ctx.Done(): return case <-is.stateSub.Err(): return default: } log.WithError(err).Debug("Receive from validators stream listener failed; client probably closed connection") return } is.handleMessage(msg) } }() // Send responses at the end of every epoch. for { select { case stateEvent := <-is.stateChannel: if stateEvent.Type == statefeed.BlockProcessed { is.handleBlockProcessed() } case <-is.stateSub.Err(): return status.Error(codes.Aborted, "Subscriber closed") case <-is.ctx.Done(): return status.Error(codes.Canceled, "Service context canceled") case <-is.stream.Context().Done(): return status.Error(codes.Canceled, "Stream context canceled") } } } // handleMessage handles a message from the infostream client, updating the list of keys. func (is *infostream) handleMessage(msg *ethpb.ValidatorChangeSet) { var err error switch msg.Action { case ethpb.SetAction_ADD_VALIDATOR_KEYS: err = is.handleAddValidatorKeys(msg.PublicKeys) case ethpb.SetAction_REMOVE_VALIDATOR_KEYS: is.handleRemoveValidatorKeys(msg.PublicKeys) case ethpb.SetAction_SET_VALIDATOR_KEYS: err = is.handleSetValidatorKeys(msg.PublicKeys) } if err != nil { log.WithError(err).Debug("Error handling request; closing stream") is.stream.Context().Done() } } // handleAddValidatorKeys handles a request to add validator keys. func (is *infostream) handleAddValidatorKeys(reqPubKeys [][]byte) error { is.pubKeysMutex.Lock() // Create existence map to ensure we don't duplicate keys. pubKeysMap := make(map[[48]byte]bool, len(is.pubKeys)) for _, pubKey := range is.pubKeys { pubKeysMap[bytesutil.ToBytes48(pubKey)] = true } addedPubKeys := make([][]byte, 0, len(reqPubKeys)) for _, pubKey := range reqPubKeys { if _, exists := pubKeysMap[bytesutil.ToBytes48(pubKey)]; !exists { is.pubKeys = append(is.pubKeys, pubKey) addedPubKeys = append(addedPubKeys, pubKey) } } is.pubKeysMutex.Unlock() // Send immediate info for the new validators. return is.sendValidatorsInfo(addedPubKeys) } // handleSetValidatorKeys handles a request to set validator keys. func (is *infostream) handleSetValidatorKeys(reqPubKeys [][]byte) error { is.pubKeysMutex.Lock() is.pubKeys = make([][]byte, 0, len(reqPubKeys)) is.pubKeys = append(is.pubKeys, reqPubKeys...) is.pubKeysMutex.Unlock() // Send immediate info for the new validators. return is.sendValidatorsInfo(is.pubKeys) } // handleRemoveValidatorKeys handles a request to remove validator keys. func (is *infostream) handleRemoveValidatorKeys(reqPubKeys [][]byte) { is.pubKeysMutex.Lock() // Create existence map to track what we have to delete. pubKeysMap := make(map[[48]byte]bool, len(reqPubKeys)) for _, pubKey := range reqPubKeys { pubKeysMap[bytesutil.ToBytes48(pubKey)] = true } max := len(is.pubKeys) for i := 0; i < max; i++ { if _, exists := pubKeysMap[bytesutil.ToBytes48(is.pubKeys[i])]; exists { copy(is.pubKeys[i:], is.pubKeys[i+1:]) is.pubKeys = is.pubKeys[:len(is.pubKeys)-1] i-- max-- } } is.pubKeysMutex.Unlock() } // sendValidatorsInfo sends validator info for a specific set of public keys. func (is *infostream) sendValidatorsInfo(pubKeys [][]byte) error { validators, err := is.generateValidatorsInfo(pubKeys) if err != nil { return err } for _, validator := range validators { if err := is.stream.Send(validator); err != nil { return err } } return nil } // generateValidatorsInfo generates the validator info for a set of public keys. func (is *infostream) generateValidatorsInfo(pubKeys [][]byte) ([]*ethpb.ValidatorInfo, error) { if is.headFetcher == nil { return nil, status.Error(codes.Internal, "No head fetcher") } headState, err := is.headFetcher.HeadState(is.ctx) if err != nil { return nil, status.Error(codes.Internal, "Could not access head state") } if headState == nil { return nil, status.Error(codes.Internal, "Not ready to serve information") } epoch := types.Epoch(headState.Slot() / params.BeaconConfig().SlotsPerEpoch) if epoch == 0 { // Not reporting, but no error. return nil, nil } // We are reporting on the state at the end of the *previous* epoch. epoch-- res := make([]*ethpb.ValidatorInfo, 0, len(pubKeys)) for _, pubKey := range pubKeys { i, e := headState.ValidatorIndexByPubkey(bytesutil.ToBytes48(pubKey)) if !e { return nil, errors.New("could not find public key") } v, err := headState.ValidatorAtIndexReadOnly(i) if err != nil { return nil, status.Errorf(codes.Internal, "Could