package stateutil import ( "bytes" "encoding/binary" "github.com/pkg/errors" "github.com/prysmaticlabs/prysm/config/features" fieldparams "github.com/prysmaticlabs/prysm/config/fieldparams" "github.com/prysmaticlabs/prysm/crypto/hash" "github.com/prysmaticlabs/prysm/crypto/hash/htr" "github.com/prysmaticlabs/prysm/encoding/ssz" ethpb "github.com/prysmaticlabs/prysm/proto/prysm/v1alpha1" ) const ( // number of field roots for the validator object. validatorFieldRoots = 8 // Depth of tree representation of an individual // validator. // NumOfRoots = 2 ^ (TreeDepth) // 8 = 2 ^ 3 validatorTreeDepth = 3 ) // ValidatorRegistryRoot computes the HashTreeRoot Merkleization of // a list of validator structs according to the Ethereum // Simple Serialize specification. func ValidatorRegistryRoot(vals []*ethpb.Validator) ([32]byte, error) { return validatorRegistryRoot(vals) } func validatorRegistryRoot(validators []*ethpb.Validator) ([32]byte, error) { hasher := hash.CustomSHA256Hasher() var err error var roots [][32]byte if features.Get().EnableVectorizedHTR { roots, err = optimizedValidatorRoots(validators) if err != nil { return [32]byte{}, err } } else { roots, err = validatorRoots(hasher, validators) if err != nil { return [32]byte{}, err } } validatorsRootsRoot, err := ssz.BitwiseMerkleize(hasher, roots, uint64(len(roots)), fieldparams.ValidatorRegistryLimit) if err != nil { return [32]byte{}, errors.Wrap(err, "could not compute validator registry merkleization") } validatorsRootsBuf := new(bytes.Buffer) if err := binary.Write(validatorsRootsBuf, binary.LittleEndian, uint64(len(validators))); err != nil { return [32]byte{}, errors.Wrap(err, "could not marshal validator registry length") } // We need to mix in the length of the slice. var validatorsRootsBufRoot [32]byte copy(validatorsRootsBufRoot[:], validatorsRootsBuf.Bytes()) res := ssz.MixInLength(validatorsRootsRoot, validatorsRootsBufRoot[:]) return res, nil } func validatorRoots(hasher func([]byte) [32]byte, validators []*ethpb.Validator) ([][32]byte, error) { roots := make([][32]byte, len(validators)) for i := 0; i < len(validators); i++ { val, err := validatorRoot(hasher, validators[i]) if err != nil { return [][32]byte{}, errors.Wrap(err, "could not compute validators merkleization") } roots[i] = val } return roots, nil } func optimizedValidatorRoots(validators []*ethpb.Validator) ([][32]byte, error) { // Exit early if no validators are provided. if len(validators) == 0 { return [][32]byte{}, nil } roots := make([][32]byte, 0, len(validators)*validatorFieldRoots) hasher := hash.CustomSHA256Hasher() for i := 0; i < len(validators); i++ { fRoots, err := ValidatorFieldRoots(hasher, validators[i]) if err != nil { return [][32]byte{}, errors.Wrap(err, "could not compute validators merkleization") } roots = append(roots, fRoots...) } // A validator's tree can represented with a depth of 3. As log2(8) = 3 // Using this property we can lay out all the individual fields of a // validator and hash them in single level using our vectorized routine. for i := 0; i < validatorTreeDepth; i++ { // Overwrite input lists as we are hashing by level // and only need the highest level to proceed. outputLen := len(roots) / 2 htr.VectorizedSha256(roots, roots) roots = roots[:outputLen] } return roots, nil } func validatorRoot(hasher ssz.HashFn, validator *ethpb.Validator) ([32]byte, error) { if validator == nil { return [32]byte{}, errors.New("nil validator") } return ValidatorRootWithHasher(hasher, validator) }