package protoarray import ( "bytes" "context" "errors" "math" "github.com/prysmaticlabs/prysm/shared/params" "go.opencensus.io/trace" ) // insert registers a new block node to the fork choice store's node list. // It then updates the new node's parent with best child and descendant node. func (s *Store) insert(ctx context.Context, slot uint64, root [32]byte, parent [32]byte, justifiedEpoch uint64, finalizedEpoch uint64) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.insert") defer span.End() s.nodeIndicesLock.Lock() defer s.nodeIndicesLock.Unlock() // Return if the block has been inserted into Store before. if _, ok := s.nodeIndices[root]; ok { return nil } index := len(s.nodes) parentIndex, ok := s.nodeIndices[parent] // Mark genesis block's parent as non existent. if !ok { parentIndex = nonExistentNode } n := &Node{ slot: slot, root: root, parent: parentIndex, justifiedEpoch: justifiedEpoch, finalizedEpoch: finalizedEpoch, bestChild: nonExistentNode, bestDescendant: nonExistentNode, weight: 0, } s.nodeIndices[root] = uint64(index) s.nodes = append(s.nodes, n) // Update parent with the best child and descendent only if it's available. if n.parent != nonExistentNode { if err := s.updateBestChildAndDescendant(ctx, parentIndex, uint64(index)); err != nil { return err } } return nil } // applyWeightChanges iterates backwards through the nodes in store. It checks all nodes parent // and its best child. For each node, it updates the weight with input delta and // back propagate the nodes delta to its parents delta. After scoring changes, // the best child is then updated along with best descendant. func (s *Store) applyWeightChanges(ctx context.Context, justifiedEpoch uint64, finalizedEpoch uint64, delta []int) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.applyWeightChanges") defer span.End() // The length of the nodes can not be different than length of the delta. if len(s.nodes) != len(delta) { return errInvalidDeltaLength } // Update the justified / finalized epochs in store if necessary. if s.justifiedEpoch != justifiedEpoch || s.finalizedEpoch != finalizedEpoch { s.justifiedEpoch = justifiedEpoch s.finalizedEpoch = finalizedEpoch } // Iterate backwards through all index to node in store. for i := len(s.nodes) - 1; i >= 0; i-- { n := s.nodes[i] // There is no need to adjust the balances or manage parent of the zero hash, it // is an alias to the genesis block. if n.root == params.BeaconConfig().ZeroHash { continue } nodeDelta := delta[i] if nodeDelta < 0 { // A node's weight can not be negative but the delta can be negative. if int(n.weight)+nodeDelta < 0 { n.weight = 0 } else { // Subtract node's weight. n.weight -= uint64(math.Abs(float64(nodeDelta))) } } else { // Add node's weight. n.weight += uint64(nodeDelta) } s.nodes[i] = n // Update parent's best child and descendent if the node has a known parent. if n.parent != nonExistentNode { // Protection against node parent index out of bound. This should not happen. if int(n.parent) >= len(delta) { return errInvalidParentDelta } // Back propagate the nodes delta to its parent. delta[n.parent] += nodeDelta if err := s.updateBestChildAndDescendant(ctx, n.parent, uint64(i)); err != nil { return err } } } return nil } // updateBestChildAndDescendant updates parent node's best child and descendent. // It looks at input parent node and input child node and potentially modifies parent's best // child and best descendent indices. // There are four outcomes: // 1.) The child is already the best child but it's now invalid due to a FFG change and should be removed. // 2.) The child is already the best child and the parent is updated with the new best descendant. // 3.) The child is not the best child but becomes the best child. // 4.) The child is not the best child and does not become best child. func (s *Store) updateBestChildAndDescendant(ctx context.Context, parentIndex uint64, childIndex uint64) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.updateBestChildAndDescendant") defer span.End() // Protection against parent index out of bound, this should not happen. if parentIndex >= uint64(len(s.nodes)) { return errInvalidNodeIndex } parent := s.nodes[parentIndex] // Protection against child index out of bound, again this should not happen. if childIndex >= uint64(len(s.nodes)) { return errInvalidNodeIndex } child := s.nodes[childIndex] // Is the child viable to become head? Based on justification and finalization rules. childLeadsToViableHead, err := s.leadsToViableHead(ctx, child) if err != nil { return err } // Define 3 variables for the 3 outcomes mentioned above. This is to // set `parent.bestChild` and `parent.bestDescendent` to. These // aliases are to assist readability. changeToNone := []uint64{nonExistentNode, nonExistentNode} bestDescendant := child.bestDescendant if bestDescendant == nonExistentNode { bestDescendant = childIndex } changeToChild := []uint64{childIndex, bestDescendant} noChange := []uint64{parent.bestChild, parent.bestDescendant} newParentChild := make([]uint64, 0) if parent.bestChild != nonExistentNode { if parent.bestChild == childIndex && !childLeadsToViableHead { // If the child is already the best child of the parent but it's not viable for head, // we should remove it. (Outcome 1) newParentChild = changeToNone } else if parent.bestChild == childIndex { // If the child is already the best child of the parent, set it again to ensure best // descendent of the parent is updated. (Outcome 2) newParentChild = changeToChild } else { // Protection against parent's best child going out of bound. if parent.bestChild > uint64(len(s.nodes)) { return errInvalidBestDescendantIndex } bestChild := s.nodes[parent.bestChild] // Is current parent's best child viable to be head? Based on justification and finalization rules. bestChildLeadsToViableHead, err := s.leadsToViableHead(ctx, bestChild) if err != nil { return err } if childLeadsToViableHead && !bestChildLeadsToViableHead { // The child leads to a viable head, but the current parent's best child doesnt. newParentChild = changeToChild } else if !childLeadsToViableHead && bestChildLeadsToViableHead { // The child doesn't lead to a viable head, the current parent's best child does. newParentChild = noChange } else if child.weight == bestChild.weight { // If both are viable, compare their weights. // Tie-breaker of equal weights by root. if bytes.Compare(child.root[:], bestChild.root[:]) > 0 { newParentChild = changeToChild } else { newParentChild = noChange } } else { // Choose winner by weight. if child.weight > bestChild.weight { newParentChild = changeToChild } else { newParentChild = noChange } } } } else { if childLeadsToViableHead { // If parent doesn't have a best child and the child is viable. newParentChild = changeToChild } else { // If parent doesn't have a best child and the child is not viable. newParentChild = noChange } } // Update parent with the outcome. parent.bestChild = newParentChild[0] parent.bestDescendant = newParentChild[1] s.nodes[parentIndex] = parent return nil } // prune prunes the store with the new finalized root. The tree is only // pruned if the input finalized root are different than the one in stored and // the number of the nodes in store has met prune threshold. func (s *Store) prune(ctx context.Context, finalizedRoot [32]byte) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.prune") defer span.End() s.nodeIndicesLock.Lock() defer s.nodeIndicesLock.Unlock() // The node would have seen finalized root or else it'd // be able to prune it. finalizedIndex, ok := s.nodeIndices[finalizedRoot] if !ok { return errUnknownFinalizedRoot } // The number of the nodes has not met the prune threshold. // Pruning at small numbers incurs more cost than benefit. if finalizedIndex < s.pruneThreshold { return nil } // Remove the key/values from indices mapping on to be pruned nodes. // These nodes are before the finalized index. for i := uint64(0); i < finalizedIndex; i++ { if int(i) >= len(s.nodes) { return errInvalidNodeIndex } delete(s.nodeIndices, s.nodes[i].root) } // Finalized index can not be greater than the length of the node. if int(finalizedIndex) >= len(s.nodes) { return errors.New("invalid finalized index") } s.nodes = s.nodes[finalizedIndex:] // Adjust indices to node mapping. for k, v := range s.nodeIndices { s.nodeIndices[k] = v - finalizedIndex } // Iterate through existing nodes and adjust its parent/child indices with the newly pruned layout. for i, node := range s.nodes { if node.parent != nonExistentNode { // If the node's parent is less than finalized index, set it to non existent. if node.parent >= finalizedIndex { node.parent -= finalizedIndex } else { node.parent = nonExistentNode } } if node.bestChild != nonExistentNode { if node.bestChild < finalizedIndex { return errInvalidBestChildIndex } node.bestChild -= finalizedIndex } if node.bestDescendant != nonExistentNode { if node.bestDescendant < finalizedIndex { return errInvalidBestDescendantIndex } node.bestDescendant -= finalizedIndex } s.nodes[i] = node } return nil } // leadsToViableHead returns true if the node or the best descendent of the node is viable for head. // Any node with diff finalized or justified epoch than the ones in fork choice store // should not be viable to head. func (s *Store) leadsToViableHead(ctx context.Context, node *Node) (bool, error) { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.leadsToViableHead") defer span.End() var bestDescendentViable bool bestDescendentIndex := node.bestDescendant // If the best descendant is not part of the leaves. if bestDescendentIndex != nonExistentNode { // Protection against out of bound, best descendent index can not be // exceeds length of nodes list. if bestDescendentIndex >= uint64(len(s.nodes)) { return false, errInvalidBestDescendantIndex } bestDescendentNode := s.nodes[bestDescendentIndex] bestDescendentViable = s.viableForHead(ctx, bestDescendentNode) } // The node is viable as long as the best descendent is viable. return bestDescendentViable || s.viableForHead(ctx, node), nil } // viableForHead returns true if the node is viable to head. // Any node with diff finalized or justified epoch than the ones in fork choice store // should not be viable to head. func (s *Store) viableForHead(ctx context.Context, node *Node) bool { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.viableForHead") defer span.End() // `node` is viable if its justified epoch and finalized epoch are the same as the one in `Store`. // It's also viable if we are in genesis epoch. justified := s.justifiedEpoch == node.justifiedEpoch || s.justifiedEpoch == 0 finalized := s.finalizedEpoch == node.finalizedEpoch || s.finalizedEpoch == 0 return justified && finalized }