not retrieve validator: %v", err) } info, err := is.generateValidatorInfo(pubKey, v, headState, epoch) if err != nil { return nil, err } res = append(res, info) } // Calculate activation time for pending validators (if there are any). if err := is.calculateActivationTimeForPendingValidators(res, headState, epoch); err != nil { return nil, err } return res, nil } // generateValidatorInfo generates the validator info for a public key. func (is *infostream) generateValidatorInfo(pubKey []byte, validator state.ReadOnlyValidator, headState *state.BeaconState, epoch types.Epoch) (*ethpb.ValidatorInfo, error) { info := ðpb.ValidatorInfo{ PublicKey: pubKey, Epoch: epoch, Status: ethpb.ValidatorStatus_UNKNOWN_STATUS, } // Index var ok bool info.Index, ok = headState.ValidatorIndexByPubkey(bytesutil.ToBytes48(pubKey)) if !ok { // We don't know of this validator; it's either a pending deposit or totally unknown. return is.generatePendingValidatorInfo(info) } // Status and progression timestamp info.Status, info.TransitionTimestamp = is.calculateStatusAndTransition(validator, helpers.CurrentEpoch(headState)) // Balance info.Balance = headState.Balances()[info.Index] // Effective balance (for attesting states) if info.Status == ethpb.ValidatorStatus_ACTIVE || info.Status == ethpb.ValidatorStatus_SLASHING || info.Status == ethpb.ValidatorStatus_EXITING { info.EffectiveBalance = validator.EffectiveBalance() } return info, nil } // generatePendingValidatorInfo generates the validator info for a pending (or unknown) key. func (is *infostream) generatePendingValidatorInfo(info *ethpb.ValidatorInfo) (*ethpb.ValidatorInfo, error) { key := fmt.Sprintf("%s", info.PublicKey) var deposit *eth1Deposit is.eth1DepositsMutex.Lock() if fetchedDeposit, exists := is.eth1Deposits.Get(key); exists { eth1DepositCacheHits.Inc() var ok bool deposit, ok = fetchedDeposit.(*eth1Deposit) if !ok { is.eth1DepositsMutex.Unlock() return nil, errors.New("cached eth1 deposit is not type *eth1Deposit") } } else { eth1DepositCacheMisses.Inc() fetchedDeposit, eth1BlockNumber := is.depositFetcher.DepositByPubkey(is.ctx, info.PublicKey) if fetchedDeposit == nil { deposit = ð1Deposit{} is.eth1Deposits.Set(key, deposit, cache.DefaultExpiration) } else { deposit = ð1Deposit{ block: eth1BlockNumber, data: fetchedDeposit.Data, } is.eth1Deposits.Set(key, deposit, cache.DefaultExpiration) } } is.eth1DepositsMutex.Unlock() if deposit.block != nil { info.Status = ethpb.ValidatorStatus_DEPOSITED if queueTimestamp, err := is.depositQueueTimestamp(deposit.block); err != nil { log.WithError(err).Error("Could not obtain queue activation timestamp") } else { info.TransitionTimestamp = queueTimestamp } info.Balance = deposit.data.Amount } return info, nil } func (is *infostream) calculateActivationTimeForPendingValidators(res []*ethpb.ValidatorInfo, headState *state.BeaconState, epoch types.Epoch) error { // pendingValidatorsMap is map from the validator pubkey to the index in our return array pendingValidatorsMap := make(map[[48]byte]int) for i, info := range res { if info.Status == ethpb.ValidatorStatus_PENDING { pendingValidatorsMap[bytesutil.ToBytes48(info.PublicKey)] = i } } if len(pendingValidatorsMap) == 0 { // Nothing to do. return nil } // Fetch the list of pending validators; count the number of attesting validators. numAttestingValidators := uint64(0) pendingValidators := make([]uint64, 0, headState.NumValidators()) err := headState.ReadFromEveryValidator(func(idx int, val state.ReadOnlyValidator) error { if val.IsNil() { return errors.New("nil validator in state") } if helpers.IsEligibleForActivationUsingTrie(headState, val) { pubKey := val.PublicKey() validatorIndex, ok := headState.ValidatorIndexByPubkey(pubKey) if ok { pendingValidators = append(pendingValidators, validatorIndex) } } if helpers.IsActiveValidatorUsingTrie(val, epoch) { numAttestingValidators++ } return nil }) if err != nil { return err } sortableIndices := &indicesSorter{ indices: pendingValidators, } sort.Sort(sortableIndices) sortedIndices := sortableIndices.indices // Loop over epochs, roughly simulating progression. for curEpoch := epoch + 1; len(sortedIndices) > 0 && len(pendingValidators) > 0; curEpoch++ { toProcess, err := helpers.ValidatorChurnLimit(numAttestingValidators) if err != nil { log.WithError(err).Error("Could not determine validator churn limit") } if toProcess > uint64(len(sortedIndices)) { toProcess = uint64(len(sortedIndices)) } for i := uint64(0); i < toProcess; i++ { validator, err := headState.ValidatorAtIndexReadOnly(sortedIndices[i]) if err != nil { return err } if index, exists := pendingValidatorsMap[validator.PublicKey()]; exists { res[index].TransitionTimestamp = is.epochToTimestamp(helpers.ActivationExitEpoch(curEpoch)) delete(pendingValidatorsMap, validator.PublicKey()) } numAttestingValidators++ } sortedIndices = sortedIndices[toProcess:] } return nil } // handleBlockProcessed handles the situation where a block has been processed by the Prysm server. func (is *infostream) handleBlockProcessed() { headState, err := is.headFetcher.HeadState(is.ctx) if err != nil { log.Warn("Could not access head state for infostream") return } if headState == nil { // We aren't ready to serve information return } blockEpoch := types.Epoch(headState.Slot() / params.BeaconConfig().SlotsPerEpoch) if blockEpoch == is.currentEpoch { // Epoch hasn't changed, nothing to report yet. return } is.currentEpoch = blockEpoch if err := is.sendValidatorsInfo(is.pubKeys); err != nil { // Client probably disconnected. log.WithError(err).Debug("Could not send infostream response") } } type indicesSorter struct { indices []uint64 } func (s indicesSorter) Len() int { return len(s.indices) } func (s indicesSorter) Swap(i, j int) { s.indices[i], s.indices[j] = s.indices[j], s.indices[i] } func (s indicesSorter) Less(i, j int) bool { return s.indices[i] < s.indices[j] } func (is *infostream) calculateStatusAndTransition(validator state.ReadOnlyValidator, currentEpoch types.Epoch) (ethpb.ValidatorStatus, uint64) { farFutureEpoch := params.BeaconConfig().FarFutureEpoch if validator.IsNil() { return ethpb.ValidatorStatus_UNKNOWN_STATUS, 0 } if currentEpoch < validator.ActivationEligibilityEpoch() { if helpers.IsEligibleForActivationQueueUsingTrie(validator) { return ethpb.ValidatorStatus_DEPOSITED, is.epochToTimestamp(validator.ActivationEligibilityEpoch()) } return ethpb.ValidatorStatus_DEPOSITED, 0 } if currentEpoch < validator.ActivationEpoch() { return ethpb.ValidatorStatus_PENDING, is.epochToTimestamp(validator.ActivationEpoch()) } if validator.ExitEpoch() == farFutureEpoch { return ethpb.ValidatorStatus_ACTIVE, 0 } if currentEpoch < validator.ExitEpoch() { if validator.Slashed() { return ethpb.ValidatorStatus_SLASHING, is.epochToTimestamp(validator.ExitEpoch()) } return ethpb.ValidatorStatus_EXITING, is.epochToTimestamp(validator.ExitEpoch()) } return ethpb.ValidatorStatus_EXITED, is.epochToTimestamp(validator.WithdrawableEpoch()) } // epochToTimestamp converts an epoch number to a timestamp. func (is *infostream) epochToTimestamp(epoch types.Epoch) uint64 { return is.genesisTime + uint64(epoch)*params.BeaconConfig().SecondsPerSlot*params.BeaconConfig().SlotsPerEpoch } // depositQueueTimestamp calculates the timestamp for exit of the validator from the deposit queue. func (is *infostream) depositQueueTimestamp(eth1BlockNumber *big.Int) (uint64, error) { var blockTimestamp uint64 key := fmt.Sprintf("%v", eth1BlockNumber) is.eth1BlocktimesMutex.Lock() if cachedTimestamp, exists := is.eth1Blocktimes.Get(key); exists { eth1BlocktimeCacheHits.Inc() var ok bool blockTimestamp, ok = cachedTimestamp.(uint64) if !ok { is.eth1BlocktimesMutex.Unlock() return 0, errors.New("cached timestamp is not type uint64") } } else { eth1BlocktimeCacheMisses.Inc() var err error blockTimestamp, err = is.blockFetcher.BlockTimeByHeight(is.ctx, eth1BlockNumber) if err != nil { is.eth1BlocktimesMutex.Unlock() return 0, err } is.eth1Blocktimes.Set(key, blockTimestamp, cache.DefaultExpiration) } is.eth1BlocktimesMutex.Unlock() followTime := time.Duration(params.BeaconConfig().Eth1FollowDistance*params.BeaconConfig().SecondsPerETH1Block) * time.Second eth1UnixTime := time.Unix(int64(blockTimestamp), 0).Add(followTime) period := uint64(params.BeaconConfig().EpochsPerEth1VotingPeriod.Mul(params.BeaconConfig().SlotsPerEpoch)) votingPeriod := time.Duration(period*params.BeaconConfig().SecondsPerSlot) * time.Second activationTime := eth1UnixTime.Add(votingPeriod) eth2Genesis := time.Unix(int64(is.genesisTime), 0) if eth2Genesis.After(activationTime) { return is.genesisTime, nil } return uint64(activationTime.Unix()), nil }