// Package math includes important helpers for Ethereum such as fast integer square roots. package math import ( "errors" stdmath "math" "math/big" "math/bits" "sync" "github.com/thomaso-mirodin/intmath/u64" ) func init() { // The Int function assumes that the operating system is 64 bit. In any case, Ethereum // consensus layer uses 64 bit values almost exclusively so 64 bit OS requirement should // already be established. This panic is a strict fail fast feedback to alert 32 bit users // that they are not supported. if stdmath.MaxUint < stdmath.MaxUint64 { panic("Prysm is only supported on 64 bit OS") } } // ErrOverflow occurs when an operation exceeds max or minimum values. var ( ErrOverflow = errors.New("integer overflow") ErrDivByZero = errors.New("integer divide by zero") ErrMulOverflow = errors.New("multiplication overflows") ErrAddOverflow = errors.New("addition overflows") ErrSubUnderflow = errors.New("subtraction underflow") // Sensible guess for 500 000 validators cachedSquareRoot = struct { sync.Mutex squareRoot, balance uint64 }{squareRoot: 126491106, balance: 15999999897103236} ) // Common square root values. var squareRootTable = map[uint64]uint64{ 4: 2, 16: 4, 64: 8, 256: 16, 1024: 32, 4096: 64, 16384: 128, 65536: 256, 262144: 512, 1048576: 1024, 4194304: 2048, } // CachedSquareRoot implements Newton's algorithm to compute the square root of // the given uint64 starting from the last cached value func CachedSquareRoot(balance uint64) uint64 { if balance == 0 { return 0 } cachedSquareRoot.Lock() defer cachedSquareRoot.Unlock() if balance == cachedSquareRoot.balance { return cachedSquareRoot.squareRoot } cachedSquareRoot.balance = balance val := balance / cachedSquareRoot.squareRoot for { cachedSquareRoot.squareRoot = (cachedSquareRoot.squareRoot + val) / 2 val = balance / cachedSquareRoot.squareRoot if cachedSquareRoot.squareRoot <= val { return cachedSquareRoot.squareRoot } } } // IntegerSquareRoot defines a function that returns the // largest possible integer root of a number using go's standard library. func IntegerSquareRoot(n uint64) uint64 { if v, ok := squareRootTable[n]; ok { return v } // Golang floating point precision may be lost above 52 bits, so we use a // non floating point method. u64.Sqrt is about x2.5 slower than math.Sqrt. if n >= 1<<52 { return u64.Sqrt(n) } return uint64(stdmath.Sqrt(float64(n))) } // CeilDiv8 divides the input number by 8 // and takes the ceiling of that number. func CeilDiv8(n int) int { ret := n / 8 if n%8 > 0 { ret++ } return ret } // IsPowerOf2 returns true if n is an // exact power of two. False otherwise. func IsPowerOf2(n uint64) bool { return n != 0 && (n&(n-1)) == 0 } // PowerOf2 returns an integer that is the provided // exponent of 2. Can only return powers of 2 till 63, // after that it overflows func PowerOf2(n uint64) uint64 { if n >= 64 { panic("integer overflow") } return 1 << n } // Max returns the larger integer of the two // given ones.This is used over the Max function // in the standard math library because that max function // has to check for some special floating point cases // making it slower by a magnitude of 10. func Max(a, b uint64) uint64 { if a > b { return a } return b } // Min returns the smaller integer of the two // given ones. This is used over the Min function // in the standard math library because that min function // has to check for some special floating point cases // making it slower by a magnitude of 10. func Min(a, b uint64) uint64 { if a < b { return a } return b } // Mul64 multiples 2 64-bit unsigned integers and checks if they // lead to an overflow. If they do not, it returns the result // without an error. func Mul64(a, b uint64) (uint64, error) { overflows, val := bits.Mul64(a, b) if overflows > 0 { return 0, errors.New("multiplication overflows") } return val, nil } // Div64 divides two 64-bit unsigned integers and checks for errors. func Div64(a, b uint64) (uint64, error) { if b == 0 { return 0, ErrDivByZero } val, _ := bits.Div64(0, a, b) return val, nil } // Add64 adds 2 64-bit unsigned integers and checks if they // lead to an overflow. If they do not, it returns the result // without an error. func Add64(a, b uint64) (uint64, error) { res, carry := bits.Add64(a, b, 0 /* carry */) if carry > 0 { return 0, errors.New("addition overflows") } return res, nil } // Sub64 subtracts two 64-bit unsigned integers and checks for errors. func Sub64(a, b uint64) (uint64, error) { res, borrow := bits.Sub64(a, b, 0 /* borrow */) if borrow > 0 { return 0, errors.New("subtraction underflow") } return res, nil } // Mod64 finds remainder of division of two 64-bit unsigned integers and checks for errors. func Mod64(a, b uint64) (uint64, error) { if b == 0 { return 0, ErrDivByZero } _, val := bits.Div64(0, a, b) return val, nil } // Int returns the integer value of the uint64 argument. If there is an overflow, then an error is // returned. func Int(u uint64) (int, error) { if u > stdmath.MaxInt { return 0, ErrOverflow } return int(u), nil // lint:ignore uintcast -- This is the preferred method of casting uint64 to int. } // AddInt adds two or more integers and checks for integer overflows. func AddInt(i ...int) (int, error) { var sum int for _, ii := range i { if ii > 0 && sum > stdmath.MaxInt-ii { return 0, ErrOverflow } else if ii < 0 && sum < stdmath.MinInt-ii { return 0, ErrOverflow } sum += ii } return sum, nil } // Wei is the smallest unit of Ether, represented as a pointer to a bigInt. type Wei *big.Int // Gwei is a denomination of 1e9 Wei represented as an uint64. type Gwei uint64 // WeiToGwei converts big int wei to uint64 gwei. // The input `v` is copied before being modified. func WeiToGwei(v Wei) Gwei { if v == nil { return 0 } gweiPerEth := big.NewInt(1e9) copied := big.NewInt(0).Set(v) copied.Div(copied, gweiPerEth) return Gwei(copied.Uint64()) } // IsValidUint256 given a bigint checks if the value is a valid Uint256 func IsValidUint256(bi *big.Int) bool { return bi.Cmp(big.NewInt(0)) >= 0 && bi.BitLen() <= 256 }