package doublylinkedtree import ( "context" "fmt" "github.com/pkg/errors" "github.com/prysmaticlabs/prysm/beacon-chain/core/blocks" "github.com/prysmaticlabs/prysm/beacon-chain/forkchoice" forkchoicetypes "github.com/prysmaticlabs/prysm/beacon-chain/forkchoice/types" "github.com/prysmaticlabs/prysm/beacon-chain/state" "github.com/prysmaticlabs/prysm/config/features" fieldparams "github.com/prysmaticlabs/prysm/config/fieldparams" "github.com/prysmaticlabs/prysm/config/params" types "github.com/prysmaticlabs/prysm/consensus-types/primitives" "github.com/prysmaticlabs/prysm/encoding/bytesutil" ethpb "github.com/prysmaticlabs/prysm/proto/prysm/v1alpha1" "github.com/prysmaticlabs/prysm/runtime/version" "github.com/prysmaticlabs/prysm/time/slots" "github.com/sirupsen/logrus" "go.opencensus.io/trace" ) // New initializes a new fork choice store. func New() *ForkChoice { s := &Store{ justifiedCheckpoint: &forkchoicetypes.Checkpoint{}, bestJustifiedCheckpoint: &forkchoicetypes.Checkpoint{}, unrealizedJustifiedCheckpoint: &forkchoicetypes.Checkpoint{}, unrealizedFinalizedCheckpoint: &forkchoicetypes.Checkpoint{}, prevJustifiedCheckpoint: &forkchoicetypes.Checkpoint{}, finalizedCheckpoint: &forkchoicetypes.Checkpoint{}, proposerBoostRoot: [32]byte{}, nodeByRoot: make(map[[fieldparams.RootLength]byte]*Node), nodeByPayload: make(map[[fieldparams.RootLength]byte]*Node), slashedIndices: make(map[types.ValidatorIndex]bool), pruneThreshold: defaultPruneThreshold, } b := make([]uint64, 0) v := make([]Vote, 0) return &ForkChoice{store: s, balances: b, votes: v} } // NodeCount returns the current number of nodes in the Store. func (f *ForkChoice) NodeCount() int { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() return len(f.store.nodeByRoot) } // Head returns the head root from fork choice store. // It firsts computes validator's balance changes then recalculates block tree from leaves to root. func (f *ForkChoice) Head( ctx context.Context, justifiedStateBalances []uint64, ) ([32]byte, error) { ctx, span := trace.StartSpan(ctx, "doublyLinkedForkchoice.Head") defer span.End() f.votesLock.Lock() defer f.votesLock.Unlock() calledHeadCount.Inc() // Using the write lock here because `applyWeightChanges` that gets called subsequently requires a write operation. f.store.nodesLock.Lock() defer f.store.nodesLock.Unlock() if err := f.updateBalances(justifiedStateBalances); err != nil { return [32]byte{}, errors.Wrap(err, "could not update balances") } if err := f.store.applyProposerBoostScore(justifiedStateBalances); err != nil { return [32]byte{}, errors.Wrap(err, "could not apply proposer boost score") } if err := f.store.treeRootNode.applyWeightChanges(ctx); err != nil { return [32]byte{}, errors.Wrap(err, "could not apply weight changes") } jc := f.JustifiedCheckpoint() fc := f.FinalizedCheckpoint() if err := f.store.treeRootNode.updateBestDescendant(ctx, jc.Epoch, fc.Epoch); err != nil { return [32]byte{}, errors.Wrap(err, "could not update best descendant") } return f.store.head(ctx) } // ProcessAttestation processes attestation for vote accounting, it iterates around validator indices // and update their votes accordingly. func (f *ForkChoice) ProcessAttestation(ctx context.Context, validatorIndices []uint64, blockRoot [32]byte, targetEpoch types.Epoch) { ctx, span := trace.StartSpan(ctx, "doublyLinkedForkchoice.ProcessAttestation") defer span.End() f.votesLock.Lock() defer f.votesLock.Unlock() for _, index := range validatorIndices { // Validator indices will grow the vote cache. for index >= uint64(len(f.votes)) { f.votes = append(f.votes, Vote{currentRoot: params.BeaconConfig().ZeroHash, nextRoot: params.BeaconConfig().ZeroHash}) } // Newly allocated vote if the root fields are untouched. newVote := f.votes[index].nextRoot == params.BeaconConfig().ZeroHash && f.votes[index].currentRoot == params.BeaconConfig().ZeroHash // Vote gets updated if it's newly allocated or high target epoch. if newVote || targetEpoch > f.votes[index].nextEpoch { f.votes[index].nextEpoch = targetEpoch f.votes[index].nextRoot = blockRoot } } processedAttestationCount.Inc() } // InsertNode processes a new block by inserting it to the fork choice store. func (f *ForkChoice) InsertNode(ctx context.Context, state state.BeaconState, root [32]byte) error { ctx, span := trace.StartSpan(ctx, "doublyLinkedForkchoice.InsertNode") defer span.End() slot := state.Slot() bh := state.LatestBlockHeader() if bh == nil { return errNilBlockHeader } parentRoot := bytesutil.ToBytes32(bh.ParentRoot) payloadHash := [32]byte{} if state.Version() >= version.Bellatrix { ph, err := state.LatestExecutionPayloadHeader() if err != nil { return err } if ph != nil { copy(payloadHash[:], ph.BlockHash) } } jc := state.CurrentJustifiedCheckpoint() if jc == nil { return errInvalidNilCheckpoint } justifiedEpoch := jc.Epoch fc := state.FinalizedCheckpoint() if fc == nil { return errInvalidNilCheckpoint } finalizedEpoch := fc.Epoch node, err := f.store.insert(ctx, slot, root, parentRoot, payloadHash, justifiedEpoch, finalizedEpoch) if err != nil { return err } if features.Get().EnablePullTips { jc, fc = f.store.pullTips(state, node, jc, fc) } return f.updateCheckpoints(ctx, jc, fc) } // updateCheckpoints update the checkpoints when inserting a new node. func (f *ForkChoice) updateCheckpoints(ctx context.Context, jc, fc *ethpb.Checkpoint) error { f.store.checkpointsLock.Lock() if jc.Epoch > f.store.justifiedCheckpoint.Epoch { if jc.Epoch > f.store.bestJustifiedCheckpoint.Epoch { f.store.bestJustifiedCheckpoint = &forkchoicetypes.Checkpoint{Epoch: jc.Epoch, Root: bytesutil.ToBytes32(jc.Root)} } currentSlot := slots.CurrentSlot(f.store.genesisTime) if slots.SinceEpochStarts(currentSlot) < params.BeaconConfig().SafeSlotsToUpdateJustified { f.store.prevJustifiedCheckpoint = f.store.justifiedCheckpoint f.store.justifiedCheckpoint = &forkchoicetypes.Checkpoint{Epoch: jc.Epoch, Root: bytesutil.ToBytes32(jc.Root)} } else { currentJcp := f.store.justifiedCheckpoint currentRoot := currentJcp.Root if currentRoot == params.BeaconConfig().ZeroHash { currentRoot = f.store.originRoot } jSlot, err := slots.EpochStart(currentJcp.Epoch) if err != nil { f.store.checkpointsLock.Unlock() return err } jcRoot := bytesutil.ToBytes32(jc.Root) root, err := f.AncestorRoot(ctx, jcRoot, jSlot) if err != nil { f.store.checkpointsLock.Unlock() return err } if root == currentRoot { f.store.prevJustifiedCheckpoint = f.store.justifiedCheckpoint f.store.justifiedCheckpoint = &forkchoicetypes.Checkpoint{Epoch: jc.Epoch, Root: jcRoot} } } } // Update finalization if fc.Epoch <= f.store.finalizedCheckpoint.Epoch { f.store.checkpointsLock.Unlock() return nil } f.store.finalizedCheckpoint = &forkchoicetypes.Checkpoint{Epoch: fc.Epoch, Root: bytesutil.ToBytes32(fc.Root)} f.store.justifiedCheckpoint = &forkchoicetypes.Checkpoint{Epoch: jc.Epoch, Root: bytesutil.ToBytes32(jc.Root)} f.store.checkpointsLock.Unlock() return f.store.prune(ctx) } // HasNode returns true if the node exists in fork choice store, // false else wise. func (f *ForkChoice) HasNode(root [32]byte) bool { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() _, ok := f.store.nodeByRoot[root] return ok } // HasParent returns true if the node parent exists in fork choice store, // false else wise. func (f *ForkChoice) HasParent(root [32]byte) bool { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() node, ok := f.store.nodeByRoot[root] if !ok || node == nil { return false } return node.parent != nil } // IsCanonical returns true if the given root is part of the canonical chain. func (f *ForkChoice) IsCanonical(root [32]byte) bool { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() node, ok := f.store.nodeByRoot[root] if !ok || node == nil { return false } if node.bestDescendant == nil { if f.store.headNode.bestDescendant == nil { return node == f.store.headNode } return node == f.store.headNode.bestDescendant } if f.store.headNode.bestDescendant == nil { return node.bestDescendant == f.store.headNode } return node.bestDescendant == f.store.headNode.bestDescendant } // IsOptimistic returns true if the given root has been optimistically synced. func (f *ForkChoice) IsOptimistic(root [32]byte) (bool, error) { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() node, ok := f.store.nodeByRoot[root] if !ok || node == nil { return true, ErrNilNode } return node.optimistic, nil } // AncestorRoot returns the ancestor root of input block root at a given slot. func (f *ForkChoice) AncestorRoot(ctx context.Context, root [32]byte, slot types.Slot) ([32]byte, error) { ctx, span := trace.StartSpan(ctx, "protoArray.AncestorRoot") defer span.End() f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() node, ok := f.store.nodeByRoot[root] if !ok || node == nil { return [32]byte{}, errors.Wrap(ErrNilNode, "could not determine ancestor root") } n := node for n != nil && n.slot > slot { if ctx.Err() != nil { return [32]byte{}, ctx.Err() } n = n.parent } if n == nil { return [32]byte{}, errors.Wrap(ErrNilNode, "could not determine ancestor root") } return n.root, nil } // updateBalances updates the balances that directly voted for each block taking into account the // validators' latest votes. func (f *ForkChoice) updateBalances(newBalances []uint64) error { for index, vote := range f.votes { // Skip if validator has been slashed if f.store.slashedIndices[types.ValidatorIndex(index)] { continue } // Skip if validator has never voted for current root and next root (i.e. if the // votes are zero hash aka genesis block), there's nothing to compute. if vote.currentRoot == params.BeaconConfig().ZeroHash && vote.nextRoot == params.BeaconConfig().ZeroHash { continue } oldBalance := uint64(0) newBalance := uint64(0) // If the validator index did not exist in `f.balances` or // `newBalances` list above, the balance is just 0. if index < len(f.balances) { oldBalance = f.balances[index] } if index < len(newBalances) { newBalance = newBalances[index] } // Update only if the validator's balance or vote has changed. if vote.currentRoot != vote.nextRoot || oldBalance != newBalance { // Ignore the vote if the root is not in fork choice // store, that means we have not seen the block before. nextNode, ok := f.store.nodeByRoot[vote.nextRoot] if ok && vote.nextRoot != params.BeaconConfig().ZeroHash { // Protection against nil node if nextNode == nil { return errors.Wrap(ErrNilNode, "could not update balances") } nextNode.balance += newBalance } currentNode, ok := f.store.nodeByRoot[vote.currentRoot] if ok && vote.currentRoot != params.BeaconConfig().ZeroHash { // Protection against nil node if currentNode == nil { return errors.Wrap(ErrNilNode, "could not update balances") } if currentNode.balance < oldBalance { f.store.proposerBoostLock.RLock() log.WithFields(logrus.Fields{ "nodeRoot": fmt.Sprintf("%#x", bytesutil.Trunc(vote.currentRoot[:])), "oldBalance": oldBalance, "nodeBalance": currentNode.balance, "nodeWeight": currentNode.weight, "proposerBoostRoot": fmt.Sprintf("%#x", bytesutil.Trunc(f.store.proposerBoostRoot[:])), "previousProposerBoostRoot": fmt.Sprintf("%#x", bytesutil.Trunc(f.store.previousProposerBoostRoot[:])), "previousProposerBoostScore": f.store.previousProposerBoostScore, }).Warning("node with invalid balance, setting it to zero") f.store.proposerBoostLock.RUnlock() currentNode.balance = 0 } else { currentNode.balance -= oldBalance } } } // Rotate the validator vote. f.votes[index].currentRoot = vote.nextRoot } f.balances = newBalances return nil } // Tips returns a list of possible heads from fork choice store, it returns the // roots and the slots of the leaf nodes. func (f *ForkChoice) Tips() ([][32]byte, []types.Slot) { return f.store.tips() } // ProposerBoost returns the proposerBoost of the store func (f *ForkChoice) ProposerBoost() [fieldparams.RootLength]byte { return f.store.proposerBoost() } // SetOptimisticToValid sets the node with the given root as a fully validated node func (f *ForkChoice) SetOptimisticToValid(ctx context.Context, root [fieldparams.RootLength]byte) error { f.store.nodesLock.Lock() defer f.store.nodesLock.Unlock() node, ok := f.store.nodeByRoot[root] if !ok || node == nil { return errors.Wrap(ErrNilNode, "could not set node to valid") } return node.setNodeAndParentValidated(ctx) } // BestJustifiedCheckpoint of fork choice store. func (f *ForkChoice) BestJustifiedCheckpoint() *forkchoicetypes.Checkpoint { f.store.checkpointsLock.RLock() defer f.store.checkpointsLock.RUnlock() return f.store.bestJustifiedCheckpoint } // PreviousJustifiedCheckpoint of fork choice store. func (f *ForkChoice) PreviousJustifiedCheckpoint() *forkchoicetypes.Checkpoint { f.store.checkpointsLock.RLock() defer f.store.checkpointsLock.RUnlock() return f.store.prevJustifiedCheckpoint } // JustifiedCheckpoint of fork choice store. func (f *ForkChoice) JustifiedCheckpoint() *forkchoicetypes.Checkpoint { f.store.checkpointsLock.RLock() defer f.store.checkpointsLock.RUnlock() return f.store.justifiedCheckpoint } // FinalizedCheckpoint of fork choice store. func (f *ForkChoice) FinalizedCheckpoint() *forkchoicetypes.Checkpoint { f.store.checkpointsLock.RLock() defer f.store.checkpointsLock.RUnlock() return f.store.finalizedCheckpoint } func (f *ForkChoice) ForkChoiceNodes() []*ethpb.ForkChoiceNode { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() ret := make([]*ethpb.ForkChoiceNode, len(f.store.nodeByRoot)) return f.store.treeRootNode.rpcNodes(ret) } // SetOptimisticToInvalid removes a block with an invalid execution payload from fork choice store func (f *ForkChoice) SetOptimisticToInvalid(ctx context.Context, root, parentRoot, payloadHash [fieldparams.RootLength]byte) ([][32]byte, error) { return f.store.setOptimisticToInvalid(ctx, root, parentRoot, payloadHash) } // InsertSlashedIndex adds the given slashed validator index to the // store-tracked list. Votes from these validators are not accounted for // in forkchoice. func (f *ForkChoice) InsertSlashedIndex(_ context.Context, index types.ValidatorIndex) { f.store.nodesLock.Lock() defer f.store.nodesLock.Unlock() // return early if the index was already included: if f.store.slashedIndices[index] { return } f.store.slashedIndices[index] = true // Subtract last vote from this equivocating validator f.votesLock.RLock() defer f.votesLock.RUnlock() if index >= types.ValidatorIndex(len(f.balances)) { return } if index >= types.ValidatorIndex(len(f.votes)) { return } node, ok := f.store.nodeByRoot[f.votes[index].currentRoot] if !ok || node == nil { return } if node.balance < f.balances[index] { node.balance = 0 } else { node.balance -= f.balances[index] } } // UpdateJustifiedCheckpoint sets the justified checkpoint to the given one func (f *ForkChoice) UpdateJustifiedCheckpoint(jc *forkchoicetypes.Checkpoint) error { if jc == nil { return errInvalidNilCheckpoint } f.store.checkpointsLock.Lock() defer f.store.checkpointsLock.Unlock() f.store.prevJustifiedCheckpoint = f.store.justifiedCheckpoint f.store.justifiedCheckpoint = jc bj := f.store.bestJustifiedCheckpoint if bj == nil || bj.Root == params.BeaconConfig().ZeroHash || jc.Epoch > bj.Epoch { f.store.bestJustifiedCheckpoint = &forkchoicetypes.Checkpoint{Epoch: jc.Epoch, Root: jc.Root} } return nil } // UpdateFinalizedCheckpoint sets the finalized checkpoint to the given one func (f *ForkChoice) UpdateFinalizedCheckpoint(fc *forkchoicetypes.Checkpoint) error { if fc == nil { return errInvalidNilCheckpoint } f.store.checkpointsLock.Lock() defer f.store.checkpointsLock.Unlock() f.store.finalizedCheckpoint = fc return nil } // CommonAncestorRoot returns the common ancestor root between the two block roots r1 and r2. func (f *ForkChoice) CommonAncestorRoot(ctx context.Context, r1 [32]byte, r2 [32]byte) ([32]byte, error) { ctx, span := trace.StartSpan(ctx, "doublelinkedtree.CommonAncestorRoot") defer span.End() // Do nothing if the input roots are the same. if r1 == r2 { return r1, nil } f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() n1, ok := f.store.nodeByRoot[r1] if !ok || n1 == nil { return [32]byte{}, forkchoice.ErrUnknownCommonAncestor } n2, ok := f.store.nodeByRoot[r2] if !ok || n2 == nil { return [32]byte{}, forkchoice.ErrUnknownCommonAncestor } for { if ctx.Err() != nil { return [32]byte{}, ctx.Err() } if n1.slot > n2.slot { n1 = n1.parent // Reaches the end of the tree and unable to find common ancestor. // This should not happen at runtime as the finalized // node has to be a common ancestor if n1 == nil { return [32]byte{}, forkchoice.ErrUnknownCommonAncestor } } else { n2 = n2.parent // Reaches the end of the tree and unable to find common ancestor. if n2 == nil { return [32]byte{}, forkchoice.ErrUnknownCommonAncestor } } if n1 == n2 { return n1.root, nil } } } // InsertOptimisticChain inserts all nodes corresponding to blocks in the slice // `blocks`. This slice must be ordered from child to parent. It includes all // blocks **except** the first one (that is the one with the highest slot // number). All blocks are assumed to be a strict chain // where blocks[i].Parent = blocks[i+1]. Also we assume that the parent of the // last block in this list is already included in forkchoice store. func (f *ForkChoice) InsertOptimisticChain(ctx context.Context, chain []*forkchoicetypes.BlockAndCheckpoints) error { if len(chain) == 0 { return nil } for i := len(chain) - 1; i > 0; i-- { b := chain[i].Block r := bytesutil.ToBytes32(chain[i-1].Block.ParentRoot()) parentRoot := bytesutil.ToBytes32(b.ParentRoot()) payloadHash, err := blocks.GetBlockPayloadHash(b) if err != nil { return err } if _, err := f.store.insert(ctx, b.Slot(), r, parentRoot, payloadHash, chain[i].JustifiedCheckpoint.Epoch, chain[i].FinalizedCheckpoint.Epoch); err != nil { return err } if err := f.updateCheckpoints(ctx, chain[i].JustifiedCheckpoint, chain[i].FinalizedCheckpoint); err != nil { return err } } return nil } // SetGenesisTime sets the genesisTime tracked by forkchoice func (f *ForkChoice) SetGenesisTime(genesisTime uint64) { f.store.genesisTime = genesisTime } // SetOriginRoot sets the genesis block root func (f *ForkChoice) SetOriginRoot(root [32]byte) { f.store.originRoot = root } // CachedHeadRoot returns the last cached head root func (f *ForkChoice) CachedHeadRoot() [32]byte { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() node := f.store.headNode if node == nil { return [32]byte{} } return f.store.headNode.root } // FinalizedPayloadBlockHash returns the hash of the payload at the finalized checkpoint func (f *ForkChoice) FinalizedPayloadBlockHash() [32]byte { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() root := f.FinalizedCheckpoint().Root node, ok := f.store.nodeByRoot[root] if !ok || node == nil { // This should not happen return [32]byte{} } return node.payloadHash } // JustifiedPayloadBlockHash returns the hash of the payload at the justified checkpoint func (f *ForkChoice) JustifiedPayloadBlockHash() [32]byte { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() root := f.JustifiedCheckpoint().Root node, ok := f.store.nodeByRoot[root] if !ok || node == nil { // This should not happen return [32]byte{} } return node.payloadHash }