package sharding import ( "fmt" "math" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto/sha3" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/sharding/utils" ) // Collation base struct. type Collation struct { header *CollationHeader // body represents the serialized blob of a collation's transactions. // this is a read-only property. body []byte // transactions serves as a useful slice to store deserialized chunks from the // collation's body. Every time this transactions slice is updated, the serialized // body would need to be recalculated. This will be a useful property for proposers // in our system. transactions []*types.Transaction } // CollationHeader base struct. type CollationHeader struct { // RLP decoding only works on exported properties of structs. In this case, we want // to keep collation properties as read-only and only accessible through getters. // We can accomplish this through this nested data property. data collationHeaderData } type collationHeaderData struct { ShardID *big.Int // the shard ID of the shard. ChunkRoot *common.Hash // the root of the chunk tree which identifies collation body. Period *big.Int // the period number in which collation to be included. ProposerAddress *common.Address // address of the collation proposer. ProposerSignature []byte // the proposer's signature for calculating collation hash. } var collationSizelimit = int64(math.Pow(float64(2), float64(20))) // NewCollation initializes a collation and leaves it up to clients to serialize, deserialize // and provide the body and transactions upon creation. func NewCollation(header *CollationHeader, body []byte, transactions []*types.Transaction) *Collation { return &Collation{header, body, transactions} } // NewCollationHeader initializes a collation header struct. func NewCollationHeader(shardID *big.Int, chunkRoot *common.Hash, period *big.Int, proposerAddress *common.Address, proposerSignature []byte) *CollationHeader { data := collationHeaderData{ ShardID: shardID, ChunkRoot: chunkRoot, Period: period, ProposerAddress: proposerAddress, ProposerSignature: proposerSignature, } return &CollationHeader{data} } // Hash takes the keccak256 of the collation header's data contents. func (h *CollationHeader) Hash() (hash common.Hash) { hw := sha3.NewKeccak256() rlp.Encode(hw, h.data) hw.Sum(hash[:0]) return hash } // ShardID the collation corresponds to. func (h *CollationHeader) ShardID() *big.Int { return h.data.ShardID } // Period the collation corresponds to. func (h *CollationHeader) Period() *big.Int { return h.data.Period } // ChunkRoot of the serialized collation body. func (h *CollationHeader) ChunkRoot() *common.Hash { return h.data.ChunkRoot } // EncodeRLP gives an encoded representation of the collation header. func (h *CollationHeader) EncodeRLP() ([]byte, error) { return rlp.EncodeToBytes(&h.data) } // DecodeRLP uses an RLP Stream to populate the data field of a collation header. func (h *CollationHeader) DecodeRLP(s *rlp.Stream) error { return s.Decode(&h.data) } // Header returns the collation's header. func (c *Collation) Header() *CollationHeader { return c.header } // Body returns the collation's byte body. func (c *Collation) Body() []byte { return c.body } // Transactions returns an array of tx's in the collation. func (c *Collation) Transactions() []*types.Transaction { return c.transactions } // ProposerAddress is the coinbase addr of the creator for the collation. func (c *Collation) ProposerAddress() *common.Address { return c.header.data.ProposerAddress } // CalculateChunkRoot updates the collation header's chunk root based on the body. func (c *Collation) CalculateChunkRoot() { // TODO: this needs to be based on blob serialization. // For proof of custody we need to split chunks (body) into chunk + salt and // take the merkle root of that. chunkRoot := common.BytesToHash(c.body) c.header.data.ChunkRoot = &chunkRoot } // ConvertBackToTx converts raw blobs back to their original transactions. func ConvertBackToTx(rawBlobs []utils.RawBlob) ([]*types.Transaction, error) { blobs := make([]*types.Transaction, len(rawBlobs)) for i := 0; i < len(rawBlobs); i++ { blobs[i] = types.NewTransaction(0, common.HexToAddress("0x"), nil, 0, nil, nil) err := utils.ConvertFromRawBlob(&rawBlobs[i], blobs[i]) if err != nil { return nil, fmt.Errorf("Creation of transactions from raw blobs failed: %v", err) } } return blobs, nil } // Serialize method serializes the input transactions // and returns the chunks in byte arrays. func Serialize(txs []*types.Transaction) ([]byte, error) { blobs := make([]*utils.RawBlob, len(txs)) for i := 0; i < len(txs); i++ { err := error(nil) blobs[i], err = utils.NewRawBlob(txs[i], false) if err != nil { return nil, fmt.Errorf("%v", err) } } serializedTx, err := utils.Serialize(blobs) if err != nil { return nil, fmt.Errorf("%v", err) } if int64(len(serializedTx)) > collationSizelimit { return nil, fmt.Errorf("The serialized body exceeded the collation size limit: %v", serializedTx) } return serializedTx, nil } // Deserialize takes a byte array and converts its back to its original transactions. func Deserialize(serialisedBlob []byte) (*[]*types.Transaction, error) { deserializedBlobs, err := utils.Deserialize(serialisedBlob) if err != nil { return nil, fmt.Errorf("%v", err) } txs, err := ConvertBackToTx(deserializedBlobs) if err != nil { return nil, fmt.Errorf("%v", err) } return &txs, nil }