package sharding import ( "fmt" "math" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto/sha3" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/sharding/utils" ) // Collation defines a base struct that serves as a primitive equivalent of a "block" // in a sharded Ethereum blockchain. type Collation struct { header *CollationHeader // body represents the serialized blob of a collation's transactions. // this is a read-only property. body []byte // transactions serves as a useful slice to store deserialized chunks from the // collation's body. Every time this transactions slice is updated, the serialized // body would need to be recalculated. This will be a useful property for proposers // in our system. transactions []*types.Transaction } // CollationHeader base struct. type CollationHeader struct { // RLP decoding only works on exported properties of structs. In this case, we want // to keep collation properties as read-only and only accessible through getters. // We can accomplish this through this nested data property. data collationHeaderData } type collationHeaderData struct { ShardID *big.Int // the shard ID of the shard. ChunkRoot *common.Hash // the root of the chunk tree which identifies collation body. Period *big.Int // the period number in which collation to be included. ProposerAddress *common.Address // address of the collation proposer. ProposerSignature []byte // the proposer's signature for calculating collation hash. } var collationSizelimit = int64(math.Pow(float64(2), float64(20))) // NewCollation initializes a collation and leaves it up to clients to serialize, deserialize // and provide the body and transactions upon creation. func NewCollation(header *CollationHeader, body []byte, transactions []*types.Transaction) *Collation { return &Collation{header, body, transactions} } // NewCollationHeader initializes a collation header struct. func NewCollationHeader(shardID *big.Int, chunkRoot *common.Hash, period *big.Int, proposerAddress *common.Address, proposerSignature []byte) *CollationHeader { data := collationHeaderData{ ShardID: shardID, ChunkRoot: chunkRoot, Period: period, ProposerAddress: proposerAddress, ProposerSignature: proposerSignature, } return &CollationHeader{data} } // Hash takes the keccak256 of the collation header's data contents. func (h *CollationHeader) Hash() (hash common.Hash) { hw := sha3.NewKeccak256() rlp.Encode(hw, h.data) hw.Sum(hash[:0]) return hash } // AddSig adds the signature of proposer after collationHeader gets signed. func (h *CollationHeader) AddSig(sig []byte) { h.data.ProposerSignature = sig } // Sig is the signature the collation corresponds to. func (h *CollationHeader) Sig() []byte { return h.data.ProposerSignature } // ShardID the collation corresponds to. func (h *CollationHeader) ShardID() *big.Int { return h.data.ShardID } // Period the collation corresponds to. func (h *CollationHeader) Period() *big.Int { return h.data.Period } // ChunkRoot of the serialized collation body. func (h *CollationHeader) ChunkRoot() *common.Hash { return h.data.ChunkRoot } // EncodeRLP gives an encoded representation of the collation header. func (h *CollationHeader) EncodeRLP() ([]byte, error) { return rlp.EncodeToBytes(&h.data) } // DecodeRLP uses an RLP Stream to populate the data field of a collation header. func (h *CollationHeader) DecodeRLP(s *rlp.Stream) error { return s.Decode(&h.data) } // Header returns the collation's header. func (c *Collation) Header() *CollationHeader { return c.header } // Body returns the collation's byte body. func (c *Collation) Body() []byte { return c.body } // Transactions returns an array of tx's in the collation. func (c *Collation) Transactions() []*types.Transaction { return c.transactions } // ProposerAddress is the coinbase addr of the creator for the collation. func (c *Collation) ProposerAddress() *common.Address { return c.header.data.ProposerAddress } // CalculateChunkRoot updates the collation header's chunk root based on the body. func (c *Collation) CalculateChunkRoot() { chunks := BytesToChunks(c.body) // wrapper allowing us to merklizing the chunks. chunkRoot := types.DeriveSha(chunks) // merklize the serialized blobs. c.header.data.ChunkRoot = &chunkRoot } // CalculatePOC calculates the Proof of Custody given the collation body and // some salt, which is appended to each chunk in the collation body before it // is hashed. func (c *Collation) CalculatePOC(salt []byte) common.Hash { body := make([]byte, 0, len(c.body)*(1+len(salt))) // TODO: Use 32 byte chunks instead of a single byte for _, chunk := range c.body { body = append(append(body, salt...), chunk) } if len(c.body) == 0 { body = salt } chunks := BytesToChunks(body) // wrapper allowing us to merklizing the chunks. return types.DeriveSha(chunks) // merklize the serialized blobs. } // BytesToChunks takes the collation body bytes and wraps it into type Chunks, // which can be merklized. func BytesToChunks(body []byte) Chunks { return Chunks(body) } // convertTxToRawBlob transactions into RawBlobs. This step encodes transactions uses RLP encoding func convertTxToRawBlob(txs []*types.Transaction) ([]*utils.RawBlob, error) { blobs := make([]*utils.RawBlob, len(txs)) for i := 0; i < len(txs); i++ { err := error(nil) blobs[i], err = utils.NewRawBlob(txs[i], false) if err != nil { return nil, err } } return blobs, nil } // SerializeTxToBlob converts transactions using two steps. First performs RLP encoding, and then blob encoding. func SerializeTxToBlob(txs []*types.Transaction) ([]byte, error) { blobs, err := convertTxToRawBlob(txs) if err != nil { return nil, err } serializedTx, err := utils.Serialize(blobs) if err != nil { return nil, err } if int64(len(serializedTx)) > collationSizelimit { return nil, fmt.Errorf("the serialized body size %d exceeded the collation size limit %d", len(serializedTx), collationSizelimit) } return serializedTx, nil } // convertRawBlobToTx converts raw blobs back to their original transactions. func convertRawBlobToTx(rawBlobs []utils.RawBlob) ([]*types.Transaction, error) { blobs := make([]*types.Transaction, len(rawBlobs)) for i := 0; i < len(rawBlobs); i++ { blobs[i] = types.NewTransaction(0, common.HexToAddress("0x"), nil, 0, nil, nil) err := utils.ConvertFromRawBlob(&rawBlobs[i], blobs[i]) if err != nil { return nil, fmt.Errorf("creation of transactions from raw blobs failed: %v", err) } } return blobs, nil } // DeserializeBlobToTx takes byte array blob and converts it back // to original txs and returns the txs in tx array. func DeserializeBlobToTx(serialisedBlob []byte) (*[]*types.Transaction, error) { deserializedBlobs, err := utils.Deserialize(serialisedBlob) if err != nil { return nil, err } txs, err := convertRawBlobToTx(deserializedBlobs) if err != nil { return nil, err } return &txs, nil } // Chunks is a wrapper around a chunk array to implement DerivableList, // which allows us to Merklize the chunks into the chunkRoot. type Chunks []byte // Len returns the number of chunks in this list. func (ch Chunks) Len() int { return len(ch) } // GetRlp returns the RLP encoding of one chunk from the list. func (ch Chunks) GetRlp(i int) []byte { bytes, _ := rlp.EncodeToBytes(ch[i]) return bytes